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Low-Resource Speech Recognition
Using Pre-trained Speech Representation Models

by Huang, Chun Fung Ranzo

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Abstract

Difficulties in eliciting substantial spoken data from speaker populations of interest and pro-

ducing the accompanying transcripts result in low-resource scenarios in which the develop-

ment of robust automatic speech recognition (ASR) systems may be hindered. With the aid of

a large volume of unlabeled audio data, self-supervised speech representation learning may

address this limitation by learning a model-based feature extractor via a proxy task in ad-

vance, thus offering pre-trained representations transferable to the ASR task for fine-tuning.

This dissertation reviews current self-supervised speech representation learning methodolo-

gies and investigates the application of wav2vec 2.0 ASR on a developing corpus named CU-

MARVEL in order to provide automatic transcripts for streamlining its human transcription

work. The said corpus involves spontaneous responses from Cantonese-speaking older adults

in Hong Kong—a unique setting concerning a language and a population that are both low-

resource. We contribute a Cantonese wav2vec 2.0 model that is pre-trained on audio data

obtained from the web and segmented using end-to-end neural diarization methods. We

evaluate the usefulness of further pre-training on in-domain data and semi-supervised learn-

ing by pseudo-labeling for ASR under the pre-training-and-fine-tuning paradigm. Given the

availability of cross-lingual wav2vec 2.0 models, we also compare the downstream perfor-

mance of the monolingual pre-trained model to that resulted from the cross-lingual 300M

XLS-R model and justify if a monolingual pre-trained model is necessary. We benchmark our

results against those obtained from parallel experiments on the English LibriSpeech corpus.

Our best performing model for CU-MARVEL is the 300M XLS-R further pre-trained in two

stages: first adapting to the target language and then confining to the target domain. On

participants’ speech it reduces the character error rate (CER) of the vanilla XLS-R baseline by

23.1% relatively. This dissertation concludes with suggesting directions for future research.
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Chapter 1

Introduction

The development of automatic speech recognition (ASR) systems typically relies on paired

speech (the input) and text (the supervision) for training the acoustic model, which nowadays

is often modeled by a neural network. The neural network-based acoustic model maps raw

waveform or manually-defined acoustic features (e.g., MFCC and filter-bank coefficients) to

sub-word tokens (e.g., phonemes, characters, and byte-pair encoding) and emits frame-level

probabilities over the space of sub-word tokens; and given these probabilities, the decoder

finds themost probable word sequence that the input utterance conveys via a languagemodel.

Such paired speech and text may be obtained by eliciting speech from recruited speakers in

two ways: (i) the speakers are asked to read predefined texts (e.g., Common Voice1); (ii) the

speakers are asked to freely talk about a predefined topic, and the recorded speech are man-

ually transcribed later (e.g., CALLHOME). Generalization comes into question for models

learned from data collected using the first method because predefined texts yield limited

phonetic contexts, unless the texts have been carefully designed to be phonetically balanced.

Inefficiency is themajor problemwith the secondmethod sincemanual transcription is expen-

sive and time-consuming, and hence the method is not scalable. A more vigorous approach to

creating paired data is to make use of pre-existing data: LibriSpeech [21] and the later Multi-

lingual LibriSpeech (MLS) [63] are examples of large-scale efforts which create speech corpora

by aligning audio and texts from audiobooks in the public domain. However, only a few lan-

guages (e.g., English and German) benefit from the alignment approach because many others

do not come with a considerable number of public domain books, not to mention audiobooks.

Without a scalable data collection approach that applies, there are languages with only a

handful amount of paired data readily available. This lack of supervised data hinders the

creation of a robust ASR system for those target languages, and is referred to as a low-resource

1 https://commonvoice.mozilla.org
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scenario. Another low-resource scenario is due to age: with the past assumption of the target

users of general-purpose ASR systems ranging from teenagers through middle-aged adults,

few speech corpora contain representative samples of children or older adult speech. The

earliest stage of the development of an in-domain ASR system may also be deemed to be

low-resource, in which a few collected audio recordings have their transcriptions done and

thoroughly checked to serve as the supervised training data for creating an initial system.

While paired data is hard to obtain, unpaired data is not: it is not hard to obtain exten-

sive audio data from the web; and even in the context of in-domain ASR development, au-

dio recordings often arrive faster than manual transcriptions. To improve recognition per-

formance under the supervised setting, an obvious choice of utilizing unlabeled audio data

is to create supervisions for the unlabeled data by transcribing them with an initial model,

thereby expanding the supervised data set for further training, i.e., semi-supervised learning

by pseudo-labeling. This approach lies on the assumption that the initial model’s predictions

are likely to be correct, at least for those of high confidence [8]; nonetheless, the method

is prone to errors contained in the supervised data, low diversity of speakers, and limited

phonetic contexts.

The advent of self-supervised speech representation learning challenges the customary super-

vised setting by suggesting that the properties of a large volume of unlabeled audio data may

be exploited through self-supervised learning for improved supervised and semi-supervised

learning, especially in low-resource scenarios. In other words, representation learning is done

prior to supervised learning. Speech representation learning serves as a pre-training task for

obtaining a pre-trained model which provides features for a variety of speech-related down-

stream tasks, including ASR, speaker recognition and spoken language identification, etc.

One may directly fine-tune the pre-trained model weights using the objective of a down-

stream task, or rather extract latent features from the pre-trained model and train a classifier

from scratch. The idea of self-supervised or unsupervised pre-training followed by supervised

fine-tuning is not completely new in ASR, and the earliest may trace back to the now obsolete

greedy layer-wise generative pre-training procedure for DNN-based acoustic models (e.g., see

[15]), which was believed to stabilize DNN training but later found unnecessary. It was not

until contrastive predictive coding (CPC) [38] that the approach drew new attention. CPC

considered representation learning as a pre-training task for ASR by using noise contrastive

estimation (NCE) [9], and adopted amore sophisticated design ofmodel architecture, which is

2



based on CNN and GRU. However, the work of CPC did not examine large-scale pre-training.

Later, the wav2vec 2.0 [52] methodology showed a breakthrough in ASR with limited labels

that it surpassed the supervised learning-only Librispeech benchmark, and vitalized the line

of research on pre-training for speech tasks.

Requiring audio-only data, self-supervised speech representation learningmay easily apply to

a cross-lingual setting, where data in diverse languages are used to pre-train speech represen-

tations. The setting is adopted in a hope that the resulting representations will be generaliz-

able across multiple languages, thereby alleviating the need of language-specific pre-trained

models, which are computationally intensive and hence expensive to create: in the case of

LibriSpeech, which comprises 960 hours of training data, its wav2vec 2.0 pre-training of a

100M Transformer model using distributed training on 64 NVIDIA Tesla V100 GPUs takes 1.6

days [52]. XLS-R [76], a recent example of pre-trained cross-lingual speech representations

available to the public, are a collection of wav2vec 2.0 models in three sizes (namely 300M,

1B, and 2B parameters) pre-trained on 436K hours of speech data in 128 languages, however

the majority of data are in European languages. Although the language-universal property of

such representations seems attractive, vanilla cross-lingual speech representations may suffer

from language interference and underperform the language-specific counterpart.

This thesis investigates the application of ASR using pre-trained wav2vec 2.0 models on the

CU-MARVEL corpus, whose data collection and transcription work is still in progress at the

time of writing, in order to provide automatic transcripts for streamlining human transcrip-

tion work. CU-MARVEL comprises spontaneous and conversational responses from recruited

Cantonese-speaking older adults in Hong Kong, who are to complete a battery of neurocog-

nitive disorder (NCD) screening tasks on several occasions under the guidance of human as-

sessors, thus involving a language and a population that are both low-resource, at least before

the corpus is finalized. We perform parallel experiments on a well-known corpus, the English

LibriSpeech, for benchmarking purpose. We have the following contributions:

(i) To the best of our knowledge, we contribute the first publicly available Cantonese

wav2vec 2.0 model2 that is pre-trained on 2.8K hours of spontaneous speech data ex-

tracted from podcast and YouTube shows through the use of an end-to-end neural di-

2 Available at https://huggingface.co/wcfr/wav2vec2-conformer-rel-pos-base-cantonese .
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arization model trained on simulated conversations in the matched language.

(ii) We compare the downstream ASR performance of monolingual wav2vec 2.0 models,

which provide language-specific representations, to that of the 300M XLS-R, a cross-

lingual wav2vec 2.0 model and provides universal speech representations.

(iii) We evaluate the usefulness of further pre-training on monolingual and cross-lingual

models using in-domain data for wav2vec 2.0 ASR.

(iv) We examine the effectiveness and necessity of wav2vec 2.0 ASR under settings with

varying amounts of pre-training and fine-tuning data.

(v) We evaluate the usefulness of semi-supervised learning by pseudo-labeling with in-

domain data for wav2vec 2.0 ASR.

The rest of this thesis is organized as follows: Chapter 2 offers a brief review on the related

work on ASR and self-supervised speech representation learning; Chapter 3 describes the

methodology and datasets used; Chapter 4 details the experiment configurations and results

and discusses their implications; Chapter 5 concludes the thesis and suggests further research

directions.
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Chapter 2

Related Work

2.1 Automatic Speech Recognition (ASR)

2.1.1 Building Blocks of an ASR system

Automatic speech recognition (ASR) involves the use of a speech recognizer in transcribing

audio segments which contain an utterance. More formally, the speech recognizer extracts a

sequence of feature vectors X = (x1, ..., xT ) from the input audio samples a[n] and finds the

most probable word sequence w∗ = (w∗
1, ..., w

∗
S) out of the set of all possible sequencesW∗:

w∗ = arg max
w∈W∗

P (w | X) . (2.1)

Modeling the conditional distribution P (w | X) by one model without modularization is

generally difficult because we would limit ourselves to using only paired training data. More-

over, we usually model a sequence of sub-word tokens y (e.g., phonemes, characters, byte-pair

encoding) in place of a word sequence w to better share the units to model and gain the flex-

ibility of representing words unseen during training. Recognizing these facts, we may apply

the Bayesian classification rule and rewrite Equation (2.1) to provide a modularized approach,

which incorporates the a priori knowledge of linguistic structures (e.g., [13, 50]):

w∗ = arg max
w∈W∗

P (X | w)P (w)/P (X) (2.2)

= arg max
w∈W∗

P (X | w)P (w) (2.3)

= arg max
w∈W∗

∑
y∈Y∗

P (X | y)P (y | w)P (w) , (2.4)

whereY∗ is the set of all possible pronunciations (or spellings), and it is assumed thatX andw

are conditionally independent given y. Following the decomposition as in Equation (2.4), we

govern the likelihood P (X | y) by an acoustic model, the pronunciation probabilities P (y | w)

5
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Figure 2.1: Schematic diagram of a typical modularized ASR system

by a lexicon, and the prior P (w) by a language model (LM). The formulation allows the compo-

nents to be learned individually—in particular, we may train the acoustic model using paired

data and the language model using text-only data. Figure 2.1 shows a schematic diagram of

the resulting ASR system.

2.1.2 Approaches for Acoustic Modeling

The problem of acoustic modeling may be approached by (i) generative modeling, (ii) discrim-

inative modeling, or (iii) a hybrid of the two.

Before the rise of deep learning, generative modeling with GMM-HMM dominated the realm

of ASR. In the GMM-HMM framework, first-order HMM is usually assumed and a token

(usually phoneme) is sub-divided into a number of states according to a pre-defined topology.

GMM-HMM models the likelihood of observing a feature vector sequence X as

P (X | y) =
T∏
t=1

P (xt | st)P (st | st−1) , (2.5)

where the observation probabilities P (xt | st) are governed by GMM and the transition prob-

abilities P (st | st−1) (from state st−1 to st) are governed by HMM (see e.g., [13]).

In the 2010s, hybrid ANN-HMM models had received more interest. The state posterior

P (s | x) is modeled by a neural network which discriminates between different states, while

the transition probabilities may be derived from an existing GMM-HMM system or be manu-

ally defined and untrained in end-to-end training (i.e., without the reliance on a GMM-HMM).

Through the use of model architectures that capture a wider temporal context, the conditional

6



independence assumption in Equation (2.5) may be made less strong. For these models, we

adopt the following pseudo-likelihood in place of the state likelihood:

P (x | s) ∼ P (s | x)β/P (s)γ , (2.6)

where β and γ are hyper-parameters (see e.g., [34]).

More recently, discriminative acoustic modeling of P (y | X) with deep learning and with-

out the involvement of HMM have become immensely popular. Methodologies in this realm

usually feature end-to-end training, often in an attempt to achieve end-to-end ASR (i.e., with-

out the modularization as in Equation (2.4) and the use of a pronunciation dictionary). The

following are some notable examples:

(i) Connectionist Temporal Classification (CTC) [3] essentially performs frame-level clas-

sification of tokens (often characters nowadays) based on an encoder-only architecture.

It employs a special ‘blank’ token ∅ to separate between characters y ∈ Y so that the

text predicted may be simply read by taking the argmax of the predicted distributions

over Y ∪ {∅}, collapsing repeating characters and removing the blank tokens, albeit

beam search decoding may provide better results.

(ii) RNN-Transducer (RNN-T) [11] defines an encoder-decoder architecture in which an

RNN encoder (aka. transcription network) embeds the input features, an RNN decoder

(aka. prediction network) embeds the previous output tokens and models the token

transitions, and a joiner combines the input and output embeddings and emits token

distributions over the time length T and over the output sequence length S for beam

search decoding.

(iii) Listen, Attend and Spell (LAS) [26] defines an encoder-decoder architecture in which

a Bi-LSTM-based encoder (aka. Listener) embeds and downsamples the input fea-

tures, and an LSTM-based decoder emits a token sequence through the mechanism

of encoder-decoder attention (aka. Attend and Spell).

(iv) Joint CTC-Attention [32] speeds up the training of attention-based encoder-decoder

models by imposing the CTC loss on the encoder.

The upcoming parts of this thesis will focus on encoder-only and non-streaming models.
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2.1.3 Training Objectives for Acoustic Modeling

Below we describe two training objectives that may be applied on encoder models.

Connectionist Temporal Classification (CTC)

Since CTC [3] uses a blank symbol∅ to separate between tokens y ∈ Y , it may be thought of

as a special case of HMM that adopts a special two-state topology for modeling the tokens,

and uses no transition probabilities and no state prior [34]. The first state of that topology cor-

responds to a character, and the second state refers to the blank symbol and is shared across

all the HMMs. In addition, the character state may transit to every other state, and it must

go through the blank state to reach itself so as to distinguish between repeating characters.

LetMw denote the supervision graph built from the transcription w. The CTC loss for an

utterance u is given by

L(u)
CTC = − logP (Mw | X) = − log

∑
s∈Mw

T∏
t=1

P (st | xt) , (2.7)

where the sum is over all possible alignments s ∈Mw and can be efficiently computed online

using the forward-backward algorithm [34].

Maximal Mutual Information (MMI)

According to [29], MMI is a sequence discrminative objective whichmaximizes the probability

of the reference transcript and minimize that of the others. The MMI loss for an utterance u

is given by

L(u)
MMI = −[logP (X | Mw)− logP (X)] (2.8)

= − logP (X | Mw) + log
∑

w′∈W∗

P (X | w′)P (w′) (2.9)

≈ − logP (X | Mw) + logP (X | Mden) . (2.10)

Variants of MMI are characterized by the estimation methods of the denominator graph

Mden . Specifically, lattice-free MMI adopts a pruned phone (other tokens are also appli-

cable) n-gram LM estimated from GMM-HMM alignments [29] or random pronunciations of

the training transcripts [35] for constructing the denominator graph.
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2.1.4 Architectures for Acoustic Models

Below we review some of the commonly used architectures for acoustic models.

Convolutional Neural Network (CNN) and Time-Delay Neural Network (TDNN)

A CNN transforms patches of the input locally along the spatial dimension(s) by applying on

each patch a set of learnable kernels or filters of the same size (the kernel size). The filters

may be dilated for an enlarged receptive field without increasing the parameter count. The

input may be subsampled by extracting patches every s > 1 step (the stride). Filter-bank

features may be embedded by 2d-CNNs that convolve along the time and frequency axes

before 1d-CNNs.

TDNN generalizes dilated CNN in that its kernels may have asymmetric time contexts, which

are defined by splicing frame offsets of the layer’s input. With considerations about online

decoding latency and word recognition accuracy (which may not correlate with frame-level

accuracy), more contexts are usually taken from the left [22], hence the ‘time delay’.

To make TDNN more parameter-efficient, [39] introduces TDNN-F (where ‘F’ stands for ‘fac-

torized’), which factorizes the weight matrix of a TDNN (the kernel and input dimensions

are flattened into one) into two smaller and successive factors, with the first enforced to be

semi-orthogonal.

Transformer

Transformer [33] effectively models long-term dependencies. It transforms the embedded

input through a global attention mechanism that maps the query vectors to an output by

computing for each query vector a similarity-based weighted sum of the value vectors. Each

value vector is weighted by the dot product between its associated key vector and the given

query vector. In an encoder, self-attention may be used in which the query, key and value

vectors are projections of the input vectors. For streaming applications, a causal attention

mask is used to prevent attending to keys ahead of time during training.

To make the attention mechanism position-aware, the input vectors may be added with si-

nusoidal positional encoding, relative sinusoidal positional encoding, or learned positional

encoding before they are presented to the Transformer layers.
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Figure 2.2: Some building blocks for acoustic models

The pre-norm variant of Transformer, which places layer normalization within the residual

blocks and adds layer normalization after a stack of Transformer layers, leads to more stable

training and faster convergence [64]. Figure 2.2a shows the pre-norm Transformer layer.

Conformer

Conformer [55], which stands for convolution-augmented Transformer, imposes the notion

of local connectivity on the Transformer architecture by incorporating a 1d-convolution mod-

ule. In a Conformer layer, a pair of feed-forward modules sandwiches the multi-head self-

attention and the convolution modules. Every module is a residual block and begins with

layer normalization, i.e., the architecture is pre-norm.

The feed-forward module consists of two linear layers, with the first expanding the dimension

by a factor of 4 and the second projecting back the the model dimension. The multi-head self-

attention module consists of a multi-head self-attention layer and a dropout layer. The convo-

lution module is based on depth-wise separable convolution, and it performs point-wise con-

volution, followed by depth-wise convolution and again point-wise convolution. Figure 2.2b

shows a simple view of the Conformer layer.
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2.1.5 Speech Features for ASR

Speech signals exhibit locally quasi-periodic phenomena (which refer to voiced sounds) in-

terjected by transients (which refer to unvoiced sounds) and silences, and are relatively sta-

tionary in time intervals of 5 to 25 ms [7]. To ease analysis of the lengthy speech signals,

which are usually sampled at 16 kHz for speech applications, feature extraction performs a

sliding-window transform on the (real-valued) sampled signal to provide local analyses of the

signal while downsampling the signal in the time domain. Another important role of feature

extraction is to discard information irrelevant to or not useful for classification, e.g., noise.

Speech features are traditionally extracted by signal processing techniques and presented to

the acousticmodel, the extraction process is therefore known as front-end processing. In recent

years, there have been interests inmodel-based feature extractors, which may be learned end-

to-end via the optimization of ASR losses, or through a pre-training task of self-supervised

representation learning. The latter is particularly interesting because it may exploit the prop-

erties of a large volume of unlabeled audio data.

Features based on Signal Processing

Acoustic features extracted through signal processing means are due to local time-frequency

analyses, and may be described in a convolution manner. A short-time analysis operation is

performed on a window of M samples (which we call the window length or frame size) every

L samples (which we call the hop size or frame shift) to yield a sequence of feature frames.

The t-th segment at[n] undergoes a short-time transform which results in a time-localized

spectrum xt. The transform may base on Fourier analysis, Gammatone analysis (e.g., [4]), or

rarely, wavelet analysis (e.g., [1]). We may express the transform on a real and discrete signal

by a bank of K analysis filters hk[n] bucketing the frequency range:

xt,k =
M−1∑
n=0

at[n]hk[−n] , (2.11)

where n is relative to the start of at[n], and K ≥ M is enforced to ensure the transform is

adequately sampled [5, 40].

The rest of this part will assume a context of the short-time Fourier transform (STFT) for its

popularity. For discrete time and frequencies, we use the discrete Fourier transform (DFT).
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According to [5], a DFT analysis filter is defined by

hSTFT
k [n] = wA[n]e−jωkn , (2.12)

where wA is a window function, j is the imaginary unit, and ωk = 2πk/K is the angular

frequency. Then,

xSTFT
t,k =

M−1∑
n=0

a[n]wA[−n]e−jωkn . (2.13)

It may be derived from Equation (2.13) that (1) the Fourier spectrum is smeared by the window

function in the frequency domain, and (2) there exists a trade-off between time and frequency

resolutions in Fourier analysis [7].

Window functions come with different design considerations, but a general agreement is to

reduce the size and height of their side lobes in the frequency domain to avoid spectral leak-

age, i.e., the energy of a frequency leaking to its neighboring frequencies [7]. The Hamming

window is often used in ASR, and the Kaldi speech recognition toolkit uses the so-called

“Povey window”1, which is a variant of the Hann window. The Hamming window specifically

reduces the size of the first side lobe while Povey and Hann do not, and Povey and Hann

decay the sizes of the side lobes much faster than Hamming2.

According to [72], the configuration of the hop size and window length should be in accord

with observations from speech production. The hop size should be short to track the rapid

changes of the vocal tract shape, whereas the choice of the window length should be narrow

to better localize speech events, and at the same time wide enough to accommodate at least

one glottal cycle, smooth out the unvoiced speech signal, and make the analysis invariant to

the position of the window. In practice, the hop size usually takes a value of 10 ms, and the

window length is usually set to 25 ms (e.g., [7, 13]).

The (linear) spectrogram is a basic representation that displays the power spectrum over time,

and is interpretable by human3, e.g., see [72]. In other words, it does not contain phase infor-

1 See https://github.com/kaldi-asr/kaldi/blob/master/src/feat/feature-window.cc .
2 See https://groups.google.com/g/kaldi-help/c/UlxXU8agTaY .
3 Phonological or phonetic analyses use a window length shorter than ASR applications (e.g., 10 ms) to per-

form formant analyses and better localize speech events.
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mation. In the past, to avoid the curse of dimensionality in statistical modeling, it is preferred

to derive features with reduced dimensions from the spectrogram. With this in mind, to-

gether with motivation from the human auditory system, the auditory spectrogram is widely

adopted in speech applications. According to [6, 14], the auditory spectrogram is a warped

and reduced spectrogram through the imposition of a bank of L < M band-pass filters on the

original power spectra. The filters are equally distributed in some logarithmic-based percep-

tual scales to increase the frequency resolutions in low frequencies and reduce that in high

frequencies, mimicking the functionality of auditory filters. In ASR, the mel scale

fMel(fHz) = 2595 log10
(
1 +

fHz

700

)
(2.14)

is most often used. Possibly inspired by the idea of perceived loudness, the logarithm is ap-

plied on the spectrogram to reduce its dynamic range. These end up with the log-mel spectro-

gram (also mel filterbank features, mel filterbank coefficients). Further, applying the discrete

cosine transform (DCT) on each frame of the log-mel spectrogram smooths the spectral es-

timate and decorrelates the frequency bins, and the end-product is called the mel-frequency

cepstral coefficients (MFCC). Moreover, the cesptral representation separates information

about the shape of the vocal tract from glottal excitation, and places the two in different

regions of the cepstrum, making MFCC well-suited for ASR. Since the lower order cepstral

coefficients are more relevant to signifying the vocal tract shape, we usually compute only the

first J (typically less than L) DCT coefficients for the log-mel spectrogram. The summarized

front-end feature extraction process is depicted in Figure 2.3.

Model-based Features

Although the conventional feature extraction pipeline is on solid ground, and coupling acous-

tic features with deep learning gives strong baseline results in ASR, the pipeline per se does

not directly optimize for classification. As a data-driven substitute to the convolution-based

transform in conventional front-end processing, convolutional neural networks (CNNs) are

indispensable in extracting features from raw waveform. There is no assumption of perform-

ing analyses in the Fourier spectrum or cepstrum—the filters are optimized for classification

or maximizing the likelihood of the data, depending on the actual objective. In this part, we

focus on works that train the model-based extractors end-to-end with an ASR loss, and leave

the discussion on self-supervised speech representation learningmethods to Section 2.2, since
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Figure 2.3: Extraction of acoustic features based on short-time Fourier transform [12]

they come with different motivations.

Given an neural network-based acoustic model which operates on waveform, its layers which

extract features from the raw waveform are loosely and collectively referred to as a waveform

encoder in the following discussion. Such a waveform encoder is often made of ‘1d-CNN

blocks’, each of which comprises (1) a 1d-CNN layer that operates on time, (2) a non-linearity,

and (3) a pooling layer to offer invariance to minor time shifts or subsample the sequence. In

[27, 30], the encoder is simply a 1d-CNN block; in [17, 20, 31, 41, 46], a stack of 1d-CNN

blocks; in [24], a 1d-CNN block that operates on time, another on the feature dimension, and

a stack of long-short term memory network layers (LSTMs). Comparing waveform-based

models to the acoustic feature-based counterpart in recognition rate terms, some find the

waveform-based models to perform worse [17, 19, 20], similarly or slightly better [24, 27], or

significantly better [27, 41].

With random initialization, the input 1d-CNN layer with a kernel size of at least 10ms is found

to learn bandpass filters with magnitude responses that coarsely resemble some perceptual

scales [19, 20, 24, 27]. Varying the kernel size and/or stride of the CNN, which amounts to

extracting features at variable rates, the learned filters are found to emphasize on different

frequency ranges, deviating much from the perceptual scales [30, 31, 46]. This observation
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motivatesmulti-streammodels which jointly learn parallel CNNs operating at different kernel

sizes and/or strides that offer complementary features in multiple resolutions for a time step,

giving rise to significantly better recognition performance over single-stream models [30, 46].

Some attempt to incorporate prior knowledge about the filters of the lowest 1d-CNN layer

into weight initialization or layer design. Seeing the success of auditory-inspired filters, some

initialize the trainable CNN weights as the impulse responses of Gammatone filters [19, 24,

41] or scatter filters [41]. [24, 41] find the resultant recognition performances better than

random initialization. [47] replaces the input CNN layer with SincNet which enforces the use

of Sinc filters. Such filters are essentially bandpass and parameterized only by their low and

high cutoff frequencies and therefore very parameter-efficient. The SincNet-based waveform

encoder shows better results than the 1d-CNN counterpart in both DNN [47] and joint CTC-

attention [62] setups on datasets in small to medium sizes.

Employing more sophisticated components for a waveform encoder may improve recognition

performance. For example, [70] uses a waveform encoder which incorporates strided 1d-

CNN, local RNNs, global attention and average pooling. The waveform encoder performs

a sequence of subsampling operations and provide features at multiple scales at no cost to

avail multi-stream learning. The resulting waveform encoder outperforms the 1d-CNN-only

counterpart as well as MFCC features on a 21K-hour industrial dataset. Another possible way

to improve ASR performance is to create a tandem model which makes use of both waveform

and acoustic features, e.g., see [24].

2.2 Self-Supervised Speech Representation Learning

The main objective of self-supervised speech representation learning is to learn the properties

of unlabeled data (usually in a large volume) that are transferable to the downstream tasks,

which are usually supervised. The following text will use the term pre-training to refer to the

representation learning stage and the term fine-tuning to refer to the transfer learning stage.

Speech representations may be learned upon (mel) spectrograms [42, 59–61, 79] or from

raw audio [38, 48, 52, 69, 77, 81]. Although the direct use of waveform in pre-training has

been commonplace nowadays, pre-training on log-mel spectrograms may provide competi-

tive downstream ASR performance as shown in [79].
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Below we take a bottom-up approach to describe the methodologies of self-supervised speech

representation learning. Details of the methodologies are summarized in Table 2.1 at the end

of this chapter.

2.2.1 Model Architectures

The model architectures for speech representation learning are similar to that for acoustic

modeling. Here we define the model components for the two more formally. An encoder net-

work f : X 7→ Z , which is often based on CNNs, embeds the input (audio a[n] or spectrogram

X) into latent representations Z. For raw audio input, the network amounts to the waveform

encoder we described in Section 2.1.5. For acoustic features, it may be optional, depending

on the choice of the feature as discussed in Section 2.1.5. A context network g : Z 7→ C,

which may be based on RNNs or Transformers, contextualizes the latent representations Z

into representations C that optimize a prediction-based representation learning loss LREP.

A classifier conditions on the latent representations or contextualized representations and

performs the ASR classification task. For ASR without speech representation learning in ad-

vance (Figure 2.4a), the classifier may be a TDNN or Transformer-based. For ASR preceded

by speech representation learning (Figure 2.4b), since the learned representations are already

contextualized, the classifier may simply be a linear layer with Softmax activation if we allow

the update of the context network.

2.2.2 Contexts for Prediction

The following prediction tasks are characterized by how the representations C are contextu-

alized given the embedded input Z.

Autoregression Task

An autoregression task essentially means prediction based on past history. In the context of

natural language processing (NLP), an autoregression task often refers to next token predic-

tion. For the downstreampurpose of speech classification, doing a naive next frame prediction

is however not robust because it is easy to exploit the local smoothness of the speech data

during prediction. Alternatives include predicting consecutive frames in future [38] or one

single frame several steps ahead of time [42]. An unrolled expression for the latter case may
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Figure 2.4: Acoustic modeling with and without speech representation learning

be ct = g(t−d)(Z≤t−d) , where d > 0. Methodologies such as Autoregressive Predictive Coding

(APC) [42], Contrastive Predictive Coding (CPC) [38] and wav2vec [48] fall into this category.

The task may be extended to work in a bi-directional way [58], in which two context networks
−→g operating from left to right and←−g operating from right to left perform the task indepen-

dently given the same latent representation embedded by f . The resultant representations

are the concatenation of the outputs of −→g and←−g .

Cloze Task

In a cloze task for speech representation learning, a number of masks, each of which spans

consecutive frames, is applied on Z and the context network recovers the masked frames

by conditioning on the unmasked frames. The context network could be autoregressive or

non-autoregressive. This is inspired by Bidirectional Encoder Representations from Trans-

formers (BERT) [43], which performs language representation pre-training based on masking

tokens. The methodolgies of Deep Contextualized Acoustic Representations (DeCoAR) [59,

60], Mockingjay [61], wav2vec 2.0 [52], Hidden-unit BERT (HuBERT) [69], data2vec [77] and

Code BERT (CoBERT) [81] are tasks of this type.
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2.2.3 Self-Supervised Learning Objectives

Reconstruction-based Learning

Because of the continuous nature of audio data and hence their latent representations, it

is most straightforward to frame the prediction task as a reconstructive one, and minimize

the difference between the latent and the contextualized representations over the frames to

predict. This is achieved by optimizing the following L1 loss on each frame of an utterance u:

L(u,t)
L1 =

∣∣∣z(u)t − c(u)t

∣∣∣ . (2.15)

Methodologies adopting this loss include APC [42], DeCoAR [60], and MockingJay [61].

Contrastive Learning by Noise Contrastive Estimation (NCE)

Noise-contrastive estimation (NCE) [9] allows a model to learn the properties of data through

a surrogate classification task which differentiates the data from noise. The classificationmay

be binary [9] or multi-class [28] (also ranking-based [36]). For conditional models estimated

by NCE, they are in the following general form:

P (y | x; θ) = exp (s(x, y; θ))
Z(x; θ)

, (2.16)

where s (x, y; θ) is a scoring function for the prediction y, andZ(x; θ) =
∑

y∈Y exp (s(x, y; θ))

is the partition function which makes the density ratio a valid probability distribution [36].

We let a model learn to extract frame-level features through the following frame-level classifi-

cation task. Given the contextualized representation c(u)t for the t-th frame of an utterance u,

the model is to distinguish the latent representation z(u)t for the same frame (i.e., the positive

sample) from K distractors z′1, ..., z′K (i.e., the negative samples) drawn from a noise distribu-

tion PN(z). Let Z(u,t) include z(u)t and the K drawn distractors. For the binary classification

case, we may minimize the negative sampling loss [16], a simplified version of NCE-binary4:

L(u,t)
NEG = −[logσ

(
s
(
c(u)t , z(u)t

))
+

∑
z∈Z(u,t)\{z(u)t }

log
(
1− σ

(
s
(
c(u)t , z

)))
], (2.17)

4 Please refer to [9] and [36] for the formulation of the true NCE-binary.
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which is used in wav2vec [48]; and for the ranking case, we minimize the NCE-ranking loss:

L(u,t)
NCE_Ranking = − log

exp
(
s
(
c(u)t , z(u)t

))
∑

z∈Z(u,t) exp
(
s
(
c(u)t , z

)) , (2.18)

which is used in CPC [42] and wav2vec 2.0 [52].

Regarding the scoring function, CPC uses bilinear similarity:

s (c, z) = c⊤Wz , (2.19)

where W is a learnable weight matrix; whereas wav2vec and wav2vec 2.0 adopt cosine simi-

larity:

s (c, z) = sim (c, z) =
c⊤z

||c|| · ||z||
. (2.20)

In our application, optimizing NCE-ranking actually maximizes the lower bound on the mu-

tual information between c(u)t and z(u)t , with a largerK resulting in a tighter bound [42]. This

stems from the observation that exp
(
s
(
c(u)t , z(u)t

))
is positive, and preserves the mutual

information between c(u)t and z(u)t :

exp
(
s
(
c(u)t , z(u)t

))
∝

P
(
z(u)t | c

(u)
t

)
P
(
z(u)t

) . (2.21)

Hence, [42] gives the loss function in Equation (2.18) the name ‘InfoNCE’.

The choice of the noise distribution PN(z) and the number of distractorsK affects the down-

stream ASR performance. Assuming that each utterance regards only one speaker and nega-

tive samples are drawn from the noise distribution uniformly, it is found that in general, (1) a

noise distribution over the frames confined in the positive sample’s utterance works better

than one that is over the frames from a minibatch of utterances, which are possibly spoken

by various speakers, and the latter may make the positive sample easier to distinguish from

the negatives [42, 52], and (2) a larger K may not improve performance [48, 52], e.g., in [52],

K = 100 works better than K = 200. Drawing conclusions from the results of [42, 48, 52],

as long as PN(z) includes frames from the positive sample’s utterance, varying K gives only

slight performance difference, say, a 1% absolute reduction of word error rate (WER).
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Vector Quantization

Considering the discrete nature of speech units, wav2vec 2.0 [52] may use a quantized version

of the latent representations q(Z) as the training targets in NCE. This case adopts product

quantization with Gumbel Softmax and optimizes the codebook with a diversity loss to main-

tain the equal utilization of the codebook entries. Its ablation study finds that using quantized

targets improves ASR performance compared to continuous targets. Moreover, the discrete

latent representations correlate well with phonemes.

Predicting Acoustic Units Discovered Offline: The Case of HuBERT

The training objective of Hidden-Unit BERT (HuBERT) [68, 69] is based on the frame-level

classification of discrete acoustic units discovered offline—the ‘hidden units’. The frame-

level targets are cluster labels automatically obtained from clustering some representations,

through e.g., K-Means or GMM. Initially, the targets come from the clustering of MFCCs,

which are acoustic features well-justified for ASR (please refer to our earlier discussion in

Section 2.1.5). The training process is repeated with targets derived from the learned repre-

sentations obtained from the previous HuBERT model.

Studied by the original paper, an extension to the single-target learning is to predict labels of

different granularity at the same time, which are obtained by specifiying different cluster sizes

during clustering. Another extension is Code BERT (CoBERT) [81], which distills the cluster

targets for HuBERT using masked tokens prediction or data2vec [77] (see Section 2.2.4).

2.2.4 Extensions

Gaining Environment Robustness

Assuming the pre-training data encompass clean recordings, WavLM [78] extends HuBERT

by data augmentation. It adds background noise or an overlapping secondary utterance with

lower energy to a primary utterance and lets the model predict the cluster labels for the pri-

mary utterance. The model then learns to perform speaker-aware classification and denoising

at the same time. The resultant models outperform both wav2vec 2.0 and HuBERT in vari-

ous speech tasks (including ASR) and overall rank the top places of the Speech Processing
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Universal Performance Benchmark (SUPERB)5.

Pre-training on far-field data and observing that wav2vec 2.0 may produce sub-optimal code-

books, which contain entries that differentiate between (1) speech and non-speech or (2) tem-

poral locations, wav2vec-C [74] ensures the utilization of the codebook by enforcing consis-

tency. It requires the spectrogram input to be reconstructed from its resulting quantized

latent representations q(Z). The use of the auxiliary consistency loss ends up with a small

relative reduction in WER (best 1.4% relative).

Constructing Contextualized Training Targets from Teacher Model

While we maintained our discussion on training targets that are non-contextualized, i.e.,

performing contextualized prediction given the non-contextualized representations, data2vec

[77] constructs training targets based on contextualized representations. In short, the stu-

dent model predicts the output of the mean teacher given the same unmasked input, but the

student receives a masked version of the input. The downstream ASR performance of this

methodology ranks the top of the SUPERB benchmark at the time of writing.

2.2.5 What Do the Learned Representations Encode?

Although self-supervised speech representation models show very competitive performance

in diverse speech tasks, some question their interpretability. A complementary line of research

therefore attempts to explain the learned representations.

Based on empirical findings observed on pre-trained wav2vec 2.0 models, [80] hypothesizes

that the latent representations outputted by the embedding network f may construct an

acoustic metric space. It is found that in the latent space Z , (i) different (fundamental) fre-

quencies are spaced evenly by the cosine distance of their corresponding embeddings, and

(ii) the vowel space represented by the embeddings exists as a smooth manifold with a grid--

like structure.

Using correlation analyses and linear probing methods, it is found that pre-trained speech

representation models have the ability to encode acoustic [73, 82, 86], articulatory [84], pho-

5 SUPERB is established to assess the effectiveness of self-supervised speech representation learning method-
ologies by evaluating the downstream performance of the released pre-trained models on a battery of speech
processing tasks. The up-to-date leaderboard may be found at https://superbbenchmark.org/leaderboard.
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netic [66, 71, 73, 82, 86], word [73, 82, 86, 87], and even semantic [73, 86] information to

some extent in the context network g. The nature of the training objectives determines where

these information are encoded in the network. In general, prediction-basedmodels, which are

based on HuBERT’s objective, encode acoustic information in the lowest layers and linguistic

information in higher layers, whereas the others which form contextualized representations

by recovering the latent representations manifest an autoencoder-like trend that the higher

layers reverse the acoustic-linguistic hierarchy [73, 82, 86].
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Table 2.1: Comparison of speech representation learning methodologies

Methodology Model Input Embedding Net f Context Net g Input of g Target Objective

Autoregression-based
CPC [38] raw waveform strided 1d-CNN GRU f(a[n]) future f(a[n]) InfoNCE
APC [42] mel spectrogram n/a LSTM X future X L1
wav2vec [48] raw waveform strided, causal

1d-CNN
causal 1d-CNN f(a[n]) future f(a[n]) negative sampling

Cloze-based
DeCoAR [60] mel spectrogram n/a bi-LSTM X X L1
Mockingjay [61] linear / mel

spectrogram
n/a Transformer masked X X L1

wav2vec 2.0 [52] raw waveform strided 1d-CNN Transformer masked f(a[n]) q(f(a[n])) InfoNCE + VQ
diversity

wav2vec-C [74] linear spectrogram LSTM Transformer masked X q(f(X)) InfoNCE + VQ
diversity +
consistency

HuBERT [69] raw waveform strided 1d-CNN Transformer masked f(a[n]) cluster labels of
speech
representations

a normalized
version of
cross-entropy

WavLM [78] raw waveform, may
be mixed with noise

strided 1d-CNN Transformer masked f(a[n]) HuBERT targets
before aug.

same as HuBERT’s

data2vec [77] raw waveform strided 1d-CNN Transformer f(a[n]) for mean
teacher, masked
f(a[n]) for student

contextualized
output of mean
teacher

smooth L1

CoBERT [81] raw waveform strided 1d-CNN Transformer same as data2vec
when self-distilled,
otherwise f(a[n])

HuBERT targets
distilled by code
teacher, optionally
further self-distilled
by mean teacher

L2
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Chapter 3

Methodology

3.1 Objectives

In this thesis, we study the application of the self-supervised learning pipeline for ASR us-

ing the wav2vec 2.0 methodology on two databases, CU-MARVEL (Cantonese spontaneous

speech) and LibriSpeech (English read speech). We cover the following aspects:

(i) Creating pre-training data with end-to-end neural diarization (EEND)

This thesis involves the use of unsegmented audio recordings for pre-training a wav2vec

2.0 model from scratch or further pre-training. Assuming the downstream ASR model

operates per speaker turn, it is desirable for the pre-training data to be segmented ac-

cordingly. In preliminary experiments, we find bad segmentation of the pre-training

data could deteriorate the downstreamASRperformance. Proper segmentation is there-

fore a crucial pre-processing step. We consider using end-to-end neural diarization

(EEND), which performs voice activity detection for a number of speakers at once (i.e.,

speaker diarization) with neural networks, for the job. We describe our protocol in

training EEND models and performing segmentation using these models.

(ii) Further pre-training for domain adaptation

Although applying an off-the-shelf pre-trained wav2vec 2.0 model on in-domain data

may save the development cost of training an in-domainmodel from scratch, it may not

be optimal because of the mismatch in the recording environments, recording equip-

ment and speaker demographics between the pre-training data and the in-domain data.

We therefore question the gain on ASR performance resulted from the method of fur-

ther pre-training for domain adaptation.

(iii) Semi-supervised learning by pseudo-labeling

Semi-supervised learning provides another way to utilize unlabeled data whenmatched
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labeled data are available. We may use the fine-tuned model to classify the unlabeled

data and consider the classification results as ground truths (i.e., pseudo-labels), by

assuming that the classifications are likely to be correct [8]. This provides a way to ex-

pand the supervised dataset. If self-supervised speech representation learning do really

learn from unlabeled data, we may produce better pseudo-labels for the unlabeled data

seen during pre-training. We therefore question the gain brought by the combination

of self-supervised and semi-supervised approaches.

(iv) Monolingual vs. cross-lingual pre-trained models

When a monolingual pre-trained model is not available, the cross-lingual XLS-R [76]

pre-trained models are possible alternatives because they should have learned univer-

sal speech representations from pre-training data in diverse languages. However, the

amount of their pre-training data is not balanced across languages that the represen-

tations learned could bias towards the dominant languages, and it is also possible that

the representations suffer from multilingual interference. We therefore compare the

ASR performance resulted from monolingual and cross-lingual pre-trained models.

3.2 Datasets

The following describes the datasets we mainly use for the creation of ASR systems. A sum-

mary of their usages may be found in Appendix A.

3.2.1 Canopy: Cantonese Podcast and YouTube Shows

We collected data from the web to provide training data for creating a Cantonese wav2vec

2.0 model from scratch. To gain better control of audio quality, we pool data from selected

podcast shows and a YouTube channel. For brevity, we hereafter refer to this set of data

as Canopy (Cantonese Oral language data on Podcast and YouTube shows)1. A few of the

sources involve scripted and unscripted monologues, while most of them provide conversa-

tional content, including casual chats, interviews and discussions. In particular, the YouTube

channel we source hosts Skype call-ins. The data also exhibits a mix of near-field and far-field

1 The word ‘canopy’ literally means ‘shelter’. In ecology, it refers to living organisms that collectively sustain
the habitat of a forest.
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recording conditions. To the best of our knowledge, most of the speakers are not older adults.

The breakdown of the recordings obtained is given in Table 3.1. The podcast recordings are

downloaded via URLs listed in the homepages of the shows on Apple Podcasts in late Novem-

ber 2022, and most of them are in the MP3 format with a sampling rate of 44.1 kHz. The

YouTube audio recordings are downloaded via the yt-dlp2 tool in the same period, and most

of them are in the Opus format with a sampling rate of 48 kHz. All recordings are converted

into 16 kHz FLAC.

Table 3.1: Breakdown of Canopy

Source No. of
recordings

Recorded
hours

Estimated no.
of speakers∗

(Estimated) no.
of main hosts

Male Female

Unlabeled data
59 podcast shows 3989 2684.4 531† 94† 64†

1 YouTube channel 391 1571.4 882‡ 4§ 0§

∗ These include interviewees and callers. An attempt has been made to remove duplicates.
† These figures are obtained by manually checking (with little help from ChatGPT) the episode titles and
descriptions, looking up the podcasters’ social media pages and listening to some episodes.
‡ This is automatically obtained from clustering speaker embeddings based on the diarization results and will
be explained later in Section 4.2.1.
§ These are exact figures.

3.2.2 CU-MARVEL

TheCU-MARVEL corpus (CUHK-Cognitive AssessmentUsingMachine Learning Empowered

Voice Analysis) [88] is an ongoing effort that targets to collect longitudinal speech data from

a thousand Cantonese-speaking older adults (aged over 60 years) in Hong Kong to assist the

development of automated tools for screening neurocognitive disorders (NCDs) among the

population. Due to the sensitive nature of the dataset, it is not available to the public.

We use the corpus to conduct ASR experiments that involve monolingual and cross-lingual

pre-trained models, as well as experiments on further pre-training and semi-supervised learn-

ing. We study only the data obtained from the participants’ first visits, which we hereafter

refer to as the baseline data. The baseline data involves in-person conversational sessions in

each of which an assessor guides an older adult participant to complete a list of NCD screen-

2 https://github.com/yt-dlp/yt-dlp
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ing tests in a sound-proof or non-sound-proof room. Every session is audio recorded with a

sampling rate of 48 kHz and one channel using a smartphone. For our experiments, all record-

ings are converted into 16 kHz FLAC. On average, a session recording is more than 1.5 hours

long, and a participant speaks for around 30% of the time. With budget and time constraints,

manual transcriptions are done for selected screening tasks only. At the time of writing, the

transcription work is still in progress.

We use both the labeled and unlabeled training data of the November 2022 release for sys-

tem development, and use the labeled test data of the February 2023 release for evaluation

purposes. The difference between the two releases is due to the amount of labeled data. The

breakdown of these data is given in Table 3.2. Note that the unlabeled sessions are unseg-

mented. For the data studied in this thesis, the majority of participants are aged below 80

years, and the number of female participants is 25% more than that of male participants.

Table 3.2: Breakdown of CU-MARVEL baseline

(a) Breakdown by speaker role and gender

Split No. of
sessions

Recorded
hours

Manually
labeled hours

No. of
participants∗

Assessors† Participants Male Female

Partially labeled sessions
Train (Nov 2022 ver.) 124 196.7 24.3 29.3 44 80
Test (Feb 2023 ver.) 46 72.3 13.0 14.8 20 26

Unlabeled sessions
Train (Nov 2022 ver.) 288 436.8 n/a n/a 139 149

∗ No participant appears in both the training and test sets.
† There are 8 assessors and all of them are female. They all appear in the training set, and only 5 of them
appear in the test set.

(b) Breakdown of participants by gender and cognitive condition

Gender Condition No. of participants

Labeled train Labeled test Unlabeled train

Male Healthy 18 9 96
Minor NCD 20 9 41
Major NCD 6 2 2

Female Healthy 34 13 113
Minor NCD 33 10 30
Major NCD 13 3 6
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3.2.3 LibriSpeech

LibriSpeech [21] is a publicly available ASR corpus of English read speech derived from au-

diobooks from the LibriVox project. It consists of labeled speech segments in the format of 16

kHz FLAC. The speakers are divided into two pools, clean and other, according to the recogni-

tion difficulty of their speech. Details of the training, development and test sets are provided

in Table 3.3.

Table 3.3: Breakdown of LibriSpeech [21]

Split Recorded hours No. of speakers

Male Female

Training sets
train-clean-100 100.6 126 125
train-clean-360 363.6 482 439
train-other-500 496.7 602 564

Development sets
dev-clean 5.4 20 20
dev-other 5.1 17 16

Test sets
test-clean 5.4 20 20
test-other 5.3 16 17

This dataset is already studied in the original wav2vec 2.0 work, wemainly use it to benchmark

against our in-domain experiments on further pre-training and semi-supervised learning.

3.3 Methods

3.3.1 Segmentation of Pre-training Data

Canopy

We assume the long recordings are cut into shorter segments (e.g., 30 seconds) by a voice

activity detection (VAD) front-end before presenting to the speaker diarization module.

Without a diarizationmodel and dataset thatmatch the domain and language of our collected

data, we resort to training an EEND model using simulated training data. We source utter-
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ances for simulating conversations from the Common Voice project3, which collects speech

data from volunteers worldwide through the use of prompts texts crawled from the web.

Specifically, we use the zh-HK and yue language subsets of Common Voice 11.0 in this work.

Although Common Voice offers official training, development and test splits, we wish to ob-

tain a larger pool of training speakers and rather use all data from the language subsets but

excluding data from test speakers and reported clips4,5. This provides 160.5 hours of source

utterances produced by 1871 speakers (of which 30.2% are male, 12.6% are female and the

remaining unknown) for conversation simulations.

Conversations are simulated using themixture simulation algorithm introduced in [83]. Given

a set of speakers and the associated source utterances, the algorithm generates a mixture by

(i) randomly generating speaker turn transitions of turn-hold, turn-switch, interruption and

back-channel, (ii) generating reverberations for each speaker with randomly selected room

impulse responses (RIRs), and (iii) eventually mixing the simulated result with background

noise according to a signal-to-noise ratio (SNR). On top of these, we (iv) downsample all ut-

terances of a speaker to 8 kHz with a certain probability since we found telephone audio in

the real data, (v) apply speed perturbation at speaker level to artificially increase the number

of speakers, (vi) apply volume perturbation at utterance level to make the model indifferent

to slight volume differences of the same speaker across turns, and (vii) pad silences of random

duration at the beginning and the end of the simulated conversation before mixing with noise

to cover for imperfect VAD.

To cope with segments containing a variable number of speakers and exploit longer contexts,

we adopt an EEND model with self-attention and encoder-decoder attention (SA-EEND +

EDA) [44, 56] which embeds the log-mel spectrogram input using self-attention and decides

the existence of speakers through encoder-decoder attention. Our implementation adopts ice-

fall’s6 ‘Reworked’ Conformer as the backbone and is depicted in Figure 3.1. The inner working

of the model is further elaborated as follows. After obtaining the sequence of embedded out-

put E from the Conformer encoder, the LSTM encoder summarizes the entire sequence as two

vectors: its final hidden statehenc
T and final cell state cenc

T . Tomake the summarization process

3 https://commonvoice.mozilla.org
4 The ‘speakers’ are differentiated by their client IDs.
5 The language subsets altogether come with 294 unique training speakers officially.
6 https://github.com/k2-fsa/icefall
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invariant to the speakers’ order of presence, the embeddings E are chronologically shuffled

before presented to the LSTM encoder. The two vectors are then used to initialize the LSTM

decoder’s hidden state hdec
0 and cell state cdec

0 . The LSTM decoder outputs a sequence of ‘at-

tractors’A, each of which is meant for a speaker, until the attractor vector outputted signifies

that no more speaker may be found (the derived speaker existence probability is lower than

a pre-defined threshold). The attractors A are compared to the embeddings E to determine

the voicing probability of each speaker in each frame, which corresponds to an entry in the

resultant speaker activity matrix.

The EEND model is optimized for (i) a permutation-invariant loss for predicting speaker ac-

tivities that corresponds to the least binary cross-entropy (BCE) loss attained between the

model’s predicted speaker activity matrix and any speaker-permuted version of the supervi-

sion matrix, and (ii) the BCE for predicting the existence of speakers.

CU-MARVEL

The diarization problem in CU-MARVELmay be deemed simpler in the sense that at most two

speakers are involved at any instance of time. Moreover, in-domain labeled data are avail-

able. In view of these, we simply further train the pre-trained segmentation pipeline7 from

pyannote.audio8 [53, 65]. The pipeline (i) performs local diarization of up to four speakers on

every 5-second non-overlapping chunk of a given recording using a pre-trained SincNet-LSTM

EEND model (which outputs a speaker activity matrix), (ii) extracts speaker embeddings for

each locally identified speaker through a pre-trained speaker recognition model (an ECA-

PA-TDNN [54] model provided by SpeechBrain9 which optimized the additive angular mar-

gin loss), (iii) identifies speakers across chunks by clustering all obtained speaker embeddings

using the agglomerative hierarchical clustering (AHC) algorithm and stitches the local diariza-

tion output accordingly.

With the in-domain training data, as per the pipeline defaults we optimize the pre-trained

EEND model on 5-second chunks of at most two speakers using the permutation-invariant

loss mentioned earlier and optimize the speech activity detection thresholds (voice activity

onset, voice activity offset, minimum duration of a speech region, and minimum duration of a

7 https://huggingface.co/pyannote/segmentation
8 pyannote.audio is an open-source neural speaker diarization toolkit.
9 https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless2/scaling.py .

Figure 3.1: Architecture of the SA-EEND + EDA model adopted in this work
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non-speech region) against the diarization error rate (DER) using the Tree-structured Parzen

Estimator (TPE) algorithm.

3.3.2 wav2vec 2.0 (Further) Pre-training

The wav2vec 2.0 models we consider share a common architecture as depicted in Figure 3.2a.

The embedding network is a multi-layer CNN, with a configuration specified in Figure 3.2b

fixed across all model sizes. The context network is either a Transformer or Conformer. Dur-

ing pre-training or further pre-training, the NCE targets are quantized by a Gumbel vector

quantizer. Assuming that the codebook learned during pre-training is already stable and any

domain shift may be compensated by the context network, during further pre-training we

freeze the weights of the embedding network and study only the adaptation’s effects on the

context network.

We will vary the amount of further pre-training data to study the data size requirement for

domain adaptation. The following are the two base models mainly involved in this thesis.

XLS-R

We consider only the 300M XLS-R model for further pre-training. The model is a CNN-

Transformer with 24 Transformer layers, each with a dimension of 1024 and 16 attention

heads. The model is pre-trained on 436K hours of speech data in 128 languges, which is mix

of parliament speech (372K hours), Multilingual LibriSpeech read speech (50K hours), Com-

mon Voice read speech (7K hours), YouTube speech (6.6K hours) and phone conversations (1K

hours) and mainly in European languages. In particular, 69.4K hours of the data are in English

and 181 hours are in Cantonese10. We apply the model on both the English and Cantonese

data for further pre-training and fine-tuning experiments.

Cantonese wav2vec 2.0 Model

Due to financial and time constraints, we are unable to pre-train from scratch a model that

completely matches the configuration of the 300MXLS-R for comparison. To reduce the train-

ing time, we opt for a smaller model but with a better inductive bias. We consider a CNN-

10 The Cantonese figure considers the ISO language codes of zh-HK and yue, please refer to the discussion on
https://github.com/common-voice/common-voice/issues/2926 for their distinctions.
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Figure 3.2: Common architecture of the wav2vec 2.0 models adopted in this work

33



Conformer model with 12 Conformer layers, each with a dimension of 768 and 12 attention

heads. This gives rise to 180M learnable parameters. We apply the resultant pre-trained

model on the CU-MARVEL corpus only for further pre-training and fine-tuning experiments.

3.3.3 ASR Fine-tuning

The pre-trained models will serve as the backbone of encoder-only acoustic models for our

ASR experiments on end-to-end training of acousticmodels. Following the fine-tuningmethod

adopted by the original wav2vec 2.0 paper, we remove the vector quantizer and the output

projection layer from the pre-trained models. Afterwards, a newly initialized projection layer

is appended to the pre-trained models to serve as the ASR head for fine-tuning. Except for

the embedding network, the weights of the rest of the network are fine-tuned to optimize an

ASR loss.

CU-MARVEL

We perform ASR training upon the pre-trained models using word-level labels and CTC loss.

We adopt a phone lexicon-based system due to the small size of the available labeled data

and the large character space of Cantonese Chinese. The transcripts of the labeled data are

segmented into words by jieba11, and our lexicon is based on the pronunciation dictionary

from words.hk12 and Jyutping Table13. Our romanization scheme, which is described in Ap-

pendix B, is based on the Jyutping scheme. A problem of adopting a phone-based lexicon is

that some words come with multiple pronunciations, and we do not know which is actually

referred to in an utterance. Moreover, imperfect word segmentation for the training tran-

scripts adds further ambiguities. Therefore, we use k2’s14 implementation of the CTC loss

which computes the loss over a finite-state automation (FSA)-based supervision graph which

can include alternative pronunciations of a word-level transcription (i.e., a lattice).

During evaluation, we decode the labeled test data with beam search decoding and the use

of weighted finite-state transducers (WFSTs). A 3-gram and a 4-gram LM are trained on the

CU-MARVEL word-level training transcripts with modified Kneser-Ney smoothing in SRILM

11 https://github.com/fxsjy/jieba
12 https://words.hk/faiman/analysis
13 https://github.com/lshk-org/jyutping-table
14 https://github.com/k2-fsa/k2
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[2]. The decoding graph is an HLG graph, which is a composition of the CTC topology, the

lexicon, and the 3-gram LM. The decoded results are re-scored by the 4-gram LM with the

method of whole-lattice re-scoring, which removes the LM scores imposed by the 3-gram

LM and re-scores all paths in the decoding lattice with the 4-gram LM. During scoring, we

remove unintelligible markers, words written in Jyutping and words not spoken in Cantonese

or English in the reference and hypothesis transcripts before computing the edit distance.

The character error rate (CER) we report in this thesis are beforemapping filled pauses, which

include誒 (eh),啊 (ah),嗯 (h’m), um and em, to one unit for scoring and after removing the

‘unknown’ words, which represent unintelligible speech, in both the reference and hypothesis

transcripts15.

LibriSpeech

To provide results that can be compared to the original wav2vec 2.0 paper, we perform ASR

training upon the further pre-trained XLS-R model using the CTC loss and character-level

labels, which include the 26 English alphabets, the apostrophe, and the space character.

During evaluation, decoding is done with lexicon-based decoding in Flashlight Text16, which

performs beam search decoding using a character-level trie and a word-level n-gram LM. The

vocabulary is confined to the official lexicon17 of LibriSpeech, and the LMused is LibriSpeech’s

official un-pruned 4-gram LM.

3.3.4 Semi-Supervised Learning

After obtaining ASR models from fine-tuning, we decode the unlabeled data with the use of

pre-trained language models. The pseudo-labels are the one-best hypotheses found in the

decoding lattices. Using the combination of the labeled data and the pseudo-labeled data

as the supervised dataset, we train newly fine-tuned models upon the pre-trained models,

instead of continue training the previous fine-tuned models.

15 This is often done when evaluating the output of ASR systems.
16 https://github.com/flashlight/text
17 https://www.openslr.org/11
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CU-MARVEL

The decoding of the unlabeled training data is done according to the decoding method and

using the LM described in Section 3.3.3. The pseudo-labels are the one-best word-level hy-

potheses. The evaluation procedure is the same as in Section 3.3.3.

LibriSpeech

We deem train-clean-360 and train-other-500 as unlabeled. Psuedo-labels of word-level one-

best hypotheses are generated using the decoding method in Section 3.3.3 but a different LM.

The official LMs are trained from texts from the LibriSpeech LM corpus18, which is based on

1478 books from Project Gutenberg. The corpus however involves books seen in the unlabeled

data. To obtain a lower bound of the ASR performance achieved by semi-supervised learning,

texts that come from the 178 books entailed in the unlabeled data are removed from the LM

corpus and a new word-level 4-gram LM (which we later refer to as the ‘dev’ LM) for the pur-

pose of pseudo-labeling is trained according to the official recipe. The evaluation procedure

is the same as in Section 3.3.3.

18 https://www.openslr.org/11
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Chapter 4

Experiments and Discussions

This chapter records the settings and results of experiments conducted on the Cantonese CU-

MARVEL and the English LibriSpeech corpora. As a large and fully transcribed corpus, Lib-

riSpeech offers flexibility on the creation of scenarios with different amounts of pre-training

and/or fine-tuning data and may therefore shed light on our findings on CU-MARVEL. There-

fore, in the following, we will first report our findings on LibriSpeech.

4.1 LibriSpeech

In this section, LibriSpeech serves as our in-domain dataset. Note that we will use train-

all to refer to its entire training data (train-clean-100 + train-clean-360 + train-other-500) and

train-clean-both to denote its entire clean training data (train-clean-100 + train-clean-360).

4.1.1 Further Pre-training Conditions

Experiment 1: Domain of Pre-training Data

In this experiment, we study the gain brought by further pre-training the 300M XLS-R on

in-domain data, assuming a fixed set of fine-tuning data.

Using LibriSpeech’s train-all, we further pre-train the 300M XLS-R model, except for the em-

bedding network, for 80K steps, which amounts to 36 epochs. We apply FP16 training and the

AdamW optimizer with a weight decay of 0.01. We use a learning rate of 2e-4 with a linear

decay schedule and no warm-up.

We fine-tune (i) the vanilla XLS-R and (ii) the further pre-trained XLS-R on LibriSpeech’s train-

clean-100 set. We fine-tune each model, except for the embedding network, for 50K steps, or

163 epochs. We apply FP16 training and the AdamW optimizer without weight decay. We

use a learning rate of 3e-5 with a tri-stage schedule as adopted by [52], in which the first
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10% of training steps are for warm-up and training the output layer only, the next 40% are

for a constant learning rate, and the remaining steps are for linearly decaying the learning

rate. We use a mask probability of 0.75, and a layer-drop probability of 0.1. We evaluate the

fine-tuned models on LibriSpeech’s development and test sets, and use the official word-level

4-gram and a beam size of 500 in decoding.

We trained the models on 6 NVIDIA RTX A6000 GPUs on a rented server. In this comput-

ing environment, further pre-training the XLS-R took 2 days and fine-tuning each of the two

models took 1 day. The word error rate (WER) results are given in Table 4.1, and we quote

results from [52] for their fine-tuning results stemming from a wav2vec 2.0 model pre-trained

on the LibriSpeech training data (train-all) and another on 60K hours of LibriVox data in the

Libri-Light [57] setup (LibriLight-60K ). Note the XLS-R, LibriSpeech-train-all and LibriLight-

60K models considered here share an identical CNN-Transformer architecture (a 7-layer CNN

embedding network with 4M parameters and a 24-layer Transformer context network with

302M parameters) and a size of 306M1. In addition, we show in Table 4.2 that updating the

parameters of XLS-R’s CNN embedding network during pre-training do not give rise to signifi-

cant performance difference in the downstreamASR by scaling the gradients back-propagated

to the embedding network with different values (with 0.0 meaning no update at all). With

a few exceptions in the test-clean set, significance tests show that the systems are not sig-

nificantly different in committing word errors and treating speakers at significance level of

p < 0.01 (see Appendix C). This suggests that the representations produced by the embedding

network remain stable even if we enable it to update.

Compared to the vanilla XLS-R, further pre-training brings 2 to 4% relative improvement on

the clean sets and 6 to 7% relative improvement on the noisier other sets. At significance level

of p < 0.01, significance tests show that the two systems are significantly different and the

further pre-trained XLS-R is the better one (see Appendix C). Even though the pre-training

data of XLS-R includes 44.7K hours of English LibriVox data2, the two XLS-R-based models

1 This is a more precise figure. We simply refer to this figure as 300M elsewhere in accord to the convention
of the original wav2vec 2.0 paper.

2 Although both XLS-R and LibriLight-60K use audiobook data from LibriVox, the segmentation was done
differently. The LibriVox data adopted by XLS-R follows from Multilingual LibriSpeech (MLS), which segmented
LibriLight by considering the ASR decoding result by running inference on the data; whereas LibriLight-60K
follows from Libri-Light, which simply segmented the data using VAD. Both derivatives of LibriVox have excluded
the development and test speakers of LibriSpeech.
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Table 4.1: LibriSpeech WER (%) resulted from wav2vec 2.0 models of the same 300M
CNN-Transformer architecture and fine-tuned on train-clean-100 but pre-trained on differ-
ent datasets

Pre-training data dev-clean dev-other test-clean test-other

Monolingual, In-domain
LibriSpeech-train-all [52] 2.3 5.7 2.8 6.0
LibriLight-60K [52] 1.8 4.5 2.3 4.6

Cross-lingual, Cross-domain→ Monolingual, In-domain
XLS-R 2.73 6.90 2.95 7.53
+ further pre-train on LibriSpeech-train-all 2.67 6.48 2.83 6.98

∗

∗ All inference results are produced by decoding with the 4-gram LM of the LibriSpeech LM corpus.

Table 4.2: LibriSpeech WER (%) resulted from different gradient multiplier values during
further pre-training

Gradient
multiplier

No. of
pre-train steps

dev-clean dev-other test-clean test-other

(baseline) 0.0 80K 2.67 6.48 2.83 6.98
0.1 80K 2.70 6.46 2.86 6.98
1.0 80K 2.68 6.49 2.76 7.07
1.0 160K 2.69 6.55 2.79 6.99

perform no better than models pre-trained on in-domain data from the very start, suggesting

that XLS-R may suffer from domain or language interference and may not provide optimal in-

domain performance. Having said that, the further pre-trained XLS-R underperforms LS-960

by less than 15%, and we deem the use of XLS-R and further pre-training for fast prototyping

appropriate in scenarios with budget constraints.

Using centered kernel alignment (CKA) with linear kernel [45], wemaymeasure the similarity

between the representations outputted at each layer within and across models. 500 random

utterances are drawn from the dev-clean set for conducting the analysis. As seen from the

inter-CKA plot in Figure 4.1, further pre-training imposes the largest changes on middle and

last few layers of the XLS-R. According to [73, 86], the canonical correlations between the layer

representations and the word labels reaches the maximum in the middle layers and therefore

we hypothesize that further pre-training allows in-domain words to be better represented. To

confirm this, we apply the word-level analysis method adopted by [73] which computed the

word-level average of speech representations and used projection-weighted canonical corre-

lation analysis (PWCCA) [37] to measure the similarity between the averaged representations
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Figure 4.1: Frame-level CKA analysis of further pre-training on LibriSpeech. The axis values
represent the layer numbers of the speech representation model specified on the axis labels,
and the intensities refer to the CKA values. Layer 0 refers to the output of the CNN embedding
network, and the remaining layer numbers refer to that of the Transformer context network.
Left panel: the intra-CKA of XLS-R. Middle panel: the intra-CKA of XLS-R further pretrained
on LibriSpeech. Right panel: the inter-CKA between the further pre-trained and the vanilla
XLS-R.

and the aligned words’ corresponding acoustically-grounded word embeddings (AGWE) [49]3

or Global Vectors for Word Representation (GloVe) [18] embeddings4. The results are plotted

in Figure 4.2. The plots suggest that the similarity of the XLS-R representations and the word

embeddings increases at the middle and last few layers after further pre-training, confirming

our earlier hypothesis.5

Experiment 2: Mixes of In-Domain Data for Further Pre-training

In this experiment, we study the implications of different mixes of in-domain data for further

pre-training the 300M XLS-R on the downstream ASR performance. We use the same pre-

training and fine-tuning configurations as in Experiment 1, but vary the size and type (clean

or other) of the pre-training data. We study four settings:

(i) train-clean-both (460 hours): this follows from standard practice and biases towards

clean data,

3 https://dl.ttic.edu/librispeech_agwe_map.zip
4 https://huggingface.co/stanfordnlp/glove/resolve/main/glove.840B.300d.zip
5 We used CKA in comparing speech representations before and after further pre-training because it is variant

to the scale of directions in the activation space [45] and lacks the sensitivity to perturbations affecting functional
behavior [67], thus changes in CKA values must by induced by a considerable shift of feature importance. After
roughly locating the layers of interest by CKA, we used PWCCA which is 17x slower (measured based on the
PWCCA implementation of [37] and the CKA implementation of [45]) but with better sensitivity to uncover the
fine-grained changes across layers.
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Figure 4.2: Word-level CCA analysis of further pre-training on LibriSpeech. The x-axis rep-
resents the layer numbers of a speech representation model, and the y-axis represents the
correlation coefficients. Layer 0 refers to the output of the CNN embedding network, and the
remaining layer numbers refer to that of the Transformer context network. Left panel: the
PWCCA similarity with AGWE. Right panel: the PWCCA similarity with GloVe embeddings.

(ii) half speakers (480 hours): a reduced train-all that keeps only half of the speakers,

which balances between clean and other noiser data but retaining less speakers,

(iii) half per speaker (480 hours): a reduced train-all that keeps only half of the utterances

per speaker, which is more balanced between clean and other noisier data and

(iv) train-all (960 hours): the full train-all.

We pre-trained the models for 80K steps in the same computing environment of Experiment

1, and pre-training each model took 2 days. The fine-tuning results are given in Table 4.3.

Table 4.3: LibriSpeech WER (%) resulted from different mixes of further pre-training data

Pre-training data dev-clean dev-other test-clean test-other

(i) train-clean-both (460h) 2.79 7.37 2.92 7.80
(ii) half speakers (480h) 2.90 7.35 3.05 7.65
(iii) half per speaker (480h) 2.73 6.57 2.90 7.12
(iv) train-all (960h) 2.67 6.48 2.83 6.98

Comparing the (i) train-clean-both and the (iii) half per speaker setups, which share a similar

size but cleanness, the results suggest that it is more important to include data from the train-

other-500 set during pre-training to improve the performance on the dev-other and test-other

evaluation data. This is confirmed by significance tests at significant level p < 0.01 (see

Appendix C). Keeping the same data size but different number of speakers, the (iii) half per

speaker setup clearly outperforms the (ii) half speakers setup. On the other hand, maintaining
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the same number of speakers, extending the training data from 480 hours in (iii) to 960 hours in

(iv) gives no more than 2% relative improvement. This shows that having more distinct voices

in the pre-training data ismore important than havingmore data per speaker and is confirmed

by significance tests at significant level p < 0.01 that (iii) and (iv) are not significantly different

in committing word errors (see Appendix C).

4.1.2 ASR Fine-tuning Conditions

Experiment 3: Sizes of Fine-tuning Data

Here we study the implications of the size and type of fine-tuning data on the ASR perfor-

mance resulted from XLS-R and the further pre-trained XLS-R. We add in the three training

sets, train-clean-100, train-clean-360, and train-other-500 one at a time to form the supervised

training dataset for fine-tuning from the pre-trained model. We follow the other fine-tuning

configurations in Experiment 1.

We trained each model for 50K, 160K and 320K steps for the three training data sizes respec-

tively in the same computing environment of Experiment 1 and it took 1 day, 2 days and 4

days respectively. The results are given in Table 4.4.

Table 4.4: LibriSpeech WER (%) resulted from different mixes of fine-tuning data

Fine-tuning data Total size dev-clean dev-other test-clean test-other

XLS-R
train-clean-100 100 h 2.73 6.90 2.95 7.53
+ train-clean-360 460 h 2.45 (-10.3%) 5.97 (-13.5%) 2.63 (-10.8%) 6.34 (-15.8%)
+ train-other-500 960 h 2.38 (-2.9%) 5.20 (-12.9%) 2.53 (-3.8%) 5.49 (-13.4%)

Further pre-trained XLS-R (on train-all)
train-clean-100 100 h 2.67 6.48 2.83 6.98
+ train-clean-360 460 h 2.41 (-9.7%) 5.94 (-8.3%) 2.58 (-8.8%) 6.16 (-11.7%)
+ train-other-500 960 h 2.34 (-2.9%) 5.27 (-11.3%) 2.54 (-1.6%) 5.52 (-10.4%)

∗ Figures in brackets refer to relative changes in WER.

It can be seen that the gain brought by an increased amount of supervised data during fine-

tuning is smaller for the further pre-trained XLS-R than the vanilla XLS-R while the perfor-

mance of the former is better than the latter in the low resource setups (100 hours and 460

hours), suggesting that further pre-training does help with mitigating low-resource scenar-

ios. Even in the fully-supervised scenario of using all 960 hours of labeled training data, as
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shown in Table 4.5, the wav2vec 2.0 models show, in general, an advantage over models that

optimizes the ASR loss from the beginning.

Table 4.5: LibriSpeech WER (%) in the 960h supervised setup

Model dev-clean dev-other test-clean test-other

Non-pre-trained models
icefall Reworked Conformer, joint BPE

CTC-Attention (103M)∗
2.59 5.54

CNN-Transformer CTC† [52] 1.8 5.4 2.6 5.8

wav2vec 2.0 models
LS-960 [52] 1.7 4.6 2.3 5.0
XLS-R 2.38 5.20 2.53 5.49
Further pre-trained XLS-R 2.34 5.27 2.54 5.52

∗ Uses 80-dim log-mel spectrogram as its input. See https://github.com/k2-
fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md#librispeech-bpe-training-results-conformer-ctc-2 .
† Shares the same architecture as the wav2vec 2.0 models and uses raw waveform as the input.

Experiment 4: Semi-supervised Learning

Finally, we experiment with semi-supervised learning using pre-trained wav2vec 2.0 models.

We consider the scenario that we are given train-clean-100 as the labeled data whereas train-

clean-360 and train-other-500 as the unlabeled data. We produce pseudo-labels using two

pre-trained models fine-tuned on train-clean-100: (i) a fine-tuned LS-960 model6 provided by

Facebook (ii) and the further pre-trained XLS-R after fine-tuning obtained in Experiment 3.

Afterwards, we restart the fine-tuning process on the pre-trained wav2vec 2.0 model (i.e.,

instead of the fine-tuned model) using the combination of the labeled train-clean-100 and the

pseudo-labeled train-clean-360 and train-other-500. We perform the semi-supervised learning

process for only one round.

Using each model fine-tuned on train-clean-100, we decoded the unlabeled data with a beam

of 500 and trained the resultant semi-supervised model in the same computing environment

of Experiment 1, and it took 4 days to produce a semi-supervised model. The results are given

in Table 4.6.

It seems semi-supervised learning deteriorates the performance on the dev-clean set. The

further pre-trained XLS-R provides significant improvement on the other sets in committing

6 https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_big_100h.pt
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Table 4.6: LibriSpeech WER (%) in the 100h supervised + 860h pseudo-labeled setup

Model dev-clean dev-other test-clean test-other

Pseudo-labeled with the “dev” 4-gram LM, decoded with the official 4-gram LM
LS-960
train-clean-100 [52] 2.3 5.7 2.8 6.0
+ pseudo-labeling 2.53 5.46 2.79 5.91

Further pre-trained XLS-R
train-clean-100 (Experiment 3) 2.67 6.48 2.83 6.98
+ pseudo-labeling 2.72 6.10 2.83 6.69

less word errors at significance level p < 0.01 (see Appendix C), but does not even outperform

the 460-hour supervised setup in Table 4.4. We hypothesize that, althoughwav2vec 2.0models

provide strong baseline results, a strong LM is still needed to produce better pseudo-labels to

assist semi-supervised learning.

4.2 CU-MARVEL

The following details our experiments on the Cantonese CU-MARVEL corpus. Before we set

out our further pre-training and fine-tuning experiments, we begin with describing our speech

segmentation procedure for preparing the pre-training data and our training configuration for

creating our own Cantonese wav2vec 2.0 model.

4.2.1 Speech Segmentation

Canopy

Using the Common Voice dataset to generate training data for training an EENDmodel which

helps in segmenting Canopy, the first step was to determine the time boundaries of speech

activities found in each Common Voice utterance. To achieve this, we trained a GMM-HMM

system with Speaker-Adaptive Training (SAT) in Kaldi [10] and force-aligned the audio and

the transcripts to obtain alignment information at word-level. We proceeded to generating

speaker mixtures using the mixture simulation algorithm described in Section 3.3.1 with the

following settings:

(i) Turn transitions: for 78% of the time, the four turn transitions are generated with

equal probabilities; for the remaining 22% of time, only interruption and back-channel
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are generated with equal probabilities to simulate chaotic conversations. Transitions

are generated until the mixture reaches a duration of truncnorm(15, 10, 2, 30) (before

silence padding)7.

(ii) Speaker-level reverberation: no reverberation is generated.

(iii) Mixture-level background noise: with a probability of 0.5, the speaker mixture is

further mixed with a clip of background noise randomly sampled from the MUSAN

[25] and WHAM!48kHz noise [51] datasets according to an SNR uniformly sampled

from the range [10, 20].

(iv) Speaker-level downsampling to 8K: the downsampling probability is set to 0.2.

(v) Speaker-level speed perturbation: a speed perturbation factor is randomly drawn

from {0.9, 1.0, 1, 1}.

(vi) Speaker- and utterance-level volume perturbation: A mean volume µs (in dB) is

drawn from truncnorm(−25, 5,−40, 20) for each speaker s in the mixture, and the vol-

ume of an utterance is drawn from truncnorm(µs, 2,−40, 20) .

(vii) Mixture-level silence padding: two padding durations (in seconds) are sampled from

[0.0, 2.0] uniformly for padding to, respectively, the beginning and the end of the mix-

ture.

At the end, a total of 884K mixtures which amount to 4.2K hours were created to simulate

1- to 4-speaker conversations, which respectively account for 18%, 35%, 30% and 18% of all

mixtures. We used the mixtures to train an SA-EEND model, which accepts 80-dimensional

log mel-filterbank coefficients as the input features. The frame shift is 10ms and the frame

length is 25ms. The encoder consists of a 3-layer 2D-CNN sub-sampling module, which sub-

samples the input sequence by a factor of 10, 4 Conformer layers with a dimension of 384 and 6

heads, followed by 1 layer of uni-directional LSTMaccepting chronologically shuffled encoded

features; the decoder is a 1-layer uni-directional LSTM. The model has 20.7M parameters.

Training the model for 20 epochs using 2 NVIDIA RTX A6000 GPUs on a rented server took 1

day.

7 truncnorm(µ, σ, a, b) denotes a truncated Normal distribution defined over the interval [a, b] and parame-
terized with mean µ, standard deviation σ, lower bound a and upper bound b .
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Segmentation of the raw data was done with SpeechBrain’s neural voice activity detection

(VAD)8 front-end and the said SA-EEND model. For the SA-EEND model, we use a voice

activity onset of 0.4, a voice activity offset of 0.25 and a speaker existence threshold of 0.5.

We merged neighboring segments of the same speaker that are at most 2 seconds apart and

kept only the resulting segments that are at least 2 seconds and at most 40 seconds long.

The segmentation procedure at the end produced 2.8K hours of speech segments readily for

wav2vec 2.0 pre-training.

To estimate the number of speakers for the YouTube data in Canopy (see Table 3.1), we clus-

tered speaker embeddings extracted from a pre-trained ECAPA-TDNN [54] model provided

by SpeechBrain9, which optimizes an additive angular margin loss. Removing duplicated

speakers across recordings requires clustering all embeddings at once, which is intractable

and we therefore clustered the embeddings in two stages. In the first stage, we operated at

the recording level and performed spectral clustering on speaker embeddings pertaining to

each recording and computed the average embedding per speaker. In the second stage, we

performed agglomerative clustering on the average speaker embeddings collected from all

recordings, with single linkage of cosine distance and a linkage distance threshold of 0.3.

CU NCD Screening Data: CU-MARVEL and CUHK-JCCOCC-MoCA

Using CU-MARVEL’s baseline labeled training data, further training the pre-trained SincNet-

LSTM segmentation model for 10 epochs using 4 NVIDIA Quadro RTX8000 GPUs on a pri-

vate server took an hour. We repeated the same method on another Cantonese older adult

speech corpus named CUHK-JCCOCC-MoCA [75] and segmented its unlabeled data to ob-

tain slightly more data on top of CU-MARVEL’s baseline data for pre-training. After combin-

ing the labeled data and the automatically segmented data from the two corpora, we obtained

503 hours of speech segments for wav2vec 2.0 pre-training. We hereafter refer to these two

corpora collectively as CU-NCD.

8 https://huggingface.co/speechbrain/vad-crdnn-libriparty
9 https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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4.2.2 Cantonese wav2vec 2.0

We used the Canopy dataset described in Section 3.2.1 to train a CNN-Conformer (180M

parameters, hereafter Cantonese Conformer) for 360K steps (or equivalently 115 epochs) using

FP16 training and the AdamW optimizer with weight decay of 0.01. We set the learning rate

to 3e-4 following a linear decay schedule with warm-up for 10% of the training steps. The

mask probability was set to 0.65 and the mask length was set to 10. Pre-training using 6x

NVIDIA RTX A6000 GPUs on a rented server took 9 days.

Experiment 1: Monolingual vs. Cross-lingual Representations

We compare the ASR performance resulted from monolingual and cross-lingual speech rep-

resentations by fine-tuning them on the CU-MARVEL baseline labeled training data in this

experiment.

We consider a setting without pre-trained representations that we have to train an acoustic

model from scratch as the baseline. We trained a Kaldi nnet3 ‘chain’ system that employed a

2d-CNN-TDNN model with 9.6M parameters and accepting log mel-spectrogram and online

ivectors as inputs and optimized the lattice-free MMI (LF-MMI) objective with alignments

obtained from a GMM-HMM system with speaker adpative training (SAT). 3x speed pertur-

bation (0.9x, 1.0x and 1.1x) was applied on the training data to artificially increase the number

of speakers. Themodel was trained for 6 epochs using natural gradient SGD [23] on 1 NVIDIA

RTX 8000 GPU, taking half a day.

We fine-tuned the pre-trained (i) Cantonese Conformer and (ii) 300M XLS-R using the CTC

loss. We applied the following configuration for fine-tuning: we froze the CNN module and

fine-tuned the other parts of the model for 40K steps, or 190 epochs, using FP16 training and

the AdamW optimizer without weight decay; the learning rate was set to 3e-5, with a tri-

stage schedule in which the first 10% of training steps were for warm-up and training the

output layer only, the next 40% were for a constant learning rate, and the remaining steps

were for linearly decaying the learning rate; we used a mask probability of 0.75, and a layer-

drop probability of 0.1. We trained each model on 2 NVIDIA RTX Quadro RTX 8000 GPUs in

a private server, and training each took half a day.

The output of the ASR models are decoded with a search beam of 30. The character error rate

(CER) results are given in Table 4.7 with breakdown by speaker role (assessors or participants)
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and recording environment (sound-proof or non-sound-proof ).

Table 4.7: CU-MARVEL CER (%) resulted from monolingual and cross-lingual speech repre-
sentations

Model Venue Overall

Sound-proof Non-sound-proof

Assrs. Parts. Assrs. Parts. Assrs. Parts.

No pre-training, log-mel spec.
Kaldi ‘chain’ 2d-CNN-TDNN 7.30 22.59 9.06 29.75 8.27 26.09

Monolingual & out-domain
Cantonese Conformer 4.67 15.07 6.46 21.24 5.65 18.08

Cross-lingual & out-domain
XLS-R (300M) 5.59 17.21 7.51 22.85 6.64 19.96

∗ Abbreviations: Assrs. – Assessors; Parts. – Participants.

Both the pre-trained representations provide performance surpassing Kaldi’s. Moreover, the

monolingual representations outperform the cross-lingual representations across speaker roles

and venues. This suggests that ASR fine-tuning benefits from a pre-trained model which

matches the language of the fine-tuning data. Comparing to the cross-lingual baseline, the

advantages of the monolingual model, however, may be limited by the following factors. Per-

haps attributed to the exclusion of older adult data during pre-training, the assessors enjoyed

a greater reduction in overall CER than the older adult participants (a relative reduction of

14.87% vs. 9.43%). Another factor is due to environment robustness: the model may not be

optimal for the non-sound-proof venue because the improvement of the Cantonese model in

recognizing assessor speech in a non-sound-proof venue is less than that in a sound-proof

venue (a relative reduction of 13.98% vs. 16.32%), and it is way worse for the participants (a

relative reduction of 7.07% vs. 12.42%).

4.2.3 Further Pre-training Conditions

Experiment 2: Mixes of Further Pre-training Data

In this experiment, we study if (i) monolingual or (ii) cross-lingual speech representations pre-

trained on out-domain data would affect the further pre-training performance on in-domain

data. We froze the CNN layers, and trained only the context network (either Conformer or

Transformer) and the quantization modules.
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We first study a straightforward way to adapt the pre-trained speech representations by di-

rectly further pre-train the pre-trained model on the in-domain CU-NCD data (503 hours).

We did this for 80K steps (which amounts to 96 epochs) using FP16 training and the AdamW

optimizer with a weight decay of 0.01. We use a learning rate of 2e-4 with a linear decay

schedule and no warm-up. The masking configuration is the same as in Experiment 1. This

took us 7 days to complete the pre-training by using 3x NVIDIA Quadro RTX 8000 GPUs on

a private server.

At the same time, we consider a two-stage further pre-training method for adapting XLS-R in

which we first further pre-train on the mix of Canopy and CU-NCD (altogether 3.3K hours);

in the next stage we further pre-train on the in-domain CU-NCD only. In the first stage, we

trained for 100K steps (18 epochs) and in the second stage we re-initialized the learning rate

schedule and trained for 40K steps (48 epochs). Obviously, this method iterates less on the

in-domain data. The two-stage training altogether required 11 days using 3x NVIDIA Quadro

RTX 8000 GPUs on a private server.

Table 4.8: CU-MARVEL CER (%) resulted from in-domain further pre-training

Model Venue Overall

Sound-proof Non-sound-proof

Assrs. Parts. Assrs. Parts. Assrs. Parts.

Baseline: no further pre-training (Table 4.7)
(a) Cantonese Conformer 4.67 15.07 6.46 21.24 5.65 18.08
(b) XLS-R (300M) 5.59 17.21 7.51 22.85 6.64 19.96

One-stage further pre-training on CU-NCD (out-domain→ in-domain)
(c) Cantonese Conformer 3.75 14.42 4.94 19.36 4.40 16.83
(d) XLS-R (300M) 3.88 14.29 4.97 18.34 4.47 16.27

Two-stage further pre-training (cross-lingual→monolingual & cross-domain→ in-domain)
XLS-R (300M)
→ (e) on Canopy + CU-NCD 4.17 15.30 5.39 19.97 4.84 17.58
→ (f) on CU-NCD 3.61 13.35 4.80 17.42 4.26 15.34

The fine-tuning results are given in Table 4.8. All further pre-trainedmodels (c)–(f) superseded

the monolingual and cross-lingual baselines we obtained in Experiment 1 and their improve-

ment in committing less word errors is significant for both speaker roles at significance level

p < 0.01 (see Appendix C). Moreover, the further pre-trained XLS-R models (d) and (f) out-

perform the further pre-trained monolingual model (c) on participants’ speech. This seems
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to disagree with our earlier results on LibriSpeech, which showed the monolingual models

worked consistently better. However we must stress that the monolingual models in Lib-

riSpeech are in-domain at the same time, while our monolingual here is out-domain. Here,

we argue that the outperformance of XLS-R is due its larger model size (300M vs. the mono-

lingual model’s 180M). Our two-stage further pre-trained model (f) further improved upon

the single stage model (d) and is the best model we can obtain. Therefore, we hypothesize

that the two-stage further pre-training method allows the model to first adapt to the target

language, then to the target domain in the matched language.

Comparing models (b) and (d), which both stemmed from the XLS-R, with single stage further

pre-training the assessor speech shows an overall 32.61% relative improvement, whereas the

participants’ shows 18.50% relative. One reason why the accuracy of recognizing the assessor

speech greatly improves is that the speakers are seen during training (but not the partici-

pants), and they speak clearly and use consistent wordings throughout different assessment

sessions to give instructions to the participants. We also witness a significant reduction of

CER when recognizing the participant speech in a non-sound-proof venue (19.73% relative),

which is much more prominent than that for a sound-proof venue (16.94% relative). This

suggests the simple method of further pre-training allows the model to gain environmental

robustness without the need of sophisticated tricks. However, there still exists a large per-

formance gap in recognizing speech in a non-sound-proof venue when compared to a sound-

proof venue: the CER for the former environment is more than 20% higher than the latter.

Comparing model (d) (one stage) and model (f) (two-stage), model (f) brings a relative gain of

4.66% and 5.71% on assessors and participants speech respectively. We hypothesize that the

participants enjoyed a larger gain because their speech varies more than the assessors’.

Table 4.9: CU-MARVEL CER (%) resulted from different amounts of in-domain further pre-
training data

Pre-training data Size Train steps Overall

Assrs. Parts.

CU-NCD (Table 4.8 model (d)) 503 h 80K 4.47 16.27
CU-MARVEL-133 133 h 40K 4.86 17.58

We also ask the question of howmuch pre-training data is needed to provide performance gain

for ASR fine-tuning. We consider single stage further pre-training and confine the pre-training

data to cover only the utterances (both manually annotated and automatically segmented)
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from the partially manually labeled sessions, which give rise to 133 hours of data (hereafter

CU-MARVEL-133). We compare the resultant further pre-trained model to model (d) in

Table 4.8, which is pre-trained on the full amount of the CU-NCD data (503 hours). The

results are given in Table 4.9 and they suggest that pre-training this limited amount of data

is still beneficial to the downstream ASR performance and outperforms the off-the-shelf pre-

trained models significantly in committing less word errors at significance level p < 0.01 (see

Appendix C).

Which factors are important in determining CER?

Table 4.10: CU-MARVEL CER (%) linear regression report

(a) Regression coefficients

Term Coef. SE Coef. t-value p-value VIF

Constant 9.75 1.24 7.88 0.000
Education years (standardized) -1.718 0.716 -2.40 0.021 1.18
Age (standardized) 0.633 0.836 0.76 0.453 1.61
Group
Minor NCD 1.73 1.42 1.22 0.229 1.15
Major NCD 7.50 2.65 2.83 0.007 1.60

Venue
Non-sound-proof 3.66 1.36 2.70 0.010 1.09

Gender
Male 5.35 1.39 3.85 0.000 1.12

∗ Abbreviations: Coef. – coefficient, SE Coef. – standard error of the coefficient, VIF – variance inflation factor.

(b) Analysis of Variance (ANOVA)

Source DF Adj. SS Adj. MS F -value p-value

Regression 6 1043.19 173.87 8.92 0.000
Education year 1 112.32 112.32 5.76 0.021
Age 1 11.18 11.18 0.57 0.453
Group 2 158.72 79.36 4.07 0.025
Venue 1 141.71 141.71 7.27 0.010
Gender 1 289.04 289.04 14.83 0.000
Error 39 760.14 19.49
Total 45 1803.33

∗ Abbreviations: DF – degree of freedom, Adj. SS – adjusted sum of squares, Adj. MS – adjusted mean squares.

To understand the relationship between the ASR performance on the participant speech and

their demographics, as well as the recording environment, we fit a mutiple linear regression

model to predict the participants’ CER obtained in our two-stage further pre-trained XLS-R
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∗ Abbreviations: CI – confidence interval.

Figure 4.3: CU-MARVEL correlation of CER (%), education and age

(f), from their gender, NCD classification, age, education years, and the recording condition.

The regression report is given in Table 4.10. We also provide the correlation figures and plots

in Figure 4.3. We set a significance level of p < 0.02. F-test of the least-squares fit shows

the overall regression model is significant (p = 0.000). Although age shows a weak positive

correlation with CER (r = 0.376), there is a lack of support that an increasing age gives

rise to higher CER (p = 0.453). On the other hand, while receiving more education years

shows a very weak negative correlation (r = −0.287) with CER, education is not a significant

factor to explain CER (p = 0.021). The F-test shows the following factors are significant

variables (p < 0.02): the participant being a man (p = 0.000), the participant having major

NCD (p = 0.007), and the recording environment being a non-sound-proof one (p = 0.012)

show a positive relationship with CER. Interestingly, minor NCD is not a significant factor

on CER (p = 0.229). These preliminary results suggest major NCD (15% of labeled data) and

male participant (35% of labeled data) speech are difficult to recognize, possibly because they

are under-represented in the labeled data. Another plausible explanation could be that their

speech are acoustically and linguistically more variable.

Effects of Overlapped Speech

We binned utterances according to their proportions of overlapping with another speaker’s

speech, and computed the CER (%) for each of the bins. In Figure 4.4, we plot CER as a
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Figure 4.4: CU-MARVEL CER (%) and overlapped speech. Left panel: Assessors’ speech CER
(%) as a function of utterance overlap proportion. Right panel: Participants’ speech CER (%)
as a function of utterance overlap proportion.

function of utterance overlap proportion for each of the two speaker roles and for each of the

two venue types. It can be seen that CER generally increases with the overlap proportion,

suggesting additional measures are needed to recognize overlapped speech correctly.

4.2.4 ASR Fine-tuning Conditions

Experiment 3: Semi-supervised Learning

Pseudo labels based on the one-best hypothesis of whole-lattice rescoring were generated

using the one-stage further pre-trained XLS-R (Table 4.8 model (d)) for the CU-NCD data,

excluding the labeled training data of CU-MARVEL. Combining the labeled training data of

CU-MARVEL and the pseudo-labeled CU-NCD data, we fine-tuned the one-stage further pre-

trained XLS-R again using 160K steps (or 81 epochs) on 3x NVIDIA Quadro RTX 8000 GPUs.

Table 4.11: CU-MARVEL CER (%) resulted from semi-supervised learning

Model Venue Overall

Sound-proof Non-sound-proof

Assrs. Parts. Assrs. Parts. Assrs. Parts.

One-stage further pre-training on CU-NCD (out-domain→ in-domain)
XLS-R (300M) (Table 4.8 model (d)) 3.88 14.29 4.97 18.34 4.47 16.27
+ pseudo-labeling 3.73 14.07 4.88 17.83 4.36 15.91

The end results are shown in Table 4.11. The method of semi-supervised learning by pseudo-

labeling brings an overall reduction of around 2% in CER, and the improvement in committing
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less character errors is significant at significance level p < 0.01 (see Appendix C). Since our

system is not speaker-adaptive, we hypothesize the improvement is limited by the incorrect

decoding result brought by the variability of spontaneous speech and overlapped speech.

Another reason may be due to the employment of a language model that is not tailored for

modeling disfluencies.

54



Chapter 5

Conclusions

Oriented towards the need of automatic transcripts for helping manual labor in developing a

speech corpus named CU-MARVEL, this thesis explored the use of pre-trained self-supervised

speech representation models to leverage in-domain data that are yet to be labeled and suc-

cessfully improved the ASR performance in this low-resource setup. We collected additional

speech data in Cantonese to avail speech representation learning in the language and con-

tributed a Cantonese wav2vec 2.0 model. Adopting further pre-training and semi-supervised

learning techniques, we were able to boost the in-domain performance of speech representa-

tions models that are pre-trained on out-domain data.

Our experiments on LibriSpeech showed that further pre-training is able to absorb some of

the gain brought by fine-tuning a model that is not further pre-trained. This shows the im-

portance of the method in a low-resource setup that is accompanied with a large amount of

unlabeled data. In our experiments dedicated to CU-MARVEL, a significant improvement of

ASR performance is observed on our adapted XLS-Rmodel that was further pre-trained in two

stages. In the first stage, we used a mix of in-domain and out-domain conversational data to

adapt the 300M XLS-R to the target language of Cantonese. In the second stage, we limited

the further pre-training data to those that are in-domain. The resultant ASR model after fine-

tuning is found to improve upon the baselinemodels that were not further pre-trained and the

adapted XLS-R that was further pre-trained on the in-domain data right away in one stage.

Comparing to the monolingual and cross-lingual baselines, this model further pre-trained

in two stages brought a relative improvement of 24.60% and 35.81% respectively on assessor

speech, and 15.16% and 23.16% respectively on participant speech. These results suggest that

a large cross-lingual pre-trained model may replace a small monolingual pre-trained model

given the availability of abundant data in the target domain for further pre-training.

Possibly because theCU-MARVEL dataset is biased towards female (themale-to-female ratios

are 0.8 for labeled and unlabeled training speakers as a whole and 0.55 for labeled training
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speakers, and all assessors are female), through linear regression analysis we found our model

discriminates against male speech. Considering the difficulties in recruiting participants, a

future research direction would be to resolve this discrimination through speaker adaptations

techniques or the incorporation of male older adult data obtained elsewhere.

Another research direction is related to the recognition of conversational data. Overlapped

speech in the forms of interruption and backchanneling are inevitable in conversations, and

is found in around 15% of the duration of CU-MARVEL’s labeled data. We did not employ

methods tailored for recognizing these kinds of speech. Moreover, although our pre-training

data involved speakermixtures and overlapped speech due to segmentation errors, their effect

on the ASR performance is not well-understood. Devising a speech representation learning

methodology that is aware of the acoustics and content of conversational speech per se (rather

than simulated data as in, e.g., [85]) perhaps provides another interesting research direction.
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Appendix A

Dataset Usages

A number of datasets have been used for different purposes in this work. For better clarity,

their usages are summarized below.

Table A.1: Summary of dataset usages

Dataset Main style Usage∗

SD AP ASR LM

Noise datasets
MUSAN •
WHAM!48kHz noise •

Speech datasets, audio-only
Canopy (this work) spontaneous •

Speech datasets, with paired audio and texts
Common Voice 11.0 (zh-HK & yue) read •
CU-MARVEL spontaneous • • • •
CUHK-JCCOCC-MoCA spontaneous • ◦†

LibriSpeech read • •

Text datasets
LibriSpeech LM Corpus written •

∗ Abbreviations: SD – speaker diarization; AP – audio pre-training (wav2vec 2.0); ASR – automatic speech
recognition; LM – language modeling
† completely pseudo-labeled (i.e., labels are not used, even if there are any)
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Appendix B

Cantonese Romanization Scheme

The following tables demonstrate the Jyutping Cantonese Romanization Scheme1 developed

by the Linguistic Society of Hong Kong (LSHK). The scheme used in formatting the lexicon of

this work is given alongside.

Table B.1: Cantonese romanization scheme

(a) Syllable onsets

Phone Example

LSHK This work Character LSHK This work

(null initial) 啊 aa3 aa3

b b 巴 baa1 b aa1

p p 怕 paa3 p aa3

m m 罵 maa6 m aa6

f f 花 faa1 f aa1

d d 打 daa2 d aa2

t t 他 taa1 t aa1
n n 拿 naa4 n aa4

l l 罅 laa3 l aa3
g g 家 gaa1 g aa1

k k 卡 kaa1 k aa1

ng ng 牙 ngaa4 ng aa4

h h 霞 haa4 h aa4

gw gw 瓜 gwaa1 gw aa1

kw kw 誇 kwaa1 kw aa1

w w 娃 waa1 w aa1

z z 渣 zaa1 z aa1

c c 岔 caa3 c aa3

s s 沙 saa1 s aa1

j j 也 jaa5 j aa5

1 https://lshk.org/jyutping-scheme
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(b) Syllable nuclei

Phone Example

LSHK This work Character LSHK This work

aa aa + tone 沙 saa1 s aa1
i i + tone 啲 di1 d i1
u u + tone 風 fung1 f u1 ng1

e e + tone 車 ce1 c e1
o o + tone 多 do1 d o1
yu yu + tone 喘 cyun2 c yu2 n2

oe oe + tone 鋸 goe3 g oe3
a a + tone 人 jan4 j a4 n4

eo eo + tone 水 seoi2 s eo2 i2

(c) Syllable codas

Phone Example

LSHK This work Character LSHK This work

p p 濕 sap1 s a1 p
t t 突 dat6 d a6 t
k k 劈 pek3 p e3 k
m m + tone 減 gaam2 g aa2 m2
n n + tone 陳 can4 c a4 n4
ng ng + tone 生 saang1 s aa1 ng1
i i + tone 隨 ceoi4 c eo4 i4
u u + tone 豆 dau2 d a2 u2

(d) Syllabic nasals

Phone Example

LSHK This work Character LSHK This work

m m + tone 唔 m4 m4
ng ng + tone 吳 ng4 ng4
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(e) Tones

Tone Example

Wong Shik-Ling LSHK This work Character LSHK This work

1 1 1 加 gaa1 g aa1
2 2 2 錢 cin2 c i2 n2
3 3 3 轉 zyun3 z yu3 n3
4 4 4 牛 ngau4 ng a4 u4
5 5 5 奶 naai5 n aa5 i5
6 6 6 味 mei6 m e6 i6
7 1 1 的 dik1 d i1 k

8 3 3 確 kok3 k o3 k

9 6 6 值 zik6 z i6 k
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Appendix C

Significance Tests

The following records the statistical test reports of SCTK for comparing the outputs of differ-

ent ASR systems. The reports are rearranged to avoid redundancy.1

Explanation

Composite Report of All Significance Tests
For the Test

Test Name Abbrev.
------------------------------------------------------ -------

Matched Pair Sentence Segment (Word Error) MP
Signed Paired Comparison (Speaker Word Error Rate (%)) SI
Wilcoxon Signed Rank (Speaker Word Error Rate (%)) WI

These significance tests are all two-tailed tests with the null hypothesis
that there is no performance difference between the two systems.

The first column indicates if the test finds a significant difference
at the level of p=0.05. It consists of '~' if no difference is
found at this significance level. If a difference at this level is
found, this column indicates the system with the higher value on the
performance statistic utilized by the particular test.

The second column specifies the minimum value of p for which the test
finds a significant difference at the level of p.

The third column indicates if the test finds a significant difference
at the level of p=0.001 ("***"), at the level of p=0.01, but not
p=0.001 ("**"), or at the level of p=0.05, but not p=0.01 ("*").

A test finds significance at level p if, assuming the null hypothesis,
the probability of the test statistic having a value at least as
extreme as that actually found, is no more than p.

1 The descriptions of the tests may be found at
https://web.archive.org/web/20071011230835/http://nist.gov/speech/tests/sigtests/sigtests.htm .
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Note: for CU-MARVEL, the phrase ‘word error’ in the above description translates as ‘char-

acter error’.

Abbreviations used in naming the ASR systems

fp - further pre-trained
lr - learning rate

grad - gradient multiplier
spk - speaker
pl - pseudo-labeling
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LibriSpeech Experiment 1

For dev-clean:

|------------------------------------------------------------------------------|
| Test || | xlsr_baseline | xlsr_fp || Test |
| Abbrev. || | | || Abbrev. |
|---------++---------------+---------------+------------------------++---------|
| MP || xlsr_baseline | | xlsr_fp <0.001 *** || MP |
| SI || | | xlsr_fp <0.001 *** || SI |
| WI || | | xlsr_fp <0.001 *** || WI |
|---------++---------------+---------------+------------------------++---------|
| MP || xlsr_fp | | || MP |
| SI || | | || SI |
| WI || | | || WI |
|------------------------------------------------------------------------------|

For dev-other :

|------------------------------------------------------------------------------|
| Test || | xlsr_baseline | xlsr_fp || Test |
| Abbrev. || | | || Abbrev. |
|---------++---------------+---------------+------------------------++---------|
| MP || xlsr_baseline | | xlsr_fp <0.001 *** || MP |
| SI || | | xlsr_fp <0.001 *** || SI |
| WI || | | xlsr_fp <0.001 *** || WI |
|---------++---------------+---------------+------------------------++---------|
| MP || xlsr_fp | | || MP |
| SI || | | || SI |
| WI || | | || WI |
|------------------------------------------------------------------------------|

For test-clean:

|------------------------------------------------------------------------------|
| Test || | xlsr_baseline | xlsr_fp || Test |
| Abbrev. || | | || Abbrev. |
|---------++---------------+---------------+------------------------++---------|
| MP || xlsr_baseline | | xlsr_fp <0.001 *** || MP |
| SI || | | xlsr_fp <0.001 *** || SI |
| WI || | | xlsr_fp <0.001 *** || WI |
|---------++---------------+---------------+------------------------++---------|
| MP || xlsr_fp | | || MP |
| SI || | | || SI |
| WI || | | || WI |
|------------------------------------------------------------------------------|
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For test-other :

|------------------------------------------------------------------------------|
| Test || | xlsr_baseline | xlsr_fp || Test |
| Abbrev. || | | || Abbrev. |
|---------++---------------+---------------+------------------------++---------|
| MP || xlsr_baseline | | xlsr_fp <0.001 *** || MP |
| SI || | | xlsr_fp <0.001 *** || SI |
| WI || | | xlsr_fp <0.001 *** || WI |
|---------++---------------+---------------+------------------------++---------|
| MP || xlsr_fp | | || MP |
| SI || | | || SI |
| WI || | | || WI |
|------------------------------------------------------------------------------|
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Reports for ablation study

For dev-clean:

|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_lr5e-5 | xlsr_fp_grad_0.1 | xlsr_fp_grad_1.0 | xlsr_fp_grad_1.0_steps160k || Test |
| Abbrev. || | | | | | || Abbrev. |
|---------++----------------------------+---------+------------------------+-------------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp | | ~ 0.472 | ~ 0.234 | ~ 0.490 | ~ 0.516 || MP |
| SI || | | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** || SI |
| WI || | | ~ 0.617 | ~ 0.529 | ~ 0.582 | ~ 0.503 || WI |
|---------++----------------------------+---------+------------------------+-------------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_lr5e-5 | | | ~ 0.857 | ~ 0.928 | ~ 0.968 || MP |
| SI || | | | xlsr_fp_lr5e-5 <0.001 *** | xlsr_fp_lr5e-5 <0.001 *** | xlsr_fp_lr5e-5 <0.001 *** || SI |
| WI || | | | ~ 0.529 | ~ 0.968 | ~ 0.936 || WI |
|---------++----------------------------+---------+------------------------+-------------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_grad_0.1 | | | | ~ 0.772 | ~ 0.826 || MP |
| SI || | | | | xlsr_fp_grad_1.0 <0.001 *** | ~ 1.000 || SI |
| WI || | | | | ~ 0.834 | ~ 0.779 || WI |
|---------++----------------------------+---------+------------------------+-------------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_grad_1.0 | | | | | ~ 0.968 || MP |
| SI || | | | | | xlsr_fp_grad_1.0_steps160k <0.001 *** || SI |
| WI || | | | | | ~ 0.881 || WI |
|---------++----------------------------+---------+------------------------+-------------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_grad_1.0_steps160k | | | | | || MP |
| SI || | | | | | || SI |
| WI || | | | | | || WI |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Friedman Two-way Analysis of Variance by Ranks
----------------------------------------------

Ho: Testing the hypothesis that all recognizers are the same

Reject if
X2_r > X2 of 5% df4 (9.490)

adjustment = 0.936
X2_r = 1.474

ANALYSIS:
--------
The test statistic X2_r shows that at the 95% confidence
interval, the recognition systems are not significantly
different.

Further, the probablity of there being a difference is
between 10% to 20%.

COMPARISON MATRIX: Comparing All Systems
Using a Multiple Comparison Test

|--------------------------------------------------------------------------------------------------------------------------|
| | xlsr_fp | xlsr_fp_lr5e-5 | xlsr_fp_grad_1.0_steps160k | xlsr_fp_grad_1.0 | xlsr_fp_grad_0.1 |
|----------------------------+---------------------------------------------------------------------------------------------|
| xlsr_fp | | same | same | same | same |
| xlsr_fp_lr5e-5 | | | same | same | same |
| xlsr_fp_grad_1.0_steps160k | | | | same | same |
| xlsr_fp_grad_1.0 | | | | | same |
| xlsr_fp_grad_0.1 | | | | | |
|--------------------------------------------------------------------------------------------------------------------------|
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For dev-other :

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_lr5e-5 | xlsr_fp_grad_0.1 | xlsr_fp_grad_1.0 | xlsr_fp_grad_1.0_steps160k || Test |
| Abbrev. || | | | | | || Abbrev. |
|---------++----------------------------+---------+------------------------+---------------------------------+---------------------------------+---------------------------------++---------|
| MP || xlsr_fp | | ~ 0.960 | ~ 0.660 | ~ 0.881 | ~ 0.347 || MP |
| SI || | | xlsr_fp <0.001 *** | xlsr_fp_grad_0.1 0.003 ** | xlsr_fp <0.001 *** | xlsr_fp 0.003 ** || SI |
| WI || | | ~ 0.497 | ~ 0.810 | ~ 0.704 | ~ 0.603 || WI |
|---------++----------------------------+---------+------------------------+---------------------------------+---------------------------------+---------------------------------++---------|
| MP || xlsr_fp_lr5e-5 | | | ~ 0.734 | ~ 0.920 | ~ 0.384 || MP |
| SI || | | | xlsr_fp_grad_0.1 <0.001 *** | xlsr_fp_lr5e-5 <0.001 *** | xlsr_fp_lr5e-5 0.003 ** || SI |
| WI || | | | ~ 0.741 | ~ 0.603 | ~ 0.726 || WI |
|---------++----------------------------+---------+------------------------+---------------------------------+---------------------------------+---------------------------------++---------|
| MP || xlsr_fp_grad_0.1 | | | | ~ 0.646 | ~ 0.211 || MP |
| SI || | | | | xlsr_fp_grad_0.1 0.002 ** | xlsr_fp_grad_0.1 0.003 ** || SI |
| WI || | | | | ~ 0.873 | ~ 0.441 || WI |
|---------++----------------------------+---------+------------------------+---------------------------------+---------------------------------+---------------------------------++---------|
| MP || xlsr_fp_grad_1.0 | | | | | ~ 0.424 || MP |
| SI || | | | | | xlsr_fp_grad_1.0 0.002 ** || SI |
| WI || | | | | | ~ 0.509 || WI |
|---------++----------------------------+---------+------------------------+---------------------------------+---------------------------------+---------------------------------++---------|
| MP || xlsr_fp_grad_1.0_steps160k | | | | | || MP |
| SI || | | | | | || SI |
| WI || | | | | | || WI |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Friedman Two-way Analysis of Variance by Ranks
----------------------------------------------

Ho: Testing the hypothesis that all recognizers are the same

Reject if
X2_r > X2 of 5% df4 (9.490)

adjustment = 0.968
X2_r = 1.139

ANALYSIS:
--------
The test statistic X2_r shows that at the 95% confidence
interval, the recognition systems are not significantly
different.

Further, the probablity of there being a difference is
between 10% to 20%.

COMPARISON MATRIX: Comparing All Systems
Using a Multiple Comparison Test

|--------------------------------------------------------------------------------------------------------------------------|
| | xlsr_fp_grad_0.1 | xlsr_fp | xlsr_fp_lr5e-5 | xlsr_fp_grad_1.0 | xlsr_fp_grad_1.0_steps160k |
|----------------------------+---------------------------------------------------------------------------------------------|
| xlsr_fp_grad_0.1 | | same | same | same | same |
| xlsr_fp | | | same | same | same |
| xlsr_fp_lr5e-5 | | | | same | same |
| xlsr_fp_grad_1.0 | | | | | same |
| xlsr_fp_grad_1.0_steps160k | | | | | |
|--------------------------------------------------------------------------------------------------------------------------|

76



For test-clean:

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_lr5e-5 | xlsr_fp_grad_0.1 | xlsr_fp_grad_1.0 | xlsr_fp_grad_1.0_steps160k || Test |
| Abbrev. || | | | | | || Abbrev. |
|---------++----------------------------+---------+------------------------+------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp | | ~ 0.230 | ~ 0.373 | ~ 0.067 | ~ 0.298 || MP |
| SI || | | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** | xlsr_fp_grad_1.0 <0.001 *** | xlsr_fp_grad_1.0_steps160k <0.001 *** || SI |
| WI || | | ~ 0.280 | ~ 0.194 | ~ 0.078 | ~ 0.289 || WI |
|---------++----------------------------+---------+------------------------+------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_lr5e-5 | | | ~ 0.522 | xlsr_fp_grad_1.0 0.002 ** | xlsr_fp_grad_1.0_steps160k 0.032 * || MP |
| SI || | | | ~ 1.000 | xlsr_fp_grad_1.0 <0.001 *** | xlsr_fp_grad_1.0_steps160k <0.001 *** || SI |
| WI || | | | ~ 0.682 | xlsr_fp_grad_1.0 0.002 ** | xlsr_fp_grad_1.0_steps160k 0.032 * || WI |
|---------++----------------------------+---------+------------------------+------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_grad_0.1 | | | | xlsr_fp_grad_1.0 0.018 * | ~ 0.107 || MP |
| SI || | | | | xlsr_fp_grad_1.0 <0.001 *** | xlsr_fp_grad_1.0_steps160k <0.001 *** || SI |
| WI || | | | | xlsr_fp_grad_1.0 0.026 * | ~ 0.114 || WI |
|---------++----------------------------+---------+------------------------+------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_grad_1.0 | | | | | ~ 0.497 || MP |
| SI || | | | | | ~ 1.000 || SI |
| WI || | | | | | ~ 0.603 || WI |
|---------++----------------------------+---------+------------------------+------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_grad_1.0_steps160k | | | | | || MP |
| SI || | | | | | || SI |
| WI || | | | | | || WI |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Friedman Two-way Analysis of Variance by Ranks
----------------------------------------------

Ho: Testing the hypothesis that all recognizers are the same

Reject if
X2_r > X2 of 5% df4 (9.490)

adjustment = 0.946
X2_r = 12.322

ANALYSIS:
--------
The test statistic X2_r shows, with 95% confidence, that at
least one recognition system is significantly different.

Further, the probablity of there being a difference is
between 98% to 99%.

COMPARISON MATRIX: Comparing All Systems
Using a Multiple Comparison Test

|--------------------------------------------------------------------------------------------------------------------------------------|
| | xlsr_fp_grad_1.0 | xlsr_fp_grad_1.0_steps160k | xlsr_fp | xlsr_fp_grad_0.1 | xlsr_fp_lr5e-5 |
|----------------------------+---------------------------------------------------------------------------------------------------------|
| xlsr_fp_grad_1.0 | | same | same | xlsr_fp_grad_1.0 | xlsr_fp_grad_1.0 |
| xlsr_fp_grad_1.0_steps160k | | | same | same | xlsr_fp_grad_1.0_steps160k |
| xlsr_fp | | | | same | same |
| xlsr_fp_grad_0.1 | | | | | same |
| xlsr_fp_lr5e-5 | | | | | |
|--------------------------------------------------------------------------------------------------------------------------------------|
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For test-other :

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_lr5e-5 | xlsr_fp_grad_0.1 | xlsr_fp_grad_1.0 | xlsr_fp_grad_1.0_steps160k || Test |
| Abbrev. || | | | | | || Abbrev. |
|---------++----------------------------+---------+------------------------+---------------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp | | ~ 0.171 | ~ 0.976 | ~ 0.219 | ~ 0.841 || MP |
| SI || | | xlsr_fp <0.001 *** | xlsr_fp_grad_0.1 <0.001 *** | xlsr_fp <0.001 *** | xlsr_fp_grad_1.0_steps160k 0.003 ** || SI |
| WI || | | ~ 0.114 | ~ 0.803 | ~ 0.144 | ~ 0.841 || WI |
|---------++----------------------------+---------+------------------------+---------------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_lr5e-5 | | | ~ 0.165 | ~ 0.826 | ~ 0.263 || MP |
| SI || | | | xlsr_fp_grad_0.1 <0.001 *** | xlsr_fp_lr5e-5 0.002 ** | xlsr_fp_grad_1.0_steps160k <0.001 *** || SI |
| WI || | | | ~ 0.162 | ~ 0.741 | ~ 0.180 || WI |
|---------++----------------------------+---------+------------------------+---------------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_grad_0.1 | | | | ~ 0.222 | ~ 0.865 || MP |
| SI || | | | | xlsr_fp_grad_0.1 <0.001 *** | xlsr_fp_grad_0.1 0.003 ** || SI |
| WI || | | | | ~ 0.093 | ~ 0.936 || WI |
|---------++----------------------------+---------+------------------------+---------------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_grad_1.0 | | | | | ~ 0.322 || MP |
| SI || | | | | | xlsr_fp_grad_1.0_steps160k <0.001 *** || SI |
| WI || | | | | | ~ 0.134 || WI |
|---------++----------------------------+---------+------------------------+---------------------------------+---------------------------------+-------------------------------------------++---------|
| MP || xlsr_fp_grad_1.0_steps160k | | | | | || MP |
| SI || | | | | | || SI |
| WI || | | | | | || WI |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Friedman Two-way Analysis of Variance by Ranks
----------------------------------------------

Ho: Testing the hypothesis that all recognizers are the same

Reject if
X2_r > X2 of 5% df4 (9.490)

adjustment = 0.956
X2_r = 9.065

ANALYSIS:
--------
The test statistic X2_r shows that at the 95% confidence
interval, the recognition systems are not significantly
different.

Further, the probablity of there being a difference is
between 90% to 95%.

COMPARISON MATRIX: Comparing All Systems
Using a Multiple Comparison Test

|--------------------------------------------------------------------------------------------------------------------------------------|
| | xlsr_fp_grad_0.1 | xlsr_fp_grad_1.0_steps160k | xlsr_fp | xlsr_fp_lr5e-5 | xlsr_fp_grad_1.0 |
|----------------------------+---------------------------------------------------------------------------------------------------------|
| xlsr_fp_grad_0.1 | | same | same | xlsr_fp_grad_0.1 | same |
| xlsr_fp_grad_1.0_steps160k | | | same | xlsr_fp_grad_1.0_steps160k | same |
| xlsr_fp | | | | xlsr_fp | same |
| xlsr_fp_lr5e-5 | | | | | same |
| xlsr_fp_grad_1.0 | | | | | |
|--------------------------------------------------------------------------------------------------------------------------------------|
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LibriSpeech Experiment 2

For dev-clean:

|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_half_per_spk | xlsr_fp_half_spks | xlsr_fp_460h || Test |
| Abbrev. || | | | | || Abbrev. |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp | | ~ 0.327 | xlsr_fp 0.026 * | ~ 0.246 || MP |
| SI || | | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** || SI |
| WI || | | ~ 0.131 | xlsr_fp 0.036 * | ~ 0.177 || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_half_per_spk | | | ~ 0.180 | ~ 0.779 || MP |
| SI || | | | xlsr_fp_half_per_spk <0.001 *** | xlsr_fp_half_per_spk <0.001 *** || SI |
| WI || | | | ~ 0.250 | ~ 0.689 || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_half_spks | | | | ~ 0.363 || MP |
| SI || | | | | xlsr_fp_460h <0.001 *** || SI |
| WI || | | | | ~ 0.211 || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_460h | | | | || MP |
| SI || | | | | || SI |
| WI || | | | | || WI |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|

Friedman Two-way Analysis of Variance by Ranks
----------------------------------------------

Ho: Testing the hypothesis that all recognizers are the same

Reject if
X2_r > X2 of 5% df3 (7.820)

adjustment = 0.930
X2_r = 7.234

ANALYSIS:
--------
The test statistic X2_r shows that at the 95% confidence
interval, the recognition systems are not significantly
different.

Further, the probablity of there being a difference is
between 90% to 95%.

COMPARISON MATRIX: Comparing All Systems
Using a Multiple Comparison Test

|------------------------------------------------------------------------------------------------------------------|
| | xlsr_fp | xlsr_fp_half_per_spk | xlsr_fp_460h | xlsr_fp_half_spks |
|----------------------+-------------------------------------------------------------------------------------------|
| xlsr_fp | | same | same | xlsr_fp |
| xlsr_fp_half_per_spk | | | same | same |
| xlsr_fp_460h | | | | same |
| xlsr_fp_half_spks | | | | |
|------------------------------------------------------------------------------------------------------------------|
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For dev-other :

|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_half_per_spk | xlsr_fp_half_spks | xlsr_fp_460h || Test |
| Abbrev. || | | | | || Abbrev. |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp | | ~ 0.110 | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** || MP |
| SI || | | xlsr_fp 0.002 ** | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** || SI |
| WI || | | ~ 0.276 | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_half_per_spk | | | xlsr_fp_half_per_spk <0.001 *** | xlsr_fp_half_per_spk <0.001 *** || MP |
| SI || | | | xlsr_fp_half_per_spk <0.001 *** | xlsr_fp_half_per_spk <0.001 *** || SI |
| WI || | | | xlsr_fp_half_per_spk 0.005 ** | xlsr_fp_half_per_spk <0.001 *** || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_half_spks | | | | xlsr_fp_half_spks <0.001 *** || MP |
| SI || | | | | xlsr_fp_half_spks <0.001 *** || SI |
| WI || | | | | xlsr_fp_half_spks 0.009 ** || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_460h | | | | || MP |
| SI || | | | | || SI |
| WI || | | | | || WI |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|

Friedman Two-way Analysis of Variance by Ranks
----------------------------------------------

Ho: Testing the hypothesis that all recognizers are the same

Reject if
X2_r > X2 of 5% df3 (7.820)

adjustment = 0.930
X2_r = 25.300

ANALYSIS:
--------
The test statistic X2_r shows, with 95% confidence, that at
least one recognition system is significantly different.

Further, the probablity of there being a difference is
greater that 99.9%.

COMPARISON MATRIX: Comparing All Systems
Using a Multiple Comparison Test

|------------------------------------------------------------------------------------------------------------------|
| | xlsr_fp | xlsr_fp_half_per_spk | xlsr_fp_half_spks | xlsr_fp_460h |
|----------------------+-------------------------------------------------------------------------------------------|
| xlsr_fp | | same | xlsr_fp | xlsr_fp |
| xlsr_fp_half_per_spk | | | xlsr_fp_half_per_spk | xlsr_fp_half_per_spk |
| xlsr_fp_half_spks | | | | same |
| xlsr_fp_460h | | | | |
|------------------------------------------------------------------------------------------------------------------|
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For test-clean:

|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_half_per_spk | xlsr_fp_half_spks | xlsr_fp_460h || Test |
| Abbrev. || | | | | || Abbrev. |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp | | ~ 0.131 | xlsr_fp 0.017 * | xlsr_fp 0.014 * || MP |
| SI || | | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** || SI |
| WI || | | ~ 0.401 | ~ 0.051 | xlsr_fp 0.015 * || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_half_per_spk | | | ~ 0.342 | ~ 0.242 || MP |
| SI || | | | xlsr_fp_half_per_spk <0.001 *** | xlsr_fp_half_per_spk <0.001 *** || SI |
| WI || | | | ~ 0.208 | ~ 0.250 || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_half_spks | | | | ~ 0.803 || MP |
| SI || | | | | xlsr_fp_half_spks <0.001 *** || SI |
| WI || | | | | ~ 0.818 || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_460h | | | | || MP |
| SI || | | | | || SI |
| WI || | | | | || WI |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|

Friedman Two-way Analysis of Variance by Ranks
----------------------------------------------

Ho: Testing the hypothesis that all recognizers are the same

Reject if
X2_r > X2 of 5% df3 (7.820)

adjustment = 0.943
X2_r = 6.772

ANALYSIS:
--------
The test statistic X2_r shows that at the 95% confidence
interval, the recognition systems are not significantly
different.

Further, the probablity of there being a difference is
between 90% to 95%.

COMPARISON MATRIX: Comparing All Systems
Using a Multiple Comparison Test

|------------------------------------------------------------------------------------------------------------------|
| | xlsr_fp | xlsr_fp_half_per_spk | xlsr_fp_half_spks | xlsr_fp_460h |
|----------------------+-------------------------------------------------------------------------------------------|
| xlsr_fp | | same | xlsr_fp | xlsr_fp |
| xlsr_fp_half_per_spk | | | same | same |
| xlsr_fp_half_spks | | | | same |
| xlsr_fp_460h | | | | |
|------------------------------------------------------------------------------------------------------------------|
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For test-other :

|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_half_per_spk | xlsr_fp_half_spks | xlsr_fp_460h || Test |
| Abbrev. || | | | | || Abbrev. |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp | | ~ 0.066 | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** || MP |
| SI || | | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** || SI |
| WI || | | ~ 0.136 | xlsr_fp <0.001 *** | xlsr_fp <0.001 *** || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_half_per_spk | | | xlsr_fp_half_per_spk 0.007 ** | xlsr_fp_half_per_spk <0.001 *** || MP |
| SI || | | | xlsr_fp_half_per_spk <0.001 *** | xlsr_fp_half_per_spk <0.001 *** || SI |
| WI || | | | xlsr_fp_half_per_spk 0.010 * | xlsr_fp_half_per_spk <0.001 *** || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_half_spks | | | | xlsr_fp_half_spks <0.001 *** || MP |
| SI || | | | | xlsr_fp_half_spks <0.001 *** || SI |
| WI || | | | | xlsr_fp_half_spks 0.004 ** || WI |
|---------++----------------------+---------+------------------------+-------------------------------------+-------------------------------------++---------|
| MP || xlsr_fp_460h | | | | || MP |
| SI || | | | | || SI |
| WI || | | | | || WI |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|

Friedman Two-way Analysis of Variance by Ranks
----------------------------------------------

Ho: Testing the hypothesis that all recognizers are the same

Reject if
X2_r > X2 of 5% df3 (7.820)

adjustment = 0.979
X2_r = 29.034

ANALYSIS:
--------
The test statistic X2_r shows, with 95% confidence, that at
least one recognition system is significantly different.

Further, the probablity of there being a difference is
greater that 99.9%.

COMPARISON MATRIX: Comparing All Systems
Using a Multiple Comparison Test

|------------------------------------------------------------------------------------------------------------------|
| | xlsr_fp | xlsr_fp_half_per_spk | xlsr_fp_half_spks | xlsr_fp_460h |
|----------------------+-------------------------------------------------------------------------------------------|
| xlsr_fp | | same | xlsr_fp | xlsr_fp |
| xlsr_fp_half_per_spk | | | same | xlsr_fp_half_per_spk |
| xlsr_fp_half_spks | | | | xlsr_fp_half_spks |
| xlsr_fp_460h | | | | |
|------------------------------------------------------------------------------------------------------------------|
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LibriSpeech Experiment 4

For dev-clean:

|---------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_pl | libri_fp_pl || Test |
| Abbrev. || | | | || Abbrev. |
|---------++-------------+---------+------------------------+----------------------------++---------|
| MP || xlsr_fp | | ~ 0.472 | libri_fp_pl 0.005 ** || MP |
| SI || | | xlsr_fp <0.001 *** | libri_fp_pl <0.001 *** || SI |
| WI || | | ~ 0.407 | ~ 0.390 || WI |
|---------++-------------+---------+------------------------+----------------------------++---------|
| MP || xlsr_fp_pl | | | libri_fp_pl <0.001 *** || MP |
| SI || | | | libri_fp_pl <0.001 *** || SI |
| WI || | | | ~ 0.267 || WI |
|---------++-------------+---------+------------------------+----------------------------++---------|
| MP || libri_fp_pl | | | || MP |
| SI || | | | || SI |
| WI || | | | || WI |
|---------------------------------------------------------------------------------------------------|

For dev-other :

|------------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_pl | libri_fp_pl || Test |
| Abbrev. || | | | || Abbrev. |
|---------++-------------+---------+---------------------------+----------------------------++---------|
| MP || xlsr_fp | | xlsr_fp_pl <0.001 *** | libri_fp_pl <0.001 *** || MP |
| SI || | | xlsr_fp_pl <0.001 *** | libri_fp_pl 0.003 ** || SI |
| WI || | | xlsr_fp_pl 0.002 ** | ~ 0.734 || WI |
|---------++-------------+---------+---------------------------+----------------------------++---------|
| MP || xlsr_fp_pl | | | libri_fp_pl <0.001 *** || MP |
| SI || | | | libri_fp_pl 0.003 ** || SI |
| WI || | | | ~ 0.952 || WI |
|---------++-------------+---------+---------------------------+----------------------------++---------|
| MP || libri_fp_pl | | | || MP |
| SI || | | | || SI |
| WI || | | | || WI |
|------------------------------------------------------------------------------------------------------|

For test-clean:

|-----------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_pl | libri_fp_pl || Test |
| Abbrev. || | | | || Abbrev. |
|---------++-------------+---------+------------------------+------------------++---------|
| MP || xlsr_fp | | ~ 0.904 | ~ 0.395 || MP |
| SI || | | xlsr_fp <0.001 *** | ~ 1.000 || SI |
| WI || | | ~ 0.826 | ~ 0.841 || WI |
|---------++-------------+---------+------------------------+------------------++---------|
| MP || xlsr_fp_pl | | | ~ 0.430 || MP |
| SI || | | | ~ 1.000 || SI |
| WI || | | | ~ 0.711 || WI |
|---------++-------------+---------+------------------------+------------------++---------|
| MP || libri_fp_pl | | | || MP |
| SI || | | | || SI |
| WI || | | | || WI |
|-----------------------------------------------------------------------------------------|
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For test-other :

|------------------------------------------------------------------------------------------------------|
| Test || | xlsr_fp | xlsr_fp_pl | libri_fp_pl || Test |
| Abbrev. || | | | || Abbrev. |
|---------++-------------+---------+---------------------------+----------------------------++---------|
| MP || xlsr_fp | | xlsr_fp_pl <0.001 *** | libri_fp_pl <0.001 *** || MP |
| SI || | | xlsr_fp_pl <0.001 *** | libri_fp_pl <0.001 *** || SI |
| WI || | | xlsr_fp_pl 0.016 * | ~ 0.280 || WI |
|---------++-------------+---------+---------------------------+----------------------------++---------|
| MP || xlsr_fp_pl | | | libri_fp_pl <0.001 *** || MP |
| SI || | | | libri_fp_pl <0.001 *** || SI |
| WI || | | | ~ 0.453 || WI |
|---------++-------------+---------+---------------------------+----------------------------++---------|
| MP || libri_fp_pl | | | || MP |
| SI || | | | || SI |
| WI || | | | || WI |
|------------------------------------------------------------------------------------------------------|
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CU-MARVEL Experiment 2

For assessors:

|------------------------------------------------------------------------------|
| Test || | canto | canto_fp || Test |
| Abbrev. || | | || Abbrev. |
|----------++-----------+----------+-------------------------++----------------|
| MP || canto | | canto_fp <0.001 *** || MP |
| SI || | | ~ 0.062 || SI |
| WI || | | canto_fp 0.043 * || WI |
|----------++-----------+----------+-------------------------++----------------|
| MP || canto_fp | | || MP |
| SI || | | || SI |
| WI || | | || WI |
|------------------------------------------------------------------------------|

|--------------------------------------------------------------------------------------------|
| Test || | xlsr | xlsr_fp | xlsr_fp2 || Test |
| Abbrev. || | | | || Abbrev. |
|---------++----------+--------+------------------------+-------------------------++---------|
| MP || xlsr | | xlsr_fp <0.001 *** | xlsr_fp2 <0.001 *** || MP |
| SI || | | ~ 0.062 | ~ 0.062 || SI |
| WI || | | xlsr_fp 0.043 * | xlsr_fp2 0.043 * || WI |
|---------++----------+--------+------------------------+-------------------------++---------|
| MP || xlsr_fp | | | xlsr_fp2 <0.001 *** || MP |
| SI || | | | ~ 0.062 || SI |
| WI || | | | xlsr_fp2 0.043 * || WI |
|---------++----------+--------+------------------------+-------------------------++---------|
| MP || xlsr_fp2 | | | || MP |
| SI || | | | || SI |
| WI || | | | || WI |
|--------------------------------------------------------------------------------------------|

|----------------------------------------------------------------------------------------------------|
| Test || | xlsr | xlsr_fp | xlsr_fp_133h || Test |
| Abbrev. || | | | || Abbrev. |
|---------++--------------+--------+------------------------+-----------------------------++---------|
| MP || xlsr | | xlsr_fp <0.001 *** | xlsr_fp_133h <0.001 *** || MP |
| SI || | | ~ 0.062 | ~ 0.062 || SI |
| WI || | | xlsr_fp 0.043 * | xlsr_fp_133h 0.043 * || WI |
|---------++--------------+--------+------------------------+-----------------------------++---------|
| MP || xlsr_fp | | | xlsr_fp <0.001 *** || MP |
| SI || | | | ~ 0.062 || SI |
| WI || | | | xlsr_fp 0.043 * || WI |
|---------++--------------+--------+------------------------+-----------------------------++---------|
| MP || xlsr_fp_133h | | | || MP |
| SI || | | | || SI |
| WI || | | | || WI |
|----------------------------------------------------------------------------------------------------|
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For participants:

|------------------------------------------------------------------------------|
| Test || | canto | canto_fp || Test |
| Abbrev. || | | || Abbrev. |
|----------++-----------+----------+-------------------------++----------------|
| MP || canto | | canto_fp <0.001 *** || MP |
| SI || | | canto_fp <0.001 *** || SI |
| WI || | | canto_fp <0.001 *** || WI |
|----------++-----------+----------+-------------------------++----------------|
| MP || canto_fp | | || MP |
| SI || | | || SI |
| WI || | | || WI |
|------------------------------------------------------------------------------|

|--------------------------------------------------------------------------------------------|
| Test || | xlsr | xlsr_fp | xlsr_fp2 || Test |
| Abbrev. || | | | || Abbrev. |
|---------++----------+--------+------------------------+-------------------------++---------|
| MP || xlsr | | xlsr_fp <0.001 *** | xlsr_fp2 <0.001 *** || MP |
| SI || | | xlsr_fp <0.001 *** | xlsr_fp2 <0.001 *** || SI |
| WI || | | xlsr_fp <0.001 *** | xlsr_fp2 <0.001 *** || WI |
|---------++----------+--------+------------------------+-------------------------++---------|
| MP || xlsr_fp | | | xlsr_fp2 <0.001 *** || MP |
| SI || | | | xlsr_fp2 <0.001 *** || SI |
| WI || | | | xlsr_fp2 <0.001 *** || WI |
|---------++----------+--------+------------------------+-------------------------++---------|
| MP || xlsr_fp2 | | | || MP |
| SI || | | | || SI |
| WI || | | | || WI |
|--------------------------------------------------------------------------------------------|
Abbreviation: fp2 - further pre-training in two stages

|----------------------------------------------------------------------------------------------------|
| Test || | xlsr | xlsr_fp | xlsr_fp_133h || Test |
| Abbrev. || | | | || Abbrev. |
|---------++--------------+--------+------------------------+-----------------------------++---------|
| MP || xlsr | | xlsr_fp <0.001 *** | xlsr_fp_133h <0.001 *** || MP |
| SI || | | xlsr_fp <0.001 *** | xlsr_fp_133h <0.001 *** || SI |
| WI || | | xlsr_fp <0.001 *** | xlsr_fp_133h <0.001 *** || WI |
|---------++--------------+--------+------------------------+-----------------------------++---------|
| MP || xlsr_fp | | | xlsr_fp <0.001 *** || MP |
| SI || | | | xlsr_fp <0.001 *** || SI |
| WI || | | | xlsr_fp <0.001 *** || WI |
|---------++--------------+--------+------------------------+-----------------------------++---------|
| MP || xlsr_fp_133h | | | || MP |
| SI || | | | || SI |
| WI || | | | || WI |
|----------------------------------------------------------------------------------------------------|
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CU-MARVEL Experiment 3

For assessors:

|------------------------------------------------------------------------------------------------|
| Test || | xlsr | xlsr_fp | xlsr_fp_pl || Test |
| Abbrev. || | | | || Abbrev. |
|---------++------------+--------+------------------------+---------------------------++---------|
| MP || xlsr | | xlsr_fp <0.001 *** | xlsr_fp_pl <0.001 *** || MP |
| SI || | | ~ 0.062 | ~ 0.062 || SI |
| WI || | | xlsr_fp 0.043 * | xlsr_fp_pl 0.043 * || WI |
|---------++------------+--------+------------------------+---------------------------++---------|
| MP || xlsr_fp | | | xlsr_fp_pl <0.001 *** || MP |
| SI || | | | ~ 0.375 || SI |
| WI || | | | ~ 0.139 || WI |
|---------++------------+--------+------------------------+---------------------------++---------|
| MP || xlsr_fp_pl | | | || MP |
| SI || | | | || SI |
| WI || | | | || WI |
|------------------------------------------------------------------------------------------------|

For participants:

|------------------------------------------------------------------------------------------------|
| Test || | xlsr | xlsr_fp | xlsr_fp_pl || Test |
| Abbrev. || | | | || Abbrev. |
|---------++------------+--------+------------------------+---------------------------++---------|
| MP || xlsr | | xlsr_fp <0.001 *** | xlsr_fp_pl <0.001 *** || MP |
| SI || | | xlsr_fp <0.001 *** | xlsr_fp_pl <0.001 *** || SI |
| WI || | | xlsr_fp <0.001 *** | xlsr_fp_pl <0.001 *** || WI |
|---------++------------+--------+------------------------+---------------------------++---------|
| MP || xlsr_fp | | | xlsr_fp_pl <0.001 *** || MP |
| SI || | | | xlsr_fp_pl <0.001 *** || SI |
| WI || | | | xlsr_fp_pl <0.001 *** || WI |
|---------++------------+--------+------------------------+---------------------------++---------|
| MP || xlsr_fp_pl | | | || MP |
| SI || | | | || SI |
| WI || | | | || WI |
|------------------------------------------------------------------------------------------------|
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