Sherlock is Around: Detecting Network Failures
with Local Evidence Fusion

Qiang Md, Kebin Lit?2,  Xin Miao!,  Yunhao Lit?
1 Department of Computer Science and Engineering, Hong Kong University of Science and Technology
2 MOE Key Lab for Information System Security, School of Software,
Tsinghua National Lab for Information Science and Technology, Tsinghua University
{magqg, kebin, miao, lin@greenorbs.org

AbstracfNTraditional approaches for wireless sensor network
diagnosis are mainly sink-based. They actively collect global
evidences from sensor nodes to the sink so as to conduct central
ized analysis at the powerful back-end. On the one hand, long
distance proactive information retrieval incurs huge transmission
overhead; On the other hand, due to the coupling effect between
diagnosis component and the application itself, sink often fails
to obtain complete and precise evidences from the network,
especially for the problematic or critical parts. To avoid large
overhead in evidence collection process, self-diagnosis injects
fault inference modules into sensor nodes and let them make
local decisions. Diagnosis results from single nodes, however,
are generally inaccurate due to the narrow scope of system
performances. Besides, existing self-diagnosis methods usuall
lead to inconsistent results from different inference processes.
How to balance the workload among the sensor nodes in a
diagnosis task is a critical issue. In this work, we present a new
in-network diagnosis approach named Local-Diagnosis (LD2),
which conducts the diagnosis process in a local area. LD2 achieve
diagnosis decision through distributed evidence fusion operations. ) .
Each sensor node provides its own judgements and the evidences Fig. 1. A part of CitySee deployment

are fused within a local area based on the Dempster-Shafer . . . .
theory, resulting in the consensus diagnosis report. We implement network diagnosis programs. Third, the existence of a large

LD2 on TinyOS 2.1 and examine the performance on a 50 nodes Variety of specibc protocols for WSNs also exacerbates the
indoor testbed. debugging and diagnosis problems.

This work is motivated from our ongoing urban carbon
dioxide sensing project, CitySee. CitySee carries out several

Wireless sensor networks (WSNs) have been widely usaegplications such as carbon emissions monitoring and atmo-
in many critical application domains such as environmespheric concentrations of carbon dioxide estimating. Figure 1
monitoring, infrastructure protection, and habitat tracing [8§hows a part of the CitySee system with 494 sensor nodes
[23]. These systems often need to sustain for years, and ope(&litySee totally deploys 1196 nodes). During the operation
reliably in the context of real world communications. Sensqueriod, we observe frequent abnormal symptoms in the net-
nodes, however, are error-prone and subject to componesmirk such as high data loss, temporary disconnection of nodes
faults, performance degradations and even major system f#il-a certain region, and the like. To troubleshoot the root
ures in real world deployments [22], [14], [17], [20], [12],causes of these symptoms, we have applied different failure
[19]. Thus, accurate and real-time fault diagnosis plays deetection approaches. Existing approaches are generally sink-
very important role in WSN system operations. Compared based. They expect to retrieve detailed metrics from managed
conventional networks, it is more challenging to explore theodes such as remaining energy, MAC layer backoff, neighbor
root causes for WSNs when abnormal symptoms are observedble, routing table, etc. The network administrators then
First, due to the negative impact of noisy environments amdnduct comprehensive analysis at the back-end.
the ad-hoc feature of WSNSs, it is difbcult for developers In practice, however, it is difbcult to apply sink-based
to deeply delve into the in-network behaviors among thepproaches in large-scale WSNs. On the one hand, a large-
sensor nodes, especially for large-scale networks in whisbale WSN usually consists of hundreds or thousands of sensor
the forwarding infrastructure dynamically changes as topologypdes, such that most of the nodes have to forward their pack-
or sensor activity varies [10]. Second, the sensor nodes hais to the sink through many hops. Besides, most existing sink-
limited power and computing capability to carry out advancduhsed approaches require to collect more diagnosis data than
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application data. Therefore, proactive information retrievahare the responsibility of diagnosis. Second, the contribution

in a large-scale network generally incurs huge transmissiofieach node converges on the root node of the tree, so that
overhead. On the other hand, due to the unreliable naturewsf can easily ensure a local consensus to the bnal diagnosis
wireless communications, sink often fails to obtain completesult. Moreover, our diagnosis result is consistent, regardless
evidences from the network. In addition, it is more difbcult tof the fusion order.

retrieve expected information from a problematic region. The rest of this paper is organized as follows. Section II
Instead of back-end analysis, self-diagnosis approaches diimmarizes the related work. Section Il describes the system
jeCt fault inference modules into sensor nodes and let thqfﬂmework_ Section IV presents our design and provides addi-
make local decisions. These approaches, however, may suffghal techniques to deal with several practical issues on im-
from the narrow scope of single node. Some of the seljjlementation. Section V shows performance evaluation results

diagnosis methods like TinyD2 propose to let fault detectofom real indoor testbed experiments. Section VI concludes
travel among different sensors [11]. Such a method, howevgfe work.

does not well handle the diverse judgements from different
nodes so that it leads to inconsistent diagnosis reports at
different network regions. Since single node only has limited I
computation and energy resources, we have to balance the
workload among nodes in an in-network diagnosis process,
while guarantee that an integrated judgement can be achievedvlost existing approaches for sensor network diagnosis are
To address these issueS, we present a new in_netw§i{Rk'based, in which each sensor reportS its state information
diagnosis approach called Local-Diagnosis (LD2). Instead F the sink by periodically transmitting specibc control mes-
retrieving the system state information to sink, LD2 carriegages. Sympathy [17] and Emstar [4] rely heavily on an add-in
out the diagnosis process in a local area. We brst select sdiffetocol that generates a large amount of status information
sensor nodes in a local area where abnormal symptoms #@n individual sensor nodes to the sink, introducing high
observed. We then conduct a process of evidence fusionoigrhead to the resource constrained sensor networks. In
explore the most possible root causes. Eventually a diagnoiger to minimize the overhead, some researchers propose to
report is generated and sent to the sink. Compared wegtablish certain inference models by marking the data packets
existing approaches, LD2 achieves very high energy efbcien3] [14], and then parse the results at the sink to infer the
In CitySee, we observe that almost all the root causes cangwork status. Claivoyant [25] is a notable tool which focuses
partly reRected by the sensor nodes within a neighborhodl debugging sensor nodes at the source-level, and enables
while each single sensor node has very limited knowledge dgvelopers to wirelessly connect to remote sensors and execute
complete a comprehensive diagnosis process. Therefore, L#gbugging commands. Declarative TracePoints [2] allows the
actually not only avoids a large transmission overhead af@velopers to insert a group of action-associated checkpoints
information loss on the way to sink, but also achieves hig¥ runtime. Find [5] detects faculty nodes by ranking sensing
diagnosis accuracy. Moreover, it provides in-time diagnosﬁgadings collected from natural event detection while the
results since it utilizes the Prst-hand evidence without del&@twork performs its routine tasks. Agnostic Diagnosis [15]
in the collection process. discovers the silent failures by tracking the changes and
In order to deal with the narrow scope of single nodes ariomalies of correlation graphs between the system metrics.
inconsistent judgements from different nodes, we train a NailintRoute [21] visualizes the network topology by collecting
Bayesian Classiper (NBC) which encodes the probabilisfi€ighbor tables from sensor nodes. LiveNet [3] provides a set
correlation between a set of state attributes and root caug¥fstools and techniques for reconstructing complex dynamics
We insert this Bayesian classiber into the sensor nodesOfolive sensor networks. In [1], the authors use monitoring
compute the posterior probability distribution of possible rogtaths and cycles to localize single link and Shared Risk Link
causes according to their states. That is, each node translategf@Hp failures. Self-diagnosis [11] plants a Pnite state machine
local evidences (i.e., state attributes) into our communicatiBio each sensor node, enabling them to accordingly change
model which is based on Dempster-Shafer theory (D-S theorﬂf).e diagnosis state. Nevertheless, it proves difbcult to achieve
Using D-S theory1 we design a novel strategy to fuse t@NsSensus between the nodes as each node can Change the
judgements from all the sensor nodes within a neighborho8tite whenever it receives the diagnosis requests.
in a Rexible and load-balanced manner. Once a node ha®ata fusion techniques are also related to this work. [7]
detected some abnormal symptoms, it constructs a tree iowdlines the ideas of D-S theory and presents the basic D-
local area to strictly depict the fusion order, so as to ensugefusion equation. It also mentions that D-S theory becomes
diagnosis coverage and make fusion process as a long stuimgvailable when the evidences are signibcantly conRicting
of sequential operations. The advantages of this serial mannéh each other. [18], [24], [9] discuss how to change the
are two-fold. First, instead of collecting all the information orrombination rules to eliminate the impact of confiicting evi-
one certain node, we divide the work of evidence fusion indences, while [6], [16] claim that a better way is to modify
many steps, thus each node can summarize the evidencethefevidences, e.g., addingbasic conbdenc® describe the
its child nodes. That is, we let all the nodes in a local aréaportance for each evidence.
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Fig. 2. The system framework of LD2
[1l. SYSTEM FRAMEWORK within this diagnosis area is involved in this tree. Actually the

_ . ) i diagnosis process is divided into several operations of evidence
In this section, we introduce the general idea of oyfsion. Following this fusion tree, the diagnosis process is
approach and show an overview of the system frameworl, 1y executed by the intermediate nodes. The evidence fusion
As illustrated in Fig. 2, our main idea is to conduct the,oqyle is based on D-S theory which is also known as the
diagnosis process in a local area where abnormal symptofsqry of belief functions. D-S theory is a generalization of the
are observed. Unlike the traditional sink-based approach@gyesian theory of subjective probability. By combining the
in-network diagnosis has following challenges. First, the dh‘nique characters of WSNs, we design an improved approach

agnosis process is in a distributed manner, which means, 3Jl assigningbasic conbdence the evidences according to
nodes in this neighborhood are required to be involved infRqir different signibcances for the fusion system.
the diagnosis task. To make the nodes be able to cooperate

with each other, a feasible communication model for evidence IV. MAIN DESIGN

delivery among the nodes must be well designed. The mosip, this design, we consider both diagnosis efpciency and
naive design is to select a cluster head which collects @lhgnosis accuracy. On the one hand, in order to avoid long
the state attributes from local nodes. Then some light-weigijstance evidence retrieval which leads to large communication
diagnosis algorittms can be leveraged to Pnd out the regferhead, we claim to carry out the diagnosis process locally
causes. Nevertheless, this way is proved unfeasible as we ggfinot at the back-end. On the other hand, to improve our
hardly bnd such a diagnosis algorithm that it can be we{jagnosis accuracy, we need to take judgements from all nodes
planted in a resource-limited sensor node as well as perforghin a local area into consideration, as one single node only
good accuracy. Second, as mentioned above, to avoid puttifg; |imited scope and computation ability. To make the nodes
all the workload of diagnosis on a certain sensor, the diagnog%perate with each other to complete the diagnosis work, a
process should be dividable so that we are able to let eagdyig| of interfaces and protocols need to be designed like in-
node join in the diagnosis work but not just deliver their localode data processing, in-network communication model. In

information to others. Third, for one sensor, its original locghe following subsections, we show the design details of LD2.
information only includes the state attributes such as energy,

MAC layer backoff, neighbor table, routing table, etc. TherA. Overview
must be some algorithms for the nodes to rebne those rougisink-based approaches retrieve state information from the
data, so as to generate some kinds of data for the fusion waiktwork so as to conduct centralized analysis. They believe
The data-Bow of LD2 is illustrated in Fig. 2. As we carthat a big picture of network is greatly helpful for network
see, the basic module applies a Naive Bayesian Model whigiagnosis, as many evidences can be leveraged to validate
encodes the probabilistic correlation between a set of staite diagnosis result. In CitySee, however, we observe that
attributes and root causes. After the transition, we get basienost all the root causes can be partly reRected by the sensor
probability assignment on the root causes. The module médes within a neighborhood. For example, if a sensor node
diagnosis trigger determines whether some abnormal synias crashed, its neighbors must realize that it stops sending
toms exist. If so, it needs to start a new diagnosis procesgacon messages for neighbor discovering. When a route loop
For example, if some local state values experience abnormaturs, by checking the network layer sequence number (e.g.,
changes or some special events occur like a neighbor n@@iEP sequence number), the nodes in the loop can realize that
has been removed from the neighbor for a long time, t®me packets are repeatedly forwarded. Locally diagnosing
trigger module motivates a new diagnosis process to chele network achieves real-time diagnosis, avoiding information
that whether this neighbor has crashed or not. lost on the collection path to the sink. At the same time,
At the very beginning of a diagnosis process, a fusiocompared to one node, LD2 integrates more evidences to
tree rooted by this sensor node is established. Each naddidate the result and thus achieves higher accuracy.
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Considering the resource limitation of sensor nodes, fault
detection within one single node should be achieved in energy
efbcient way and many existing models can be applied.
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For example, we can leverage simple rule-based models t % J A B.) i lled conRict fact
make decision based on the local evidences. Light-weig &/i_ .a‘h * B=p Ml dj)m2(Nk)t Izlcatﬁ conisic bactor
probabilistic classibers like the Naive Bayesian Classiber can Wo evidencesm, and m,. NNotably, here can be two
also be applied. We use a binary variaBeto denote each evidencean; and my which are totally conf3icting such that

type of root cause an@ (R) andP (AR) are the probabilities Kiz = 1 therefore mass functions are not alwlay.s comblnable.
that this failure occurs or not. Then in a diagnosis proces hatis more, even if they are not totally conRicting but highly
?’nrsicting, that iski2 # 1, the combination result always

sensor node is able to calculate the posterior probability © . .
R given its local evidences, according to the Naive Bayesi es agam_st_the practical sense. Many works are proposed to
model: address this issue. In general, they can be classibed into two
types. One is to modify the combination rules, while the other
I one is to improve the evidence models.
P(RIF1,F2,..F0) = s P(R) L P(FiIR) The methods to modify the combination rules discuss two
cases when the evidences are reliable and unreliable respec-

Where P(Fy,F,,...F,) is a scaling factor which only tjvely. Nevertheless, they both mainly consider how to assign
depends on the evidencé§,,Fs,....,F,). (F1,F2,....Fs)  the conRicting evidence, like how to decide the ratio between
denotes the metrics of current sensor node as well as its neigfe event possibilities when conRict happens. In [18], the
bors. During the training stage, we should estimate the valggthors propose that on the basis of reliable evidences, the
of P(R), P(AR) andP(F;|R). These parameter values cafnain reason of confict is the incompleteness in the frame
be learned from the historical data. The storage cost of Naiye discernment, i.e., some unknown event possibilities exist.
Bayesian classiper igl +2nr) parameters for each failure[24], [9] all believe that not all the evidences are reliable.
type wheren denotes the number of metrics and each metrighey propose that the conRicting part between the evidences
hasr discrete values (Considering the computation capabilighould be discarded or reassigned to the other possibilities.
of sensor nOdes, we discretize the continuous metrics in tlnlﬁ practice’ when there are a |arge amount of evidences
work to simplify the probability computation). need to join in the fusion task, we hope that the evidences
can be grouped by some metrics such that we can conduct
the fusion task regardless of the fusion order to reduce the

How to make multiple nodes within a local area cooperat®mputation work. Unfortunately, above improved methods all
with each other to detect network failures is non-trivial. Thiil to support associative law. This work fully combines the
main challenges are three-fold. First, communication abqgkﬁique characters of WSNs, and designs following improved
evidence transferring must use channel itself, which meams.S theory for LD2.

we have no out-of-band channel for diagnosis. If we incur Suppose the frame of discernment in our evidence model is
a large amount of transmission overhead during the evidenge = {Ro,R1,...R,}. W consists of different root causes
fusion, new network failures may happen, which is also knovx{rRlyRQ, ..R,,} in the network. Besides, it also has a ba-
as Heisenbug. Second, complicated fusion algorithms are Bpt event Ono problem®,, which indicates that no exact
applicable for the system as a sensor node is resource limitgignosis result is produced. We let each ndde only

For the same reason, the algorithm should be dividable to avgiéherates possibility valua;(R;) for each single root cause

putting much data at one node. Third, the algorithm must eR; according to its own local (%formation_ That is,;(U) = 0
sure a local consensus to the Pnal diagnosis report. Moreoygf.any U ! 2V and|U| > 1. O j# m;(R;)=1.

to achieve real-time diagnosis, the period of diagnosis process
must be short. DebPnition 1 The %iLstance betweem; andm, is:

1) Improved Dempster-Shafer Theoryd-S theory is a
generalization of the Bayesian theory of subjective probability.
It is based on two ideas: the idea of obtaining degrees of belief
for one question from subjective probabilities for a related WhereM; = [m;(Ro), m;(R41),..m;(R,)]T, i =1,2, and
question, and DempsterOs rule for combining such degreewefalso haved % d(m;, my) % 1:

C. Evidence Fusion

dimy,my) = 1(M1$ M2)T(M1$ M)

belief when they are based on independent items of evidence. & o4
Supposen; andm, are two basic probability assignments d(mq, m,) = % o j#n(ml(Rj) $ my(R;))2
(i.e., mass function) over the frame of discernmuvit In- & o4
tuitively, m;(U) describes the extent to which the evidence = % ot j#n(m%(Rj) + m3(R;) $ 2m;(R;)m2(R;))
supportsU, whereU ! 2 i = 1,2. The fusion formula by & o

D-S theory is: % 3 Uo#j-#n(m%(Rj)'F m3(R;))
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. . . Similarly, we can })rove that:
To avoid huge computation cost, sometimes we can also % . . .
my (Ci)my (D )mg (B )

randomly sample some evidences to compostaadard set m&. . (X;)= YL Pie=x,
S, hence every evidenam; compyjes the total similar degree 1(23)R 7 ciipir e st M1 (CM (DOms (Bo)
to S as itsbasic conbdencé ; = 0 m;,s;).
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After normalization, we get the relative importance rof
to the evidence which has the greatdsisic conbdence 2) Fusion Algorithm: In this part we present our specibc

#i = "l maxy j4 v " j. The normalization could be omitted , gorithms for evidence fusion. First we introduce the fusion
when the fusion task is divided into small ones and a globﬁl e. Every diagnosis process is rooted by a node, which
maximum value is unknown, i.e#; = ",. Then we transfer i '

the basic probabilitv assianments by multiolving thasi detects abnormal network symptoms such as node crash, trafbc
p ty '9 S Dby multiplying thasic contention, route loop and so on. It triggers a diagnosis model

conbdencemaking them of equal importance in new fu3|or‘1jls well as determines the diagnosis area, then broadcasts

system: diagnosis request beacons (DREQ) to establish the fusion tree.
m&R;) = #:m;(R;) &l %i %n. Basically we need to determine the diagnosis area for each
m&Ro) = #:m;(Ro) + (1 $ #,) symptom. For example, to bPnd out whether a node has crashed

or not can ask for one-hop neighborsO evidences, while to bnd

Notably, if there are only two evidences involved in th@ut whether a route loop exists or not should visit all the
fusion task. Becauss(m; m;) = s(m;,m;), they have nodes transmitting the relevant packets. All the information
the samebasic conbdenceven if one of them provides must be involved in DREQ for the nodes to know about the
inaccurate evidence. To address this issue, we need to séetails of diagnosis task. To the other nodes, after receiving
thresholdF, such that more thaifr; evidences are allowed DREQ, they are involved in the fusion tree if they locate in the
to utilize DePnition 3 to conduct evidence fusion. In oudiagnosis area. Once they join in the fusion tree, they should
implementation, we sef; equals 4. keep broadcasting DREQ to inform other related nodes. In

In this new fusion system, foR; (i=1,2... n), we reduce the process of constructing fusion tree, each node records its
the impact of those evidences with less importance. That is,aarent node and child nodes for following evidence collection.
conbrm whetheR; happens or not mainly relies on the other Notably, in the process of establishing fusion tree, the root
evidences. On the contrary, f&®, we increase the impactalso needs to sample standard seffor following evidence
of those evidences with less importance, so as to averdgeion. As mentioned above, utilizirggandard setan reduce
the conbdence to the other root causes. After transferring the computation cost. Besides, in our fusion system, it greatly
basic probability assignments, all the evidences are of equatluces the transmission overhead as we have no need to
importance, then we can utilize D-S theory to conduct evgollect all the evidences to assign a globalsic conbdence
dence fusion. Our improved D-S theory is designed for LD2hsLD2, we make thestandard sefconsist of the evidences
evidence model. We choose not to change the combinatisem the root node and its direct child nodes. Every DREQ
rules but rebne the evidences. It also satisbes that the fugd@gket containstandard sesuch that each node in the fusion
result keeps the same even if we change the fusion order, iteeg is able to calculate its owrasic conbdenceespectively.
supports associative law. It is very important for our design, asThe establishment of fusion tree pnishes until no DREQ
we canOt ensure that the fusion tree has the same architedsut@nsmitted. What follows is the evidence fusion process.
all the time (details in subsectidrusion Algorithn). First all the leaf nodes send out a leaf-query beacon (LQUE)

to make sure that it indeed has no child node in the fusion tree.
Theorem 1 mf,,4(X:) = mM§pq (X2). Actually LQUE is used to make up the lost DREQ. If there is



Algorithm 1 Fusion Tree Establishment Algorithm Algorithm 2 Evidence Fusion Algorithm

1: Denote the node ID aisl. 1: if Schitgren 1S €empty (leaf nodejhen
2: Initiate a null valueparentID to record the parent ID. 2:  Broadcast leaf-query beacon (LQUE) to ensure that it
3: Initiate an empty seS.j ;4 to record the child nodes. is a leaf node.
4: if Trigger component detects abnormal symptdhen 3: if No reply to LQUEthen
5. Trigger a local-diagnosis process. 4: Transmit local evidence (DEVI) to its parent.
6: Determine diagnosis area. 5. else
7:  Sample thestandard sefor the fusion system. 6: Update the child se$.1;iqren-
8: Broadcast request beacon (DREQ). 7. endif
9: end if 8: else
10: if Receive DREQhen 9:  Maintain an evidence se®.,;4ence t0 record the re-
11:  if Already in the treghen ceived evidences from the child nodes.
12: Check the parent bled of this DREQ, denotechas 10: Add local evidence int®.,;qence-
13: if p=id then 11:  while Receive DEVIdo
14: Add the source node of this DREQ in®v,iigren.  12: Add this DEVI into S.,idence-
15: end if 13:  end while
16: else ifIn the diagnosis arethen 14: for eachChild; in S.yiidren dO
17: Assign the source ID of this DREQ toarentID . 15: if Scvidence dO€s not contain the DEVI frorehild ;
18: Update the parent bled value parentID . then
19: Broadcast DREQ. 16: Transmit child-query beacon (CQUE) @hild ;.
20. end if 17 end if
21: end if 18: end for
19: if Has Collected all the evidences from child nodes
then
no reply to the LQUE, it transfers its local evidence (DEVI)0: Evidence Fusion.
to its parent node in the tree. Otherwise it updates its chill: TransmitSe,igence to parent node.

set and waits for the evidences from the child nodes. To ti?e: end if
intermediate nodes, they must collect all the evidences frop: end if
its child nodes and Pnally sends the fusion result to its parett if Receive LQUEthen
node. To avoid evidence lost, each intermediate node is able2fe  Check the source ID of this LQUE, denoted @as
OremindO its child nodes by broadcasting child-query beacéfis if p= parentlD then
(CQUE), hence the lost evidences can be retransmitted.  27: Reply to this LQUE.
As we can see, the structure of fusion tree has mus: end if
dynamics as we connect the nodes by broadcasting DREZ; end if
What is more, the fusion order strictly follows the fusion trego: if Receive CQUEhen
from leaf nodes to the root node. Fortunately, Theorem 31: Transmit local DEVI.
1 it proves that the fusion result of LD2 keeps consisteng2: end if
regardless of the fusion order. This character helps our fusion
system greatly reduce the maintainance overhead of fusion
tree, as well as enable to ignore the impact of netwoiBuring the tests, we manually inject three types of failures:
topology. node crash, trafbc contention and the route loop. For each
failure, we conduct 60 cases. We also change the power level
to discuss the performance of two approaches in different
We evaluate LD2 through a real indoor testbed consisting diagnosis densities (i.e., the number of neighbor nodes).
50 TelosB motes. Two metrics are mainly used for evaluating __
LD28s accuracy: false negative rate (i.e., miss detection rée)lime Cost
and false positive rate (i.e., false alarm rate). False negativerigure 3(a) illustrates the network topology of our testbed
rate is debPned as the proportion of faulty cases which arensisting of 50 motes. First we discuss the time cost during
detected as normal, while false positive rate is debned as the diagnosis process. Generally we divide the cost into two
proportion of normal cases which are detected as faulty. parts: fusion tree establishment and evidence fusion process.
Basically we implement a CTP application in the networkdAs mentioned in section 1V, the fusion tree is related to the
for the analysis of impact with different diagnosis approachegiagnosis area which is determined by the symptoms. In the
In this work, we implement two modules for diagnosing thexperiments, we make above three network failures have the
network: LD2 and TinyD2. TinyD2 presents the concept afame diagnosis area. Node 25 (i.e., the red mote) has 16
self-diagnosis which encourages each sensor node to runeghbors (i.e., the green motes). When node 25 crashes or
embedded bnite state machine to bnd out the root causafbc contention occurs at node 25, the diagnosis area involves

V. EVALUATION
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making their diagnosis area the same: node 25 (red mote) is crashed; trgflgc 5. CDF of evidence fusion®s timeFig. 6. CDF of total time cost
contention occurs at node 25; a route loop (blue arrows) exists among nedgt
250s neighbors (green motes). Besides, we let node 13 (i.e., the blue mote in
(b),(c),(d),(e)) trigger the diagnosis process. The tree structure of (b),(c),(d)
and (e) respectively occurs 36%,31%,18% and 9% in all the cases. . .

B. Diagnosis Accuracy

Figures 7' 12 illustrate the diagnosis results of detect-

ing node crash, trafbc contention and route loop with LD2

all its neighbors. Besides, we let a routing loop exist among 5’1?1 Tir;))I/DZh retspectivelt)r/{ Acggg/ding]l to Fir?.dl ng enat&letsh
these neighbors (i.e., the blue arrows). That is, their diagno% roublesnoot maore than o OF crashec nodes, an €

area is the neighbors of node 25. We also make node 13 se negative rate decreases when the number of neighbors
the root node of fusion tree increases. It is well understood that once a node is crashed, its

neighbor must bnd that it is removed from the neighbor tables

Figures 3(b) 3(c) 3(d) and 3(e) describe four of mogor a long period. Therefore, the more neighbors, the more
frequent structures when we are establishing the fusion treeterminate diagnosis. As showed in Fig. 10, the false positive
Figure 4 shows the time cost of sampling evidences and estedite of LD2 is around 12% over varying diagnosis densities.
lishing fusion tree. As mentioned in section IV, the process &or detecting route loop, each node produces its evidence by
sampling evidences is used to assign a ld@ic conbdence checking the CTP sequence number. As illustrated in Fig. 9
to each node in evidence fusion, while establishing fusion tread 12, LD2 indeed maintains low false negative rate and false
mainly includes broadcasting and receiving beacons. As esitive rate, i.e., 5% and 6%, which means that LD2 can
can see, the time cost is stable for all the tree structures, iguccessfully explore about 95% of route loops. By contrast,
about 19ms in sampling evidences and 39ms in establishifigyD2 performs unstable to detect crashed nodes and route
fusion tree. Figure 5 shows the CDF of the time cost dbops under different diagnosis densities. When the density
evidence fusion in three diagnosis process. In 80% of casesreases, TinyD2 often fails to achieve a consensus among
for detecting node crash, LD2 Pnishes evidence fusion tine nodes, such that hardly determines a root cause.
a 16-node area within 95ms. For trafbc contention, it costsAccording to Fig. 8, LD2 correctly explores about 86% of
more than 133ms for 60% of cases as the DEVI packetfbc contention, while TinyD2 is able to Pnd out 78% of
contains 3 possible root causes (i.e., ingress overf3ow, egreasses when the number of neighbors is 16. Trafbc contention
overBow, bad link) thus more combination work is neededccurs due to some reasons, such as egress overf3ow, ingress
Figure 6 depicts the CDF of the total time cost for diagnosimaver3ow and bad link. It proves difpcult for TinyD2 to use
node crash, trafbc contention and route loop respectively. Waite state machine to achieve an accept state. In Fig. 11, as
observe similar trends in two CDF Pgures as the processved can see, TinyD20s false positive rate increases to 22% when
evidence fusion costs most of time in LD2. the number of neighbors is 16, while LD maintains around
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Fig. 13. Packet collection in LD2 Fig. 14. Packet collection in TinyD2
16% under different diagnosis densities. routing, can occur due to frequent large-amount collection.

TinyD2 reduces the transmission overhead by broadcasting
fault detectorin the air. In practice, however, it lacks of a
Finally we discuss the coupling effect between the appkpecibc order to control the diagnosis and ensure a consensus
cation and network diagnosis. We observe that most of sinlesult. What is more, once it canOt achieve the accept state,
based approaches needs to retrieve more network informatinach extra transmissions are required. Figure 13 and 14 depict
than that generated by the application. It proves unreasonathle packet collection of those nodes in the diagnosis area,
because some network failures such as trafbc contention, lbad each dot indicates an application packet collected by the

C. Coupling Effect with Application
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sink. As we can see, when we utilize TinyD2 to conduct thef9
diagnosis process in the local area around timeline 30000ms,
40000ms and 50000ms, most application packets are lost. To
Pnd out the root cause, we also sniffer the beacons in this anes
As illustrated by Fig. 15, in the diagnosis process, every node
in TinyD2 generates about 28 beacons within 200ms, Whiglh
probably causes a local trafbc contention. By contrast, the r olﬂ
node and intermediate nodes in LD2 only cause about 15 and
10 beacons in 200ms. (12]

VI. CONCLUSION [13]

Long distance proactive information retrieval in traditional
sink-based approaches to diagnosing WSNs often incursila
large amount of transmission overhead. What is more, sink-
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