
RECURRENT POISSON PROCESS UNIT FOR
AUTOMATIC SPEECH RECOGNITION

by

Hengguan Huang

A Thesis Submitted to
The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for

the Degree of Master of Philosophy

in Computer Science and Engineering

November 2018, Hong Kong

Copyright c© by Hengguan Huang 2018



Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis to

other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce

the thesis by photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

HENGGUAN HUANG

5 December 2018

ii



RECURRENT POISSON PROCESS UNIT FOR
AUTOMATIC SPEECH RECOGNITION

by

Hengguan Huang

This is to certify that I have examined the above M.Phil. thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

Associate Prof. Brian Mak, Thesis Supervisor

Prof. Dit-Yan YEUNG, Acting Head of Department

Department of Computer Science and Engineering

12 November 2018

iii



ACKNOWLEDGMENTS

I am grateful that I was able to study and work with Professor Brian Mak. He give me

guidance and advice throughout my postgraduate study.

I thank the members of my thesis committee, Professor Dit-Yan Yeung and Professor

Yangqiu Song, for their insightful comments on improving this work.

I thank my colleagues in HKUST – Dr. Hao Wang, Dr. Xiaodong Gu,Zhaoyu Liu, Miss

YingKe Zhu, Mr. Wei Li and many others. Without them, my graduate study in HKUST

would not be so colorful.

Last but not least, I thank my parents and my girl friend, for their support and encour-

agement.

iv



TABLE OF CONTENTS

Title Page i

Authorization Page ii

Signature Page iii

Acknowledgments iv

Table of Contents v

List of Figures vi

List of Tables vii

Abstract viii

Chapter 1 Introduction 1

1.1 Background 1

1.2 Motivation 2

1.3 Related Work 4

1.3.1 Recurrent Neural Networks 4

1.3.2 Temporal Point Processes 5

1.3.3 Acoustic event models in ASR 6

1.4 Thesis Summary 7

1.5 Outline of the Thesis 8

Chapter 2 The use of Recurrent Neural Networks for Acoustic Modeling 9

2.1 Speech Production and Acoustic Speech Signal 9

2.2 Basic Components in HMM-based Speech Recognition 10

2.3 HMM and its Usage as Acoustic Models 11

2.4 Recurrent Neural Networks 13

2.4.1 Long Short-term Memory Recurrent Neural Networks 15

v



2.4.2 Gated Recurrent Units 17

2.4.3 Simple Recurrent Unit 18

2.5 RNN-HMM ASR System 18

2.5.1 Training 18

2.5.2 Decoding 19

2.5.3 Evaluation 20

2.6 Limitations of RNN for Acoustic Modeling 21

Chapter 3 Acoustic Modelling Using Recurrent Poisson Process Unit 23

3.1 Introduction 23

3.2 Problem Formulation 24

3.3 Temporal Point Process 24

3.4 Poisson Point Process 27

3.5 Recurrent Poisson Process 28

3.5.1 Generate Timings for a Recurrent Poisson Process 28

3.5.2 Conditional Intensity Function for a Recurrent Poisson Process 29

3.6 Recurrent Poisson Process Unit: Integrate Recurrent Poisson Process into
RNN 30

3.7 Learning 31

Chapter 4 Experimental Evaluation 33

4.1 Data Setup: ChiME-2, WSJ0 and WSJ0&1 33

4.1.1 ChiME-2 33

4.1.2 WSJ0 33

4.1.3 WSJ0&1 34

4.2 Preprocessing and Training Procedure 34

4.3 Models 35

4.4 Results and Analysis 35

4.4.1 Results on CHiME-2 35

4.4.2 Analyze the Property of RPP 37

4.4.3 Results on WSJ0 40

4.4.4 Results on WSJ0&1 40

vi



Chapter 5 Conclusion 42

5.1 Contributions 43

5.2 Future Works 43

5.2.1 More Experiments 43

5.2.2 Model Improvement 44

References 45

Appendix A Significant Tests 52

vii



LIST OF FIGURES

2.1 Sketch of a speech production system (from [5]) 9

2.2 Architecture of an HMM-based recognizer (modified from [5]) 10

2.3 HMM-based phone model 11

2.4 Context-dependent phone modeling ((modified from [5])) 13

2.5 The unfolded Simple RNN. 14

3.1 Multiple specifications for temporal point process 25

4.1 WER on Development set of CHiME-2 by varying the weight of the regu-
larization term 37

4.2 Arrival times produced by RPPU at each time step. The yellow points
represent the mean of a standard Poisson process. The blue pluses and
red stars represent the generated time points estimated from the randomly
chosen utterance at 9DB and -3DB SNR, respectively. 38

4.3 In the textgrids, the first tier represents the clean alignment generated from
the clean utterance of WSJ0, the second tier represents the noisy alignment
generated from the noisy utterance of CHiME-2, this last tier denotes the es-
timated alignment generated by using RPPU. The blue line and the yellow
line in the middle spectrogram represents pitch and intensity, respectively. 39

viii



LIST OF TABLES

2.1 Summary of TIMIT phoneme recognition performance. F = input context
in number of frames; L = number of hidden layers; N = number of nodes
per hidden layer. 21

4.1 Model configuraions for all datasets and the training time for CHiME-2.
L: number of layers; N: number of hidden states per layer; P: number of
model parameters; T: Training time per epoch (hr). 35

4.2 WER (%) on test set of CHiME-2. 36

4.3 Detailed WER (%) on the CHiME-2 test set. 36

4.4 Similarity with the alignment generated from the clean development set of
WSJ0 38

4.5 WER (%) on evaluation set eval92-5k of WSJ0. 40

4.6 WER (%) on evaluation sets of WSJ0&1. 40

A.1 Significant tests of the CHiME-2 experiments 53

A.2 Significant tests of the WSJ0 experiments 54

A.3 Significant tests of the WSJ0&1 dev93-20k task 55

A.4 Significant tests of the WSJ0&1 eval93-20k task 56

ix



RECURRENT POISSON PROCESS UNIT FOR
AUTOMATIC SPEECH RECOGNITION

by

Hengguan Huang

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

ABSTRACT

Over the past few years, there has been a resurgence of interest in using recurrent neu-

ral network-hidden Markov model (RNN-HMM) for automatic speech recognition (ASR).

Some modern recurrent network models, such as long short-term memory (LSTM) and

simple recurrent unit (SRU), have demonstrated promising results on this task. Recently,

several scientific perspectives in the fields of neuroethology and speech production sug-

gest that human speech signals may be represented in discrete point patterns involving

acoustic events in the speech signal. Based on this hypothesis, it may pose some chal-

lenges for RNN-HMM acoustic modeling: firstly, it arbitrarily discretizes the continuous

input into the interval features at a fixed frame rate, which may introduce discretization

errors; secondly, the occurrences of such acoustic events are unknown. Furthermore, the

training targets of RNN-HMM are obtained from other (inferior) models, giving rise to

misalignments.

On the other hand, the temporal point process is a powerful mathematical tool to de-

scribe the latent mechanisms governing the occurrences of observed random events. It is

a random process whose realization consists of a sequence of isolated events with their
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time-stamps. Due to their generality, point processes have been widely used for modeling

phenomena such as earthquakes, human activities, financial data, context-aware recom-

mendations, etc. Major research in this area focuses on exploring the observed event data

to model the underlying dynamics of the system, while our work attempts to deal with

the situation where acoustic events are not available/observed even during training.

In this paper, we propose a recurrent Poisson process (RPP) which can be seen as a

collection of Poisson processes at a series of time intervals in which the intensity evolves

according to the RNN hidden states that encode the history of the acoustic signal. It aims

at allocating the latent acoustic events in continuous time. Such events are efficiently

drawn from the RPP using a sampling-free solution in an analytic form. The speech sig-

nal containing latent acoustic events is reconstructed/sampled dynamically from the dis-

cretized acoustic features using linear interpolation, in which the weight parameters are

estimated from the onset of these events. The above processes are further integrated into

an SRU, forming our final model, called recurrent Poisson process unit (RPPU). Experi-

mental evaluations on ASR tasks including ChiME-2, WSJ0 and WSJ0&1 demonstrate the

effectiveness and benefits of the RPPU. For example, it achieves a relative WER reduction

of 10.7% over state-of-the-art models on WSJ0.

xi



CHAPTER 1

INTRODUCTION

Automatic speech recognition (ASR) [54] can be formulated as the problem of recognizing

words from uttered speech signals given a dictionary and some other prior knowledge of

the problem. In the beginning, many researchers believed that ASR would become an easy

task with the development of new computer technologies. However, a few decades later,

we are realizing that it is still a very hard problem, and even nowadays many difficulties

are far from being solved. These include an increasingly huge dictionary, free-style tasks,

spontaneous speech, robustness to environmental conditions, mixed languages and so on.

The details of these problems are described in [71].

1.1 Background

Since 1980s, hidden Markov model (HMM) Gaussian mixture model (GMM) [53, 34] has

been the most adopted parametric model at the acoustic level. An HMM statistically

describe temporal dependency of the acoustic units and GMMs are used to approximate

the statistical distributions of phonemes. In the meantime, many researchers had begun

to investigate artificial neural networks (ANNs) [69, 59, 58] for ASR. However, the ANN

acoustic model is hard to train due to limited computing and data resources. In the past

few years, several deep neural network [47, 31] based approaches have been proposed and

demonstrated promising results. Hinton [47] in particular applied deep neural networks

(DNNs) that were initialized with the parameters from a pre-trained stacked RBM [60]

to replace GMM for approximating HMM state likelihoods. The resulting DNN-HMM

hybrid model dramatically outperforms the GMM-HMM model. Although this model can

encode contextual information into the hidden layers, it cannot capture the dependency

between any two consecutive inputs, which is very important for sequence modeling.

The gain of DNN-HMM hybrid system mainly comes from exploiting information

from contextual frames [31]. Using relatively longer contexts yields higher accuracy, while
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too long a context length leads to convergence difficulties in DNN training. Recurrent

neural networks (RNNs) [26] alleviate this problem by introducing feedback cycles into

the network architecture and modeling the dependency among the observerd inputs. As

a result, the context window was extended to infinite, which can theoretically handle any

arbitrary context window. However, the RNN training process encounters the vanishing

or exploding gradient problem [33] when it is performed by backpropagation through

time (BPTT) [70] and stochaistic gradient descent (SGD) [57]. Long short-term mem-

ory(LSTM) [33] is a special implementation of a recurrent neural network (RNN) that is

easy to train and partially addresses this drawback. Perhaps the most commonly adopted

acoustic model in hybrid ASR systems is the long short term memory recurrent neural

network hidden Markov model (LSTM RNN-HMM).

It is beneficial for an acoustic model to capture long-term dependencies of the obser-

vations at different times. However, the sequential gates computation of LSTM limits its

parallelization potential. Simple recurrent unit [40] and quasi-RNN [8], simplify the im-

plementation of LSTM-RNN, and increase the speed of computation for each processing

step by dropping the connections between the hidden states and the LSTM gates, allow-

ing them to be computed in parallel. To speed up the acoustic model training, this thesis

use SRU as a basic building block to construct the proposed recurrent Poisson process unit

(RPPU) .

1.2 Motivation

A temporal point process is a powerful mathematical tool to describe the latent mech-

anisms governing the occurrences of observed random events. It is a random process

whose realization consists of a sequence of isolated events with their time-stamps. Due

to their generality, point processes have been widely used for modeling phenomena such

as earthquakes [28], human activities [43], financial data [1], context-aware recommenda-

tions [14] , etc. A common property of the problems above is that the precise event time

intervals can carry important information about the underlying dynamics, which other-

wise are not available from the sequence of interval features that are evenly sampled from

the continuous signal. Major research in this area focuses on exploring the observed event
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data to model the underlying dynamics of the system, while our work attempts to deal

with the situation where acoustic events are not available/observed even during training.

The hybrid RNN-HMM in acoustic modeling is essentially a generalized version of a

dynamic Bayesian network (DBN), which is usually characterized by discretizing the time

series data and capturing the dependency of those discretized items. According to the

research in speech production and neuroethology, human speech signals may be encoded

in point patterns involving acoustic events in the speech signal and neural spikes in the

brain [64, 15]. Such points in time are referred to as acoustic event landmarks in [65].

Based on this hypothesis, it may pose some challenges for RNN-HMM acoustic modeling:

firstly, it arbitrarily discretizes the continuous input into the interval features at a fixed

frame rate, which may introduce discretization errors and have a negative impact on the

model performance accordingly; secondly, the occurrences of such acoustic events are

unknown and such data are unavailable. On the other hand, the training targets of RNN-

HMM are usually obtained from the recognition results of other (usually inferior) DBN

models and misalignments are inevitable.

In this thesis, we develop a deep probabilistic model called recurrent Poisson process

unit (RPPU) to deal with the aforementioned problems. The hybrid ASR system under

the above hypothesis can be factored into three steps:

• Allocate the training acoustic events localized in time at the HMM state level to

better align with the training targets.

• Reconstruct/sample a series of acoustic features from the interval features originally

sampled at a fixed frame rate from the allocated acoustic events.

• Follow the traditional ASR processing procedure using the newly reconstructed

acoustic features as additional inputs.

The first step is achieved by constructing a recurrent Poisson process (RPP), which

consists of a collection of homogeneous Poisson processes [38] at a series of time inter-

vals. In the proposed point process, the intensity function is determined by an RNN hid-

den state encoding the past history of the acoustic signal. Sampling from intensity-based

models is usually performed via a thinning algorithm[49], which is indifferentiable and
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computationally expensive. Our method is sampling-free and it provides a solution in

an analytical form which ensures computational efficiency. In the second step, the better

aligned acoustic features are dynamically reconstructed through a linear interpolation in

which the weight parameters are estimated from the acoustic events drawn from the RPP.

Finally, those estimated acoustic features are provided to an RNN as additional input to

perform the HMM state prediction in a traditional way.

The objective function of RPPU is designed to strike a balance between the generation

of arrival times of the latent acoustic events for clean training data and encoding sufficient

uncertainty to capture the variability caused by the discretization errors and misalign-

ments. Notably, RPPU can be trained with the standard backpropagation through time

(BPTT) [70]. The experiments on CHiME-2, WSJ0 and WSJ0&1 show that our new model

consistently outperforms the conventional LSTM, SRU and quasi-RNNs.

1.3 Related Work

This section will introduce the related concepts and previous works that inspire our thesis.

We mainly focused on recurrent neural networks (RNNs), temporal point process and

acoustic event models in ASR.

1.3.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) and its modern variant simple recurrent unit [40] are

building blocks of our model. RNN can be a very powerful model for sequential signals.

When unfolded in time, RNNs may be considered as a very deep neural network (DNN)

[47]. Thus, in principle, it can model long-span temporal dependency in sequential sig-

nals through simple recurrent network connections. However, in practice, training RNNs

using the back-propagation through time (BPTT) algorithm [70] can be difficult due to

the well-known vanishing or exploding gradient problem [33]. One typical solution is to

bridge the gap between an RNN hidden state and its preceding states by the addition of

direct feedback paths to the latter so that the gradients can reach the preceding states more

readily. Higher-order NARX RNN [42] is the earliest work that introduced this solution.

LSTM attempts to mitigate this problem by using a set of self-learning gates to control
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the amount of short-term and long-term information to forget, to retain, and to further

propagate. This make the decay’s gradient base of neighbouring memory units close to

one. However, the exponential shrinking of the spectral norm of the gradient component

at each time step still cannot be avoided over the long range of time steps. In contrast, our

RPPU is less prone to this problem. It learns a recurrent Poisson process in dynamically

re-organizing (or shifting) the input sequence to be better aligned with the training targets

such that the target may depends more on the current input and less on the input that are

far apart.

Another limitation of RNNs is that computation units of RNNs are mostly determin-

istic. Therefore, it is hard to model the uncertainty and we only have access to point

estimates of their parameters and predictions [24]. A variational RNN (VRNN) [10] is

proposed to solve this by introducing a variational auto-encoder (VAE)[37] into an RNN

architecture for every time step. In this model, each hidden state depends on the un-

certainty information captured by VAE for every time step. Here, VAE intends to ap-

proximate variational posterior distribution represented by a Gaussian. With the learned

latent distribution from VAE, the RNN models are shown much better generalization in

generating a natural speech sequence and handwriting samples. However, a standard

VRNN can only capture some unknown variabilities exhibiting non-interpretable repre-

sentations. This is because the approximating distributions are assumed to take a general

form: a Gaussian. On the other hand, our model is capable of modeling variabilities

caused by the discretization errors and misalignments explicitly, which is achieved by

adopting a more flexible recurrent Poisson proces.

1.3.2 Temporal Point Processes

Temporal point processes have been a principled framework for modeling phenomena on

an event-by-event basis across a wide range of domains. It has originally been used for

modeling earthquakes [29, 28] in seismology. More recently, in social network, a hawkes

process has been used to model timing and rich features of social interactions [72]; in

human activity modeling, Poisson Processes have been applied to model the inter-arrival

time of human activities [17, 43]; and in neurobiology, a determinantal point process (DPP)

latent variable model [63] was proposed to capture the interaction and correlation among
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neurons in neural spiking data. To do this, the DPP is imposed on the latent variables of

all neurons to model both inhibitory and competitive interactions among them.

A major limitation of these existing work is that they often make strong assumptions

about the generative processes of the event data, which may not be well-suited for real

world problem. Further more, the fixed parametric form of the intensity function also

have restricted the expressive power of the respective processes. Therefore, most of exist-

ing work focus on enhancing the flexibility of point process models, e.g. , a nonparametric

Bayesian approach of point processes have been explored in [66], in which the intensity

function of modulated renewal process is approximated using a Gaussian process; [44]

extended the multivariate Hawkes process [28] to a neurally self-modulating multivari-

ate point process using a continuous-time long short-term memory. Similarly, [13] pro-

posed a model based on marked temporal point process that model the event timings

and the markers with the help of a long short-term memory recurrent neural network

(LSTM RNN). However, these mothods focus only on modeling the occurrences of events

or associated markers, our proposed work try to develop a framework which is capable of

making inferences about the underlying events even when event timings are not available

during training.

1.3.3 Acoustic event models in ASR

An acoustic model based on marked Poisson process has been proposed for a sub-task

of event-based ASR [36]. This subtask is an unusual ASR task in that speech signal is

required to be segmented into sonorant and obstruent regions prior to acoustic model-

ing. Therefore, the occurrences of the acoustic events are provided during training and

testing and the model parameters of intensity function is learned by simply using maxi-

mum likelihood estimation (MLE). Essentially, the marked Poisson process in their work

is a phonetic classifier given the segment information. In contrast, in our work the an-

notation of the latent acoustic events in the acoustic speech signal is not available; hence

direct supervised learning via MLE is not possible. Our model addresses this challenge

by treating these latent acoustic events as latent variables, which are then used as part of

the generative process that is linked to the training targets.

Similarly, a segment-based event detection framework using HMM was proposed in
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[41] for automatic speech recognition, in which the event boundaries are obtained from

forced alignment. The training of such HMM-based event detectors require the event la-

bels for each training utterance. Additionally, it assumes uniform sampling, and thus the

detected events can only occur at quantized time intervals, which is what RPPU attempts

to overcome. Continuous-Time HMM alleviate this problem by introducing another set of

latent variables that model the holding/inter-arrival times between any two states. How-

ever, it is not clear how to integrate deep learning with Continuous-Time HMM, while

RPPU fits well with the current ASR framework using RNN.

1.4 Thesis Summary

In this thesis, we present a novel deep probabilistic model called the recurrent Poisson

process unit (RPPU), to address hybrid acoustic modeling. The key idea of our approach

is to view the arrivals of the latent acoustic events as several temporal latent variables.

Each follows an associated sub-Poisson point process for a dynamic time interval, whose

intensity function is parameterized by a recurrent neural network. More specifically, our

work is summarized as follows:

• We describe the potential problems caused by the aforementioned hypothesis for

the RNN-HMM acoustic model. To solve these problems, we reformulate the ASR

problem and divide the hybrid ASR system into three steps as discussed in Section

1.2.

• We propose a novel recurrent Poisson process to jointly model the latent acoustic

events and acoustic HMM states by treating the former as latent variables, which

are then used as part of the generative process that is linked to the training targets:

acoustic HMM states.

• We provide an analytical solution which ensures efficiently drawing samples from a

recurrent Poisson process (RPP).

• We integrate the RPP into SRU and create a novel deep probabilistic model called

recurrent Poisson process unit (RPPU). We design the respective learning method

and all of the RPPU components including the sampler of RPP are differentiable,
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so that our model can be trained with the standard backpropagation through time

(BPTT) [70] and stochaistic gradient descent (SGD) [57].

• Despite the additional computation overhead caused by RPP, our RPPU runs almost

as fast as SRU while having a similar number of parameters.

• We conduct both qualitative and quantitative analysis in speech recognition tasks

to show that our model can generate much better alignments while performing the

HMM state modeling.

• Our RPPU outperforms several baseline acoustic models including the conventional

LSTM, SRU and quasi-RNNs on three speech recognition datasets: CHiME-2, WSJ0

and WSJ0&1.

1.5 Outline of the Thesis

In Chapter 2, we present an overview of automatic speech recognition (ASR) and state-

of-the-art ASR systems together with details of RNN-HMMs that are used for acoustic

modeling. We review the existing variants of RNN, and fundamental limitations of RNN

for acoustic modeling are also described.

In chapter 3, we introduce and formulate the problem of the RNN-HMM acoustic

model. We then present the theory of the recurrent Poisson process. Then, details about

how the recurrent Poisson process can be integrated into RNN are presented. We finally

describe the learning of the recurrent Poisson process unit with a well-designed learning

objective which is augmented by an additional regularization term on RPP parameters.

In Chapter 4, we discuss the experimental evaluation of various RNN models for the

ASR data corpus including ChiME-2, WSJ0 and WSJ0&1. The effectiveness of RPPU is

investigated through carefully designed experiments. The conclusion and the future work

are discussed in the last chapter.
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CHAPTER 2

THE USE OF RECURRENT NEURAL
NETWORKS FOR ACOUSTIC MODELING

2.1 Speech Production and Acoustic Speech Signal

Figure 2.1. Sketch of a speech production system (from [5])

The physical production of speech sound is a complicated process including three

functional units: generation of air pressure, regulation of vibration, and control of res-

onators [5]. First, it starts with airflow from the lung. Then driven by the air pressure in

the lungs, voice source sounds are then generated during the vocal fold vibration at the

larynx. Here its features such as pitch, volume and timbre are first adjusted. They are

further modulated in various ways through movements generated by articulators such

as tongue, lower jaw, lip and velum (Fig 2.1). These features help humans to distinguish

most of the speech sounds based on how and when they are articulated. As such, the re-

searchers in [64, 15] believe that human sound may be encoded in point patterns involving
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some articulatory events. Such points in time are referred to as acoustic event landmarks

in [65].

In modern communication systems, though an acoustic speech signal is inherently

analogue, it is encoded by a sequence of bits which take advantage of the fact that binary

representation can be recovered robustly from a noisy channel. Generally, the analogue

microphone output is sampled and quantized to a binary representation by an analogue-

to-digital (A/D) converter. Common sampling rates are 8 or 16 kHz for narrowband

speech and wideband speech, respectively. The quantization precision is usually 16 bits

per sample.

2.2 Basic Components in HMM-based Speech Recognition

Figure 2.2. Architecture of an HMM-based recognizer (modified from [5])

The principal components of a statistical automatic speech recognition system are il-

lustrated in Fig 2.2. The input audio waveform from a microphone is converted into a

sequence of fixed-size acoustic vectors X = x1, ..., xT through a component called feature

extraction. Feature extraction attempts to provide a compact representation of the speech

waveform. The output feature vectors are computed with a 20 ms sliding window with

a 10 ms shift. One of the simplest and most widely used acoustic features is filter bank

energies [48].
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The decoder aims to search for a word sequence that is most likely to match X. More

specifically, it achieves this by maximizing the probability P(W|X). However, since this

probability is not directly tractable, it can be factorized into a product of P(X|W) and

P(W) using the Bayes’ Rule. P(W) can be computed using a language model (LM) [55],

which estimates the probability of the word sequence W using the production of items

in an N-gram model in which the probability of each word is conditioned only on its N-1

predecessors; P(X|W) can be computed using an acoustic model e.g. hidden Markov model

(HMM) [53]; it describes the statistics of the class conditional observation sequences given

the corresponding word sequences.

The smallest unit of sound that can be represented by the acoustic model is a phoneme.

For example, the word cat is composed of three phones /c/ /ae/ /t/. There are about

40 such phonemes in a typical ASR system and there is a pronunciation dictionary to define

any words involved in W.

2.3 HMM and its Usage as Acoustic Models

Figure 2.3. HMM-based phone model

The Hidden Markov model (HMM) is a probabilistic finite-state machine, in which in-
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ternal states cannot be directly observed but can be inferred by observing some outputs

generated by each state . It was first introduced in [4] , and has been successfully ap-

plied to model time-series data in fields such as speech recognition, speech synthesis and

handwriting.

HMM consists of three components: HMM states, state transitions and outputs. Each

HMM state has a discrete or continuous probability distribution over possible outputs or

emissions. State transitions are governed by a set of probabilities called transition proba-

bilities. In a typical first-order HMM, a transition probability depends solely on the pre-

vious state and not on the past state history states. An output is emitted when the system

visits a particular state or transits from one state to another. The distribution of emitting

such an output is modelled as a function of the emitting state. This is achieved by making

the output independence assumption, in which given its emitting state the emitted output

is conditionally independent of the previous emitted output and the neighboring states.

In speech recognition, the acoustic model comprised of a set of HMMs is used to model

the acoustic feature sequence. Each HMM represents a base phone, which is illustrated

in Fig 2.3 with transition probability parameters aij and continuous output probability

density functions bj(∗). The latter are modelled using mixtures of Gaussians [53] in an

old GMM-HMM ASR system [34], yet they are computed using the outputs of a recurrent

neural network in the new RNN-HMM ASR system [26], as discussed in more detail in

Section 3.1. The phone acoustic model shown in the Fig 2.3 is a 3-state straightly left-to-

right HMM with the non-emitting entry and exit states designed to simplify the process

of concatenating phone models to make word models.

In a typical GMM-HMM ASR system, the model parameters aij and bj(∗) can be ef-

ficiently estimated from a corpus of training utterances using expectation maximization

(EM) [3]. Initially, the global mean and covariance of the data are assigned to all Gaussian

components and all transition probabilities are set to be equal. In the E step, a forward-

backward alignment is used to compute state occupation probabilities and the means and

covariances are then estimated via simple weighted averages in the M step. The E and M

steps are then repeated until the estimate for model parameters stop changing.

As noted in section 2.2, the most likely word sequence is found by searching all possi-

ble state sequences derived from all possible word sequences that were most likely to have
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generated the observed data. An efficient way to solve this problem is to use the Viterbi

algorithm [18]. More specifically, in large-vocabulary continuous speech recognition tasks

(LVCSR), the basic Viterbi algorithm will be recast for LVCSR as the token passing algo-

rithm and the associated HMM topology is built by constructing a recognition network

which consists of all vocabulary words in parallel in a loop.

Figure 2.4. Context-dependent phone modeling ((modified from [5]))

In phone-based modelling, context-independent (CI) units are also called monophones.

Each phone is modelled by a single HMM. It is assumed that each phone is acoustically

independent from their neighboring phones in an utterance. This assumption obviously

violates the fact that neighboring units do affect each other (the co-articulatory effects)

and therefore the performance of using CI units is modest. A simple way to mitigate this

problem is to use a unique phone model for every possible pair of left and right neighbors.

The resulting models are called triphones, which are illustrated in Fig 2.4. Notice that the

number of total units may result in the data sparsity problem. To avoid this, the complete

set of logical triphones can be mapped to a reduced set of physical models by clustering

and tying together the parameters in each cluster [62].

2.4 Recurrent Neural Networks

Recurrent neural networks are neural networks with self connections, which allow in-

ternal representations to be generated and interaction of the observations to be captured

at different times [16]. They have been applied to a wide variety of machine learning
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problems: automatic speech recognition (ASR) [26], language modeling [46], machine

translation [2], computer vision [68], and so forth.

A recurrent neural network (RNN) is essentially a type of nonlinear dynamic system

comprised of two components: hidden states and transitions. The hidden state is denoted

by a multivariate vector of variables associated with discrete time. Its value summarizes

all the information about the historical behavior of the system, and in the meantime takes

account of describing its future behavior. The transition is assumed to be deterministic,

which determines how the hidden state evolves through time. Typically, in a sequence

of training examples [(x1, y1), (x2, y2), ..., (xm, ym)] with xt ∈ Rn, yt ∈ Rk, for 1 ≤ t ≤ T,

the vectors xt are given as inputs to the network, while the vectors yt denote the ground

truth represented by a one-hot vector with k classes. The dynamic system in RNN can be

represented by the following two equations:

ht = σ(Wxxt + Whht−1 + bh) (2.1)

ŷ = so f tmax(Wyht + by) (2.2)

where ht ∈ Rr describes the hidden state. The first equation defines the state transition

mapping, in which the hidden state ht is a nonlinear function of the current data point

xt and the previous hidden state ht−1. The state-to-state transition matrix Wh and input-

to-state transition matrix Wx allows information flow over input xt, hidden states ht and

ht−1. The output mapping usually adopts the softmax function to calculate the predictions

ŷ . bh and by are the biases of the hidden layer and output layer respectively.

The dynamics of the unfolded RNN depicted in Figure 2.5 is similar to a feedforward

neural network .

Figure 2.5. The unfolded Simple RNN.
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It is natural to adopt backpropagation [30] to train the parameters of the weight ma-

trices and biases of an RNN given the objective function. This algorithm is the so-called

backpropagation through time (BPTT) [70]. It is known to perform poorly for the problem

associated with long term dependency. One of most successful solutions is described in

next subsection.

2.4.1 Long Short-term Memory Recurrent Neural Networks

For the problem which involves long term dependency, that is, the problem in which the

desired outputs depend on inputs far in the past, BPTT for a standard RNN does not work

very well because of the vanishing and exploding gradient problem [32].

Long short-term memory(LSTM) [33] is a special implementation of a recurrent neural

network (RNN) that is easy to train and partially addresses this drawback. LSTM main-

tains different types of gates to dynamically and recursively distill inputs into memory

cells. At each time step, with the observation xt fed to LSTM, the gates, hidden states ht

and the memory cells ct are calculated:[
ît, f̂t, ôt

]
= Wxxt + Whht−1 + wc � ct−1 + b (2.3)

ĉt = Wxcxt + Whcht−1 + bc (2.4)

it = σ(ît) (2.5)

ft = σ(f̂t) (2.6)

ot = σ(ôt) (2.7)

ct = ft � ct−1 + it � tanh(ĉt) (2.8)

ht = ot � tanh(ct) (2.9)

where wc is the weight vector of peephole connection; W′s are weight matrices; b′s are

bias vectors; � is element-wise multiplication operation; it, ft, ot are the input gate, forget

gate and output gate repectively. The memory cell ct learns to make decisions about what

to store, and when to allow reads, writes, and forgets, via gates. All the gates are imple-

mented by a sigmoidal function σ, which takes activation from the current observation

xt as well as from the previous hidden state ht−1. The extent to which the new memory
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is combined is controlled by the input gate. If the value of the input gate is zero, then

the information flow from the observation is cut. If the value of the input gate is one,

the information involved in the observation is pumped into the memory cells ct. Simi-

larly, the extent to which the existing memory is flushed is controlled by the forget gate.

The memory cell ct could be flushed with the new memory if the forget gate ft is turned

on. Whether the current cell output ct will be propagated to the final output ht is further

controlled by the output gate ot. For some timing tasks where the network must learn

to measure precise intervals between events, it has been observed that adding a peep-

hole connection that passes from the internal state directly to the gates can improve its

performance.

When performing the backpropagation process, the error going through the memory

cells is less likely to explode or vanish across many time steps. In the original LSTM, the

memory cell is self-connected with a unit weight, and the update of the memory cell ct is

given by:

ct = ct−1 + it � g(ĉt) (2.10)

where g is a nonlinear function which squashes ĉt. Different from the equation defined in

equation 2.8, there is no forget gate between ct and ct−1. In this case, the error can flow

across time steps without vanishing or exploding, which is known as the constant error

carousel [33]. Although the forget gate appears to violate the motivation of the constant

error carousel, they have proven effective in most modern implementations, for instance,

automatic speech recognition [26].

One extension of LSTM is the bidirectional LSTM (BLSTM) [61], which is composed of

one forward LSTM and one backward LSTM. The forward one reads the input sequence

in the forward direction and the backward one reads the input sequence in a backward

order. The final outputs are generated by concatenating both outputs from these two

LSTMs. One advantage of BLSTM is that this process can provide temporal dependency

in two different directions. However, this model requires an endpoint in both the future

and in the past so that some online applications need to delay until the whole sequence

has been observed.
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2.4.2 Gated Recurrent Units

Another way to deal with the issue of vanishing and exploding gradients was proposed

by Kyunghyun and Benjio by the introduction of gated recurrent units (GRU) [9]. Its gate

control mechanism is a simplified version of LSTM: the forget gate and input gate are

combined into a single reset gate and the output gate is removed. Different from LSTM,

gated recurrent units modulate the information without using a memory cell. The dy-

namic of the hidden state is implemented by a linear interpolation between the previous

hidden state ht−1 and the candidate hidden state h̃t−1:

ht = zt � ht−1 + (1− zt)� h̃t (2.11)

where the update gate zt in the formula controls the information flow from the previous

hidden state and the candidate hidden state. � denotes the element-wise multiplication

operation. The zt is defined as a sigmoid function σ of the input xt and the previous

hidden state ht−1:

zt = σ(Wzxt + Uzht−1) (2.12)

where Wz and Uz are weight matrices. The activation of the candidate hidden state is

controlled by the reset gate rt:

h̃t = tanh(Wxt + U(rt � ht−1)) (2.13)

where tanh denotes the hyperbolic tangent function. W and U are weight matrices. When

rt is turned on, the information both from the input and the previous hidden state will

be combined. When it is turned off , the unit tends to focus on the input and ignore its

history. The reset gate rt is written as:

rt = σ(Wrxt + Urht−1) (2.14)

where Wr and Ur are weight matrices.The reset gate rt is computed similarly to the update

gate, which determines the importance of the historical memory of the candidate hidden

state.

Overall, GRU has fewer free parameters than LSTM, thus may require less data for

training. It also has the capability of overcoming the vanishing or exploding gradient

problem. It has been observed that, by fixing the model size, GRU outperforms LSTM in

terms of convergence speed and generalization in some tasks [9].
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2.4.3 Simple Recurrent Unit

LSTM runs slowly with the computation bottleneck at the gates. Simple recurrent unit

(SRU) [40] simplifies the architecture of LSTM and increases its running speed by drop-

ping the connections between its hidden states and gates so that gates computations can

be done in parallel. In this thesis, we use it as our basic building block. Below are the

updating formulas of SRU which runs with n histories.

[
r̂t, f̂t, ĉt

]
=wx ∗ xt + b (2.15)

rt = σ(r̂t) (2.16)

ft = σ(f̂t) (2.17)

ct = ft � ct−1 + (1− ft)� ĉt (2.18)

ht = rt � tanh(ct) + (1− rt)� xt (2.19)

where rt is the reset gate outputs; ft is the forget gate outputs; ct os the memory cell out-

puts; wx and wy are the weight matrices; b is the gate bias vector; ht is the hidden state

outputs; any quantity with a ˆ is the activation value of the quantity before an activation

function is applied; � is the element-wise multiplication operation; σ is the logistic sig-

moid function.

2.5 RNN-HMM ASR System

2.5.1 Training

As a typical dynamic system, RNN is a very natural way of acoustic modeling because

speech is essentially a dynamic process. Graves [25] have successfully applied BLSTM

into an ASR hybrid system, in which BLSTM was trained to approximate the posterior

probabilities of the context-dependent HMM states. In this sense, BLSTM can be viewed

as the "state classifier" optimized based on a negative log-likelihood:

− log P(S|X) = −
T

∑
t=1

st log yt (2.20)
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where the length of the input sequence X, the output sequence of BLSTM and the target

context-dependent HMM state sequence S are T; yt is referred to as the probability dis-

tributions over K possible context-dependent HMM state labels at time t; st is the target

context-dependent HMM state label at time t. It is usually generated by forcefully aligning

the training set with a GMM-HMM.

The parameters of BLSTM are updated using truncated BPTT [73]. In this algorithm,

the RNN is unfolded to a fixed number of time steps (e.g. 20) and the training mini-batch

usually contains a short segment. The error signal at the output layer can be written as:

− ∂logP(S|X)
∂ỹk

t
= yk

t − sk
t (2.21)

where ỹk
t and yk

t are the activation before the softmax and the prediction at the kth entry

of the output layer. sk
t is the kth entry of one-hot vector for the ground truth at time t. The

weight gradient attached to the parameters of the unfolded layers are then determined

based on this error signal separately and finally added together.

To avoid overfitting and improve convergence, it has been found advantageous to per-

form the gradient clipping [51], batch normalization [35] and adding Gaussian noise to

the network weights [26].

2.5.2 Decoding

The ultimate goal of the hybrid system is to generate the most likely words or phoneme

sequence. This is done by a decoder, where the probability of any sequence W given an

acoustic observation sequence X is maximized. It can be written as:

p(W, X) ≈ max
s

p(W, S)p(X|S) (2.22)

where S is the context-dependent HMM state sequence; p(W, S) is the language model

score. p(X|S) is the acoustic likelihood. The acoustic likelihood cannot be obtained di-

rectly from the output of a BLSTM. Given the feature frame xt at time t, the acoustic like-

lihood of the context-dependent HMM state st can be calculated from the BLSTM output
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with the Bayes rule:

p(xt|st) =
p(st|xt)p(xt)

p(st)
(2.23)

where p(st|xt) is the output of the LSTM; p(st) is the prior probability for the HMM state

st; p(xt) can be ignored. Although this conversion appears to have little effect on some

recognition tasks, it matters for some tasks where training labels are highly unbalanced.

2.5.3 Evaluation

We evaluate a hybrid LSTM RNN-HMM speech recognition system on the TIMIT corpus

[21].

The TIMIT speech corpus

The standard NIST training set which consists of 3,696 utterances from 462 speakers was

used to train the various DNN and RNN models. A separate development data set, con-

sisting 400 utterances from 50 speakers, was used for early stopping, and the standard

core test set, consisting of 192 utterances spoken by 24 speakers, was used for evaluation.

We followed the standard TIMIT protocol and collapsed the original 61 phonetic labels

in the corpus into the standard set of 39 phonemes for reporting the recognition perfor-

mance in terms of phoneme error rate (PER). Phoneme recognition was performed using

Viterbi decoding with a phone bigram language model estimated from the TIMIT training

transcriptions using the Kaldi toolkit.

Feature extraction and model training procedure

Acoustic hidden Markov models (HMM) based on Gaussian-mixture model (GMM), deep

neural network (DNN), LSTM-RNN, HO-LSTM RNN, and MH-LSTM RNN were built.

GMM models employed fMLLR-adapted 39-dimensional MFCC features, while all neural-

network based models used 40 mel-filterbank coefficients without their derivatives. In-

puts to DNN/RNNs were normalized to have zero mean and unit variance.
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Table 2.1. Summary of TIMIT phoneme recognition performance. F = input context in
number of frames; L = number of hidden layers; N = number of nodes per hidden layer.

Model F L N PER %

DNN 11 4 1024 21.8
LSTM 1 3 512 21.0
LSTM 5 3 512 20.6

The GMM-HMM was trained using the standard Kaldi TIMIT recipe and there were

1940 tied context-dependent states. It was then used to derive the state targets for sub-

sequent DNN/RNN training through forced alignment. All DNN/RNN models were

trained by our own codes developed using Theano. Inputs of DNN consisted of the cur-

rent frame together with its 5 left and 5 right contextual frames. The number of hidden

layers, the number of hidden nodes per layer for LSTM were varied from 2–4, 128–1024

respectively to find the best DNN/RNN architecture for the task. Both DNN and RNNs

were trained by optimizing the target cross entropies, using BP and BPTT respectively and

SGD.

Results

Table 2.1 shows the TIMIT phoneme recognition performance of the baseline DNN, LSTM

RNN. It can be seen that LSTM performs much better than DNN by 0.8% or 1.2% absolute

when inputs of 1 or 5 contextual frames are used. Since more contexts give better LSTM

performance, all ensuing LSTM experiments used in the reminder of the thesis employed

an input context of 5 frames.

2.6 Limitations of RNN for Acoustic Modeling

There are some limitations for RNN based acoustic models:

Limited length of history: Although in theory the length of contextual or historical

frames that can be learned in RNN is infinite. In practice, the range of context or history

that is effectively learned is quite limited. This is due to two reasons. Firstly, RNN may

suffer from the vanishing gradient problem [32]. Secondly, the memory units of LSTM
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have limited memory capacity [22], so it has a hard time accommodating very long term

temporal dependency.

Uncertainty handling: Situations that can lead to uncertainty in automatic speech

recognition include environmental noise, speaker, uncertainty in model parameters and

so forth. Uncertainty modeling is of great importance in this task—with uncertainty in-

formation we can obtain models that generalize well. However, the uncertainty or ran-

domness is hard to obtain for the standard RNN. This may be because the transition of the

standard RNN is entirely deterministic. The only source of randomness is from the output

probability distribution. This may be an inappropriate way to model the kind of variabil-

ity observed in spoken speech signal, characterized by strong and complex dependencies

among the acoustic events at different time.
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CHAPTER 3

ACOUSTIC MODELLING USING RECURRENT
POISSON PROCESS UNIT

3.1 Introduction

An ASR hybrid RNN-HMM system [25] consists of a recurrent neural network estimating

a posterior probabilities for HMM states of the context-dependent phone conditioned on

the acoustic input. Typically, in a sequence of training examples [(xt1 , yt1), (xt2 , yt2), ..., (xtm , ytm)]

with xti ∈ Rn, yti ∈ Rk, for 1 ≤ i ≤ m, the acoustic input xti are given as inputs to the net-

work, while the vectors yti denote the ground truth represented by a one-hot vector with

K context-dependent HMM states. It can be represented by the following two equations:

hti = gθ(xti , hti−1) (3.1)

ŷti = so f tmax(Wyhti + by) (3.2)

where hti ∈ Rr describes the hidden state. The first equation defines the state transition

mapping, in which the hidden state hti is a nonlinear function of the current data point xti

and the previous hidden state hti−1 and θ is the parameter set of g. Wy and by is the weight

matrix and the bias of the output layer respectively. The output mapping usually adopts

the softmax function to calculate the predictions ŷti . In this sense, the RNN can be viewed

as the "state classifier" optimized based on a negative log-likelihood or cross-entropy:

− log P(Y|X) = −
M

∑
i=1

K

∑
k=1

yti,k log ŷti,k (3.3)

where both the length of the input sequence X and the target context-dependent HMM

state sequence Y are M; the target context-dependent HMM state label sti is usually gen-

erated by forcefully aligning the training set with an inferior acoustic model such as a

GMM-HMM. The ultimate goal of the hybrid system is to generate the most likely words

or phoneme sequence. This is done by running a viterbi algorithm [18] within the HMM
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framework. It requires the acoustic likelihood P(X|Y), which can be calculated from the

RNN output with the Bayes rule:

p(xti |yti,k) =
p(yti,k|xti)p(xti)

p(yti,k)
(3.4)

where p(yti,k|xti) is the output of the RNN; p(yti,k) is the prior probability for the k-th

HMM state, which is usually estimated with the frequencies of the HMM states in the

training samples; p(xti) can be ignored since xti is observed.

One major limitation of hybrid acoustic modelling is that training targets are gener-

ated from a family of dynamic Bayesian network models, e.g. GMM-HMM and RNN-

HMM, in which the misalignment arises inevitably and the arbitrary discretisation of the

continuous acoustic signal should result in more of errors in the alignments. Nonethe-

less, the capability of handling such uncertainty only comes from the conditional output

probability density given the deterministic transition function of a standard RNN. To ef-

fectively deal with this issue, the acoustic RNN model must be capable of approximating

the arrival time of each training target and reconstructing/sampling the acoustic features

dynamically based on the estimated arrival time, which is the main focus of our model.

3.2 Problem Formulation

Let us consider a time interval [0, tN], where time is discretized into N frames of duration

10ms. Given a sequence of acoustic features X = {xt1 , xt2 , ..., xtN}, our goal is to approx-

imate a sequence of arrival times L̃ = {t̃1, t̃2, . . . , t̃N} so that a new sequence of acoustic

features X̃ = {x̃t̃1
, x̃t̃2

, ..., x̃t̃N
} can be estimated which should align better with the given

targets Y = {yt1 , yt2 , ..., ytN} in terms of resolution and precision, and a more robust acous-

tic model can be learned from these newly estimated training samples.

3.3 Temporal Point Process

A temporal point process is a random process whose realization consists of a sequence

of isolated events with their time-stamps. It is a mathematically simple model which can
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Figure 3.1. Multiple specifications for temporal point process

only produce binary labels that indicate whether an event occurs at that time. Due to their

generality, point processes have been widely used for modeling phenomena such as earth-

quakes [28], human activities [43], financial data [1], context-aware recommendations [14]

, etc. In speech processing, many different types of data can be represented as temporal

point processes, such as the presence of voice activity in audio signals and onset or offset

of various sound events.

A temporal point process can be equivalently represented as multiple collections of

random variables: arrival times, inter-arrival times and counting process, which is illus-

trated in Fig 3.1. Let t1, t2, . . . , tN be a sequence of arrival times of some event data and

∆t1, ∆t2, . . . , ∆tN be a sequence of inter-arrival times of some event data. We can compute

the inter-arrival times from the arrival times by taking the difference between subsequent

arrival times. Similarly, we can compute the arrival times by taking the cumulative sum

of all the arrival times. A temporal point process can also be specified as a counting pro-

cess, N(t), which records the number of events before time t. Clearly, there is a one-to-one

correspondence between any set of arrival times and any set of times at which the count-

ing process increases. Although these random variables take different forms in terms of

probability distribution, we can use these different random variables to describe the same

point process data. For example, the set of arrival times {t : ti > t} when the i-th event

has not yet occurred up to time t is equivalent to the set of times {t : N(t) < i} when
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the count of events is less than i. Therefore, specifying any one of these random variables

completely specifies the other two and determines the point process as a whole.

A conditional intensity function λ(t) is defined to be the expected infinitesimal rate at

which events are expected to occur around time t. It is an important way to characterize a

temporal point process and it is usually a stochastic model for the arrival time of the next

event given its history. Of all the variants of temporal point process, the homogeneous

Poisson process has the simplest form of the intensity function which is a constant and

assumed to be history-independent. This model is easy to implement and understand.

However, due to the history independence assumption, most real world data is not well

described as a homogeneous Poisson process. Therefore, to capture the dynamics of many

real world event data, several functional forms of the intensity function are designed. For

example, the Hawkes process is used to forecasting earthquakes in [50]. The intensity

function of this model is parameterised to be history-dependent as earthquakes are well

known to increase the risk of aftershocks.

It is important to be able to generate new arrival times from point process models be-

cause new arrivals can help us make inferences about the underlying events. Sampling

from a homogeneous Poisson process is straight-forward. Since the distributions of the

inter-arrival times are independent, the arrival time can be calculated by the sum of in-

dependent random samples generated according to the given exponential distribution.

However, it is not straight-forward to simulate a general point process, which is usually

performed via a thinning algorithm[49]. This algorithm follows a two-stage process. In

the first stage, a set of candidate arrivals is generated as a homogeneous Poisson process

with a rate being the upper bound of the intensity function of this point process. The next

stage involves thinning out these candidate arrivals by stochastically rejecting some ar-

rivals and accepting the rest. These stages require sampling from some random variables

and are therefore indifferentiable. In general, this method is computationally expensive,

because after generation of each sample, the intensity and its upper bound need to be

re-evaluated..

Parameter learning for temporal point process models is the process to find a reason-

able parameter set to fit a model to Event observations. Generally, it can be conducted

by any convex optimization methods, e.g. maximum likelihood estimation (MLE), as log-
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likelihood is concave. In this work, the annotation of the latent acoustic events in the

acoustic speech signal is not available, therefore it is not possible to cast supervised learn-

ing via MLE. To overcome this issue, we designed a Kullback–Leibler divergence-based

objective and our RPPU, as a fully differentiable model, can be trained with the standard

backpropagation through time (BPTT) [70] and stochaistic gradient descent (SGD) [57].

3.4 Poisson Point Process

A Poisson process is a special type of temporal point process defined in continuous time,

in which the inter-arrival times are drawn i.i.d from an exponential distribution. It has a

strong renewal property that the process can probabilistically restart at each arrival time,

independently of the past. This enables us to describe the probabilistic behavior of the

process via the intensity function λ(t), which is a non-negative function. Within a small

interval [t, t + dt], the probability of an arrival is λ(t)dt.

By considering a sequence of arrival times of acoustic landmarks L = {t1, t2, . . . , tN}
sampled from a Poisson process P over an interval [0, T], we have:

L ∼ P(g(λ(t)) (3.5)

∆ti = ti − ti−1 ∼ g(λ(t)) (3.6)

where g is the exponential density function; ∆ti is the inter-arrival time. We place the first

landmark at time 0 for simplicity, and thus t0 = 0. Given the observation of the previous

landmark at time ti−1, the probability that no landmark occurs up to time t since ti−1 is

P(ti > t) = e
∫ t

ti−1
−λ(t)dt

. Then, the probability that the first landmark lies in the interval

[ti, ti + dt] since ti−1 is computed as the product of P(ti > t) and λ(ti)dt, leading to the

corresponding density function:

fi(t) = λ(t)e
∫ t

ti−1
−λ(t)dt

(3.7)

which is actually the reverse relation of the hazard function for all intensity-based point

processes [56]. By the strong renewal property, the likelihood of the whole arrivals L over
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an interval [0, T] takes the form:

P(L|λ(t)) = P(tN+1 > T)×
N

∏
i=1

fi(ti)

= e
∫ T

0 −λ(t)dt
N

∏
n=1

λ(tn)

(3.8)

where P(tN+1 > T) is the probability that no landmark is observed in the interval (tN, T].

It may not be tractable as an integral over the intensity function does not always have

an analytic expression. But it is not the case for a homogeneous Poisson process with a

constant intensity.

3.5 Recurrent Poisson Process

A recurrent Poisson process (RPP), consisting of a collection of homogeneous Poisson

processes [38] for a series of time intervals, is a special type of temporal point process, in

which the intensity function is determined by an RNN hidden state encoding the history

of an acoustic signal. One may be tempted to learn the temporal point process simply us-

ing maximum likelihood estimation (MLE). Unfortunately, the annotation of the latent

acoustic events in the acoustic speech signal is not available; hence direct supervised

learning via MLE is not possible. Our RPP addresses this challenge by modeling these

latent acoustic events as latent variables, which are then used as part of the generative

process that is linked to the training targets.

3.5.1 Generate Timings for a Recurrent Poisson Process

Assume that we are given N intensities {λt1 , λt2 , . . . , λtN}, and a sequence of input features

{xt1−d , . . . , xt1 , xt2 , . . . , xtN} , in which d context frames are padded to the left. Suppose the

starting acoustic landmark is at time t1−d and it follows a homogeneous Poisson process

with intensity λt1 at the interval [t1−d, 2t1 − t1−d] which starts at time t1−d and is centered

at t1. We will try to obtain the time estimate t̃1 of the first acoustic landmark, and then

repeat the procedure to obtain the whole L̃ = {t̃1, t̃2, . . . , t̃N}. To be more specific, given

the (i− 1)-th acoustic landmark at the estimated time t̃i−1 and an interval [t̃i−1, 2ti − t̃i−1],

28



the probability density of the next landmark being in this interval can be written as:

f ∗i (t) =
fi(t)∫ 2ti−t̃i−1

t̃i−1
fi(t)dt

=
λti e

−λti (t−t̃i−1)

1− e−2λti (ti−t̃i−1)
. (3.9)

Then we can estimate the time for the i-th landmark as its expected value in following

closed- form solution:

t̃i =
∫ 2ti−t̃i−1

t̃i−1

t f ∗i (t)dt

=2ti − t̃i−1 +
1

λti

− 2(ti − t̃i−1)

1− e−2λti (ti−t̃i−1)

(3.10)

Generally, the aforementioned point process can be factored into N independent homo-

geneous Poisson processes. For the i-th sub-process with intensity λti , the arrival sub-

sequence Li is drawn:

Li ∼ Pi(g(λti)) . (3.11)

It has only one single arrival and Li = {ti}. Thus, for a sequence of observations L =

{L1, L2, . . . , LN}, its likelihood is the following joint probability density:

P(L|λt1 , λt2 , . . . , λtN) =
N

∏
n=1

P(Li|λt1) (3.12)

where

P(Li|λt1) = λti e
−λti (ti−ti−1) . (3.13)

3.5.2 Conditional Intensity Function for a Recurrent Poisson Process

In the neural spiking modelling [63], the intensity function of the neural spikes is usu-

ally conditioned on the external covariate. In a similar spirit, we determine our intensity

function using the hidden state h̃ti of an RNN, which encodes the temporal dependencies

among the past history of the acoustic signal X. To avoid the explosion of 1
λti

, we define

the inverse of the intensity function as:

1
λti

= cσ(φ(h̃ti)) + ε (3.14)
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such that the inverse of the intensity function is upper bounded by c and the intensity

function is upper bounded by 1
ε . This is important as it limits the search space during

optimization when φ(·) are neural networks, which transform the hidden states into a

scalar.

3.6 Recurrent Poisson Process Unit: Integrate Recurrent Pois-
son Process into RNN

The arrival time sequence of the acoustic landmarks generated from a recurrent Poisson

process is on the real line. However, we are only given the discretized input sequence.

The missing input vectors are reconstructed by linear interpolation as follows:

x̃t̃i
=

N

∑
n=1

xtn max(0, 1− |t̃i − n|) . (3.15)

This enables the loss gradients to reach both the inputs and the estimated arrival times

from the recurrent Poisson process.

In this paper, we use simple recurrent unit [40] to implement RNN. SRU simplifies the

architecture of LSTM and dramatically reduces the computational time by dropping the

connections between its hidden states and gates so that computation at the gates can be

done in parallel.

Below are the updating formulas of recurrent Poisson process unit.

[
r̂ti , f̂ti , ĉti

]
= Wx

[
xti , x̃t̃i

]
+ b (3.16)

rti = σ(r̂ti) (3.17)

fti = σ(f̂ti) (3.18)

cti = fti � cti−1 + (1− fti)� ĉti (3.19)

hti = rti � tanh(cti) + (1− rti)�Wh

[
xti , x̃t̃i

]
(3.20)

where rti are the reset gate outputs; fti are the forget gate outputs; cti are the memory cell

outputs; Wx and Wh are the weight matrices; b are the gate bias vectors; hti are the hidden
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state outputs; any quantity with a ‘hat’ (e.g. ĉti) is the activation value of the quantity

before an activation function is applied; � is the element-wise multiplication operation; σ

is the sigmoid function.

3.7 Learning

Our design of the loss function aims at striking a balance between the generation of arrival

times of the latent acoustic events for clean training data and encoding sufficient uncer-

tainty to capture the variability caused by the discretization errors and misalignments.

We use the standard Poisson process as the prior for the recurrent Poisson process

to restrict the complexity of the approximated recurrent Poisson process. We measure

the distance between the recurrent poisson process and the standard Poisson process by

Kullback–Leibler divergence in terms of the inter-arrival time distribution. The inter-

arrival time distribution for the i-th sub-process is defined as an exponential distribution

g(λti). Since all these distributions are independent, we can enjoy the additive property

of Kullback–Leibler divergence of these two processes:

N

∑
i=1

KL(gs(λ = 1)||g(λti)) =
N

∑
i=1

(λti − log(λti)− 1) (3.21)

where gs(λ = 1) is the inter-arrival time distribution for a stand Poisson process.

Although we assume the original arrival times of landmarks, {1, 2, . . . , N}, are noisy,

the negative likelihood of this “incorrec” time sequence can be a desirable regularizer to

avoid overfitting in noisy conditions.

As such, the total loss is the sum of the cross-entropy loss, negative log likelihood

of noisy arrival time and the KL divergence between the underlying recurrent Poisson

process and the standard process:

− log P(Y|X)− α log(P(L|λt1 , λt2 , . . . , λtN))

+ β
N

∑
i=1

KL(gs(λ = 1)||g(λti)))
(3.22)

Since the negative log likelihood terms and the KL terms has exactly the same form in
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term of optimization. The final objective can be written as:

− log P(Y|X) + γ
N

∑
i=1

(λti − log(λti)) (3.23)

where γ is the weight for the regularization term. We adopt the backpropagation through

time (BPTT) for joinly training both recurrent Poisson process and recurrent Poisson pro-

cess Unit.
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CHAPTER 4

EXPERIMENTAL EVALUATION

4.1 Data Setup: ChiME-2, WSJ0 and WSJ0&1

We evaluated the proposed RPPU on three ASR corpora: ChiME-2 [67], WSJ0 [20] and

WSJ0&1 [20, 11].

4.1.1 ChiME-2

CHiME-2 corpus is a medium-large vocabulary corpus, which was generated by convolv-

ing clean Wall Street Journal (WSJ0) utterances with binaural room impulse responses

(BRIRs) and real background noise at signal-to-noise ratios (SNRs) in the range [-6,9] dB.

The training set contains about 15 hours of speech with 7138 simulated noisy utterances.

The transcriptions are based on those of the WSJ0 training set. The development and test

sets contain 2460 and 1980 simulated noisy utterances, respectively. The WSJ0 text corpus,

consisting of 37M words from 1.6M sentences, is used to train a trigram language model

with a vocabulary size of 5k.

4.1.2 WSJ0

WSJ0 is a clean speech corpus recorded in a clean environment using close microphones.

The standard WSJ0 si-84 training set with 7138 clean utterances was used for acoustic

modeling. The evaluation was performed on eval92-5k which is a 5k-vocabulary non-

verbalized test set, and the si-dt-05 dataset was used as the development set. The 5k

trigram language model used for evaluation was trained from the WSJ0 text corpus.
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4.1.3 WSJ0&1

WSJ0&1 is a complete Wall Street Journal speech corpus, which involves speech data from

both WSJ0 and WSJ1. The training set WSJ0&1 si-284 with 36515 utterances contains ap-

proximately 80 hours of speech, 95% of which was used for training. The rest was used

as the development set. The evaluation of WSJ0&1 was performed on the dev93-20k and

eval93-20k test sets, both of which are 20k open-vocabulary non-verbalized test sets. The

evaluation was performed with a 20k trigram language model trained from the transcrip-

tion of WSJ0&1 si-284. We report the speech recognition performance in terms of word

error rate (WER).

4.2 Preprocessing and Training Procedure

Acoustic hidden Markov models (HMM) based on Gaussian-mixture model (GMM), LSTM,

SRU and quasi-RNN were built. GMM-HMM models employed fMLLR-adapted [19] 39-

dimensional MFCC features. All neural-network-based models used 40-dimensional Mel-

filterbank coefficients [6] without their derivatives. Inputs of all neural networks consisted

of the current frame together with its 4 right contextual frames. We performed per-speaker

mean and variance normalization for the input to all the neural network models.

GMM-HMM employed fMLLR-adapted 39-dimensional MFCC features and was trained

using the standard Kaldi recipe [52]. They were then used to derive the state targets

for subsequent RNN training through forced alignment for ChiME-2, WSJ0 and WSJ0&1.

Specifically, the state targets were obtained by aligning the training data with the DNN

acoustic model through the iterative procedure outlined in [12].

All RNNs were trained by optimizing the categorical cross entropy using BPTT and

SGD. Prior to optimization, all the weight matrices were initialized following a LeCun

Normal distribution introduced in [39]. We applied a dropout rate of 0.1 to the connec-

tions between recurrent layers. The learning rate for LSTM/SRU, Quasi-RNN and RPPU

models was initially set to 0.25, 0.2, and 0.07 respectively. We decayed the learning rate

until it went below 1× 10−6.
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Table 4.1. Model configuraions for all datasets and the training time for CHiME-2. L:
number of layers; N: number of hidden states per layer; P: number of model parameters;
T: Training time per epoch (hr).

Model L N P T

LSTM 3 2048 130M 0.71
SRU 12 2048 156M 0.32
Quasi-RNN 12 1024 117M 0.22
RPPU 12 1024 142M 0.37

4.3 Models

We adopted SRU as the building block to construct the proposed RPPU and compare our

proposed model with the following baselines: (i) The LSTM with three stacked layers;

(ii) SRU with 12 stacked layers; (iii) quasi-RNN with 12 stacked layers and the highway

connection [40].

The LSTM has only three stacked layers because we did not observe WER reduction

by stacking more layers. To ensure similar numbers of model parameters for different

models, we set the number of hidden states per layer to 2048 for both LSTM and SRU, and

1024 for both quasi-RNN and RPPU. The filter width of quasi-RNN was 3, which ensured

a similar number of parameters for the RPPU. Our RPPU had 2 context frames padded

to the left of the input and two previous hidden states padded to the left of the input of

each hidden RPPU layer. For simplicity, in the intensity function of RPPU, c was set to

100 and ε was set to 0.01 (these two hyperparameters can be tuned to further improve

performance).

4.4 Results and Analysis

4.4.1 Results on CHiME-2

Table 4.1 shows the model configurations of the baseline models and the new RPPU

model for all datasets. The training time per epoch for CHiME-2 is also provided. The

timing experiments used the Theano package and were performed on a machine running

the Ubuntu operating system with a single Intel Core i7-7700 CPU and a GTX 1080Ti GPU.
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Table 4.2. WER (%) on test set of CHiME-2.
Model WER

LSTM 26.1
SRU 26.2
Quasi-RNN 26.1
RPPU 24.4

Table 4.3. Detailed WER (%) on the CHiME-2 test set.
Model -6 Db -3 Db 0 Db 3 Db 6 Db 9 Db

LSTM 42.4 33.5 26.7 21.1 17.3 15.3
SRU 42.5 34.0 26.2 22.2 17.4 15.1
Quasi-RNN 42.1 32.8 27.8 20.8 17.5 15.6
RPPU 39.9 31.1 24.9 20.3 16.0 13.2

Each model took around 25 iterations, and their average running time is reported. We can

see that SRU is much faster than LSTM and our RPPU runs almost as fast as SRU while

having a similar number of parameters.

Table 4.2 shows the word recognition performance of the baseline models and the new

RPPU model for CHiME-2. Firstly, we can see that in CHiME-2, SRU performs slightly

worse than LSTM in WER, and the quasi-RNN achieves a slightly better performance

than SRU. Our proposed RPPU performs the best among all the candidates in terms of

WER, outperforming the baselines by about 1.7% absolute.

A two-tailed Matched Pairs Sentence-Segment Word Error (MAPSSWE) significance

test [23] was conducted with the null hypothesis that there is no performance difference

between the RPPU and the baselines using the NIST sc_stats tool. The test results find a

significant difference in performance between the RPPU and each baseline system at the

level of p < 0.001 (The details are shown in Table A.1 on Appendix A).

We also report the detailed WERs as a function of the SNR in CHiME-2 shown in Table

4.3. For all SNRs, the RPPU outperforms other models by a large margin. This suggests

that incorporating the recurrent Poisson process into RNN structures lends itself to the

model’s robustness.

To validate the effectiveness of the regularization term in RPPU for CHiME-2, we var-

ied its weight γ to find the best configuration, as can be seen in Figure 4.1, We obtained
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Figure 4.1. WER on Development set of CHiME-2 by varying the weight of the regular-
ization term

the best performance in the development set when the weight γ is around 0.08. We hence

set γ to 0.08 as our final configuration based on this observation. These results indicate

the effectiveness of our proposed objective function.

4.4.2 Analyze the Property of RPP

Here, we took the generated time points from the recurrent Poisson process (RPP) of the

5-th layer of RPPU to perform both qualitative and quantitative analyses.

The standard Poisson process is the prior of the RPP in RPPU; hence we used the dis-

tance between the estimated value and its mean to approximately measure RPP’s flexibil-

ity. To better understand how RPP works, we randomly took two utterances “423c02162”

and “423c02166” at 9DB and -3DB SNR respectively, from the development set and gen-

erated the associated arrival times from the RPP. We display the estimated time points

associated with acoustic events at two different SNRs in Figure 4.2. We can see that as the

noise level increases, the estimated time points go towards the mean of a standard Poisson

process. This suggests that RPPU can produce the time points based on the noise level:

less flexibility is allowed for RPP’s point generation when the data is too noisy.
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SNR, respectively.

Table 4.4. Similarity with the alignment generated from the clean development set of WSJ0

Alignment type Similarity(%)

Alignment from Dev of ChiME2 55.5
Estimated alignment using RPPU 64.7

To evaluate how these generated time points can be helpful in better aligning the

acoustic inputs with the acoustic HMM states, we conducted the analysis on the whole de-

velopment set of CHiME-2. The “ground-truth” alignment for CHiME-2 on the phoneme

level is obtained by force aligning the clean development set si-dt-05 in WSJ0 using the

fMLLR-based DNN acoustic model trained with clean WSJ0. The WER of the model for

the test set of WSJ0 is 2.6%, while the WER of our CHiME-2 DNN and our best RPPU

for the noisy test set of CHiME-2 is 29.2% and 24.4%, respectively. Hence we believe our

“ground truth” has much better alignment quality than the one obtained by force aligning

the CHiME-2 noisy development set using any of our CHiME-2 acoustic models.

We firstly obtained the frame-level alignment by force aligning the CHiME-2 noisy

development set using CHiME-2 DNN, which is the model we used to derive the training

38



labels of CHiME-2 RNNs. We then used the generated time points from RPP to obtain an

estimated phoneme-level alignment by replacing the integer time indices of the original

frame-level alignment with such time points and then transforming it to phoneme-level

alignment. We comparde it with both the original and the ground truth to see how RPPU

works. We define the similarity between two alignments by calculating the percentage of

their overlaps in time. The similarity with the "ground-truth" alignment for the original

and the estimated one using RPPU are shown in Table 4.4. We can see that the similarity of

estimated alignment achieves 9.2 % absolute gains. This demonstrates RPPU’s capability

in better aligning the acoustic inputs with the HMM state targets.

Figure 4.3. In the textgrids, the first tier represents the clean alignment generated from
the clean utterance of WSJ0, the second tier represents the noisy alignment generated from
the noisy utterance of CHiME-2, this last tier denotes the estimated alignment generated
by using RPPU. The blue line and the yellow line in the middle spectrogram represents
pitch and intensity, respectively.

Apart from the quantitative analysis, we show one example using Praat [7] to better

understand how RPPU works. This example is the partial alignment of the randomly

chosen utterance “050c01017” within the duration of the first 0.47 seconds. As shown in

Figure 4.3, the third tier, which corresponds to the estimated alignment, is aligned much

better with the clean alignment shown in the first tier than that of the noisy one in the

second tier. Interestingly, it seems that the first boundary in the textgrids can be deter-

mined by the intensity in the yellow line, and that the right-hand boundary of ’F’ can be

determined by the rising of the pitch. The estimated alignment fits better with the clean

alignments in terms of those two boundaries. This might suggest that RPPU is capable of
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Table 4.5. WER (%) on evaluation set eval92-5k of WSJ0.
Model WER

LSTM 2.8
SRU 2.8
Quasi-RNN 2.8
RPPU 2.5

Table 4.6. WER (%) on evaluation sets of WSJ0&1.
Model dev93-20k eval93-20k

LSTM 7.4 6.8
SRU 7.5 6.8
Quasi-RNN 7.4 7.0
RPPU 6.9 6.2

predicting the arrival of some acoustic events from some traits of the audio signal.

4.4.3 Results on WSJ0

To evaluate how RPPU behaves in a clean condition, we applied our method to WSJ0

which contains the clean utterances from which the CHiME-2 corpus was derived. We

used the same model configurations of CHiME-2 for all RNN models. From Table 4.5, we

can observe that all three RNN baseline systems using Mel-filterbank features achieve a

WER of 2.8%. Our RPPU achieves the best WER of 2.5%, yielding a 10.7% relative perfor-

mance gain over the other RNN baseline systems.

We conducted a two-tailed Matched Pairs Sentence-Segment Word Error (MAPSSWE)

significance test [23] between the RPPU and the baselines using the NIST sc_stats tool.

The test results find a significant difference in performance between the RPPU and each

baseline system at the level of p = 0.05 (The details are shown in Table A.2 on Appendix

A).

4.4.4 Results on WSJ0&1

We also conducted experiments on a larger corpus, WSJ0&1. The same model configura-

tions of CHiME-2 were applied on all RNN models in WSJ0&1. The recognition results are
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shown in Table 4.6. We can see that our best baseline LSTM achieves a WER of 7.4% and

6.8% and our RPPU gives the lowest WER of 6.9% and 6.2% on dev93-20k and eval93-20k

test sets, respectively. Overall, the RPPU achieves 6.8% and 9.1% relative WER reductions

over the best LSTM baseline system on the two test sets.

We conducted a two-tailed matched pairs sentence-segment word error (MAPSSWE)

significance test [23] between the RPPU and the baselines using the NIST sc_stats tool on

dev93-20k and eval93-20k test sets. The test showed that the RPPU is significantly better

than LSTM and SRU on dev93-20k test set, but the improvements for Quasi-RNN on this

test set are not significant; It also showed that the RPPU is significantly better than SRU

and Quasi-RNN on eval93-20k test set, but the improvements for LSTM on this test set are

not significant. (The details are shown in Table A.3 and Table A.4 on Appendix A).
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CHAPTER 5

CONCLUSION

This thesis is based on the hypothesis proposed in the field of speech generation and

neuroethology: human speech signals can be encoded in point patterns involving acoustic

events in speech signals and neural spikes in the brain. We attempt to solve the potential

problems triggered by the RNN-HMM acoustic modeling given this hypothesis. These

problems include discretization errors, unavailable event data, and misalignments issues.

It may be non-trivial to address these issues under the original framework of RNN-

HMM. For example, the framework is difficult to avoid discretization errors because it

discretizes the time series data at a fixed rate which is a standard way of handling input

data for a RNN-HMM acoustic model. To solve these problems, we divide this framework

into three steps:

• Allocate the training acoustic events localized in time at the HMM state level to

better align with the training targets.

• Reconstruct/sample a series of acoustic features from the interval features originally

sampled at a fixed frame rate from the allocated acoustic events.

• Follow the traditional ASR processing procedure using the newly reconstructed

acoustic features as additional inputs.

We model these steps separately with the aid of RNN and a proposed recurrent Poisson

process to create a more robust acoustic model (RPPU).

In this thesis, we presented a new acoustic model called recurrent Poisson process

unit (RPPU). We have demonstrated that our model can generate much better alignments

while performing the HMM state modeling. Our experiments on CHiME-2, WSJ0 and

WSJ0&1 indicated that our method has achieved much better results than several RNN

baselines in ASR.
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5.1 Contributions

The most significant contribution of this thesis is that we proposed a new acoustic mod-

eling method which is called recurrent Poisson process unit (RPPU). The key idea of our

approach is to consider the arrivals of the latent acoustic events as several temporal la-

tent variables. Each follows an associated sub-Poisson point process for a dynamic time

interval, whose intensity function is parameterized by a recurrent neural network. More

specifically, our work has made the following contributions:

• We proposed a novel recurrent Poisson process to jointly model the latent acoustic

events and acoustic HMM states by treating the former as latent variables, which

are then used as part of the generative process that is linked to the training targets:

acoustic HMM states.

• We have provided an analytical solution to ensure efficiently drawing samples from

a recurrent Poisson process (RPP). All of our RPPU components including the sam-

pler of RPP are differentiable, so our model can be trained with the standard back-

propagation through time (BPTT) [70] and stochaistic gradient descent (SGD) [57].

Despite the additional computation overhead caused by RPP, our RPPU runs almost

as fast as SRU while having a similar number of parameters.

• We conducted both qualitative and quantitative analysis in speech recognition tasks

and demonstrated that our model can generate much better alignments while per-

forming the HMM state modeling. In addition, our method has achieved much

better results than several baselines on many speech recognition datasets.

5.2 Future Works

5.2.1 More Experiments

Although the results we obtained in several ASR tasks are very promising, all of these

ASR data corpora contain reading speech and text from Wall Street Journal news, and

more experiments on spontaneous speech tasks should be conducted to confirm current
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findings. On the other hand, when we evaluated the effectiveness of RPPU in better align-

ing the acoustic inputs with the acoustic HMM states, we conducted the analysis on the

whole development set of CHiME-2. However, the “ground-truth” alignment for CHiME-

2 on the phoneme level was obtained by force aligning the clean development set si-dt-05

in WSJ0 using the fMLLR-based DNN acoustic model trained with clean WSJ0. As a re-

sult, we cannot ensure the alignment quality of the “ground-truth”, which reduced the

credibility of our subsequent associated qualitative and quantitative analysis. To solve

this problem, it is better to apply our model to other applications such as sound event

detection [45], in which ground truth of arrivals of sound events are available.

5.2.2 Model Improvement

Currently, we use a homogeneous Poisson process for each sub-point process of RPP. The

reason we do this is because it is easy to understand and implement. However, due to

history independence assumption, most real world data is not well described as a homo-

geneous Poisson process. Therefore, to capture the dynamics of many real world event

data, history-dependent point processes should be taken into account. One alternative

model for homogeneous Poisson process could be the Hawkes process [28]. The inten-

sity function of this model is parameterised to be history-dependent. To further enhance

the flexibility of our RPP and avoid making specific assumptions about the functional

forms of the generative processes, the recurrent marked temporal point process [13] is

also worth studying. On the other hand, it has been shown that bidirectional RNN mod-

els outperform undirectional ones [27]. It will be interesting to extend RPP by simply

replacing the RNN in RPP by a bidirectional RNN to approximate the intensity function

or by combining the representations from a forward-RNN and a backward-RNN at some

other components within RPP.
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APPENDIX A

SIGNIFICANT TESTS

The statistical significance test tool sc_stats from National Institute of Standards and Tech-

nology (NIST) is used to compared different systems. It is a two-tailed matched pairs

sentence-segment word error (MAPSSWE) significance test with the null hypothesis that

there is no performance difference between RPPU and other baseline systems.

Here, we apply the test to compare our proposed RPPU and other baseline RNNs on

CHiME-2, WSJ0 and WSJ0&1 . The abbreviations of various acoustic models are summa-

rized as follows:

• lstm.txt.trn: LSTM-HMM acoustic model

• sru.txt.trn: SRU-HMM acoustic model

• quasi.txt.trn: Quasi-RNN-HMM acoustic model

• rppu.txt.trn: RPPU-HMM acoustic model

The test results are shown in Table A.1, Table A.2 Table A.3 and Table A.4.
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Table A.1. Significant tests of the CHiME-2 experiments
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Table A.2. Significant tests of the WSJ0 experiments
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Table A.3. Significant tests of the WSJ0&1 dev93-20k task
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Table A.4. Significant tests of the WSJ0&1 eval93-20k task
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