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AbstractÑTraditional approaches for wireless sensor network
diagnosis are mainly sink-based. They actively collect global
evidences from sensor nodes to the sink so as to conduct central-
ized analysis at the powerful back-end. On the one hand, long
distance proactive information retrieval incurs huge transmission
overhead; On the other hand, due to the coupling effect between
diagnosis component and the application itself, sink often fails
to obtain complete and precise evidences from the network,
especially for the problematic or critical parts. To avoid large
overhead in evidence collection process, self-diagnosis injects
fault inference modules into sensor nodes and let them make
local decisions. Diagnosis results from single nodes, however,
are generally inaccurate due to the narrow scope of system
performances. Besides, existing self-diagnosis methods usually
lead to inconsistent results from different inference processes.
How to balance the workload among the sensor nodes in a
diagnosis task is a critical issue. In this work, we present a new
in-network diagnosis approach named Local-Diagnosis (LD2),
which conducts the diagnosis process in a local area. LD2 achieves
diagnosis decision through distributed evidence fusion operations.
Each sensor node provides its own judgements and the evidences
are fused within a local area based on the Dempster-Shafer
theory, resulting in the consensus diagnosis report. We implement
LD2 on TinyOS 2.1 and examine the performance on a 50 nodes
indoor testbed.

I. I NTRODUCTION

Wireless sensor networks (WSNs) have been widely used
in many critical application domains such as environment
monitoring, infrastructure protection, and habitat tracing [8],
[23]. These systems often need to sustain for years, and operate
reliably in the context of real world communications. Sensor
nodes, however, are error-prone and subject to component
faults, performance degradations and even major system fail-
ures in real world deployments [22], [14], [17], [20], [12],
[19]. Thus, accurate and real-time fault diagnosis plays a
very important role in WSN system operations. Compared to
conventional networks, it is more challenging to explore the
root causes for WSNs when abnormal symptoms are observed.
First, due to the negative impact of noisy environments and
the ad-hoc feature of WSNs, it is difÞcult for developers
to deeply delve into the in-network behaviors among the
sensor nodes, especially for large-scale networks in which
the forwarding infrastructure dynamically changes as topology
or sensor activity varies [10]. Second, the sensor nodes have
limited power and computing capability to carry out advanced

Fig. 1. A part of CitySee deployment

network diagnosis programs. Third, the existence of a large
variety of speciÞc protocols for WSNs also exacerbates the
debugging and diagnosis problems.

This work is motivated from our ongoing urban carbon
dioxide sensing project, CitySee. CitySee carries out several
applications such as carbon emissions monitoring and atmo-
spheric concentrations of carbon dioxide estimating. Figure 1
shows a part of the CitySee system with 494 sensor nodes
(CitySee totally deploys 1196 nodes). During the operation
period, we observe frequent abnormal symptoms in the net-
work such as high data loss, temporary disconnection of nodes
in a certain region, and the like. To troubleshoot the root
causes of these symptoms, we have applied different failure
detection approaches. Existing approaches are generally sink-
based. They expect to retrieve detailed metrics from managed
nodes such as remaining energy, MAC layer backoff, neighbor
table, routing table, etc. The network administrators then
conduct comprehensive analysis at the back-end.

In practice, however, it is difÞcult to apply sink-based
approaches in large-scale WSNs. On the one hand, a large-
scale WSN usually consists of hundreds or thousands of sensor
nodes, such that most of the nodes have to forward their pack-
ets to the sink through many hops. Besides, most existing sink-
based approaches require to collect more diagnosis data than



application data. Therefore, proactive information retrieval
in a large-scale network generally incurs huge transmission
overhead. On the other hand, due to the unreliable nature of
wireless communications, sink often fails to obtain complete
evidences from the network. In addition, it is more difÞcult to
retrieve expected information from a problematic region.

Instead of back-end analysis, self-diagnosis approaches in-
ject fault inference modules into sensor nodes and let them
make local decisions. These approaches, however, may suffer
from the narrow scope of single node. Some of the self-
diagnosis methods like TinyD2 propose to let fault detectors
travel among different sensors [11]. Such a method, however,
does not well handle the diverse judgements from different
nodes so that it leads to inconsistent diagnosis reports at
different network regions. Since single node only has limited
computation and energy resources, we have to balance the
workload among nodes in an in-network diagnosis process,
while guarantee that an integrated judgement can be achieved.

To address these issues, we present a new in-network
diagnosis approach called Local-Diagnosis (LD2). Instead of
retrieving the system state information to sink, LD2 carries
out the diagnosis process in a local area. We Þrst select some
sensor nodes in a local area where abnormal symptoms are
observed. We then conduct a process of evidence fusion to
explore the most possible root causes. Eventually a diagnosis
report is generated and sent to the sink. Compared with
existing approaches, LD2 achieves very high energy efÞciency.
In CitySee, we observe that almost all the root causes can be
partly reßected by the sensor nodes within a neighborhood,
while each single sensor node has very limited knowledge to
complete a comprehensive diagnosis process. Therefore, LD2
actually not only avoids a large transmission overhead and
information loss on the way to sink, but also achieves high
diagnosis accuracy. Moreover, it provides in-time diagnosis
results since it utilizes the Þrst-hand evidence without delay
in the collection process.

In order to deal with the narrow scope of single nodes and
inconsistent judgements from different nodes, we train a Naive
Bayesian ClassiÞer (NBC) which encodes the probabilistic
correlation between a set of state attributes and root causes.
We insert this Bayesian classiÞer into the sensor nodes to
compute the posterior probability distribution of possible root
causes according to their states. That is, each node translates its
local evidences (i.e., state attributes) into our communication
model which is based on Dempster-Shafer theory (D-S theory).
Using D-S theory, we design a novel strategy to fuse the
judgements from all the sensor nodes within a neighborhood
in a ßexible and load-balanced manner. Once a node has
detected some abnormal symptoms, it constructs a tree in a
local area to strictly depict the fusion order, so as to ensure
diagnosis coverage and make fusion process as a long string
of sequential operations. The advantages of this serial manner
are two-fold. First, instead of collecting all the information on
one certain node, we divide the work of evidence fusion into
many steps, thus each node can summarize the evidences of
its child nodes. That is, we let all the nodes in a local area

share the responsibility of diagnosis. Second, the contribution
of each node converges on the root node of the tree, so that
we can easily ensure a local consensus to the Þnal diagnosis
result. Moreover, our diagnosis result is consistent, regardless
of the fusion order.

The rest of this paper is organized as follows. Section II
summarizes the related work. Section III describes the system
framework. Section IV presents our design and provides addi-
tional techniques to deal with several practical issues on im-
plementation. Section V shows performance evaluation results
from real indoor testbed experiments. Section VI concludes
the work.

II. RELATED WORK

Most existing approaches for sensor network diagnosis are
sink-based, in which each sensor reports its state information
to the sink by periodically transmitting speciÞc control mes-
sages. Sympathy [17] and Emstar [4] rely heavily on an add-in
protocol that generates a large amount of status information
from individual sensor nodes to the sink, introducing high
overhead to the resource constrained sensor networks. In
order to minimize the overhead, some researchers propose to
establish certain inference models by marking the data packets
[13] [14], and then parse the results at the sink to infer the
network status. Claivoyant [25] is a notable tool which focuses
on debugging sensor nodes at the source-level, and enables
developers to wirelessly connect to remote sensors and execute
debugging commands. Declarative TracePoints [2] allows the
developers to insert a group of action-associated checkpoints
at runtime. Find [5] detects faculty nodes by ranking sensing
readings collected from natural event detection while the
network performs its routine tasks. Agnostic Diagnosis [15]
discovers the silent failures by tracking the changes and
anomalies of correlation graphs between the system metrics.
MintRoute [21] visualizes the network topology by collecting
neighbor tables from sensor nodes. LiveNet [3] provides a set
of tools and techniques for reconstructing complex dynamics
of live sensor networks. In [1], the authors use monitoring
paths and cycles to localize single link and Shared Risk Link
Group failures. Self-diagnosis [11] plants a Þnite state machine
into each sensor node, enabling them to accordingly change
the diagnosis state. Nevertheless, it proves difÞcult to achieve
consensus between the nodes as each node can change the
state whenever it receives the diagnosis requests.

Data fusion techniques are also related to this work. [7]
outlines the ideas of D-S theory and presents the basic D-
S fusion equation. It also mentions that D-S theory becomes
unavailable when the evidences are signiÞcantly conßicting
with each other. [18], [24], [9] discuss how to change the
combination rules to eliminate the impact of conßicting evi-
dences, while [6], [16] claim that a better way is to modify
the evidences, e.g., adding abasic conÞdenceto describe the
importance for each evidence.
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Fig. 2. The system framework of LD2

III. SYSTEM FRAMEWORK

In this section, we introduce the general idea of our
approach and show an overview of the system framework.
As illustrated in Fig. 2, our main idea is to conduct the
diagnosis process in a local area where abnormal symptoms
are observed. Unlike the traditional sink-based approaches,
in-network diagnosis has following challenges. First, the di-
agnosis process is in a distributed manner, which means, all
nodes in this neighborhood are required to be involved into
the diagnosis task. To make the nodes be able to cooperate
with each other, a feasible communication model for evidence
delivery among the nodes must be well designed. The most
naive design is to select a cluster head which collects all
the state attributes from local nodes. Then some light-weight
diagnosis algorithms can be leveraged to Þnd out the root
causes. Nevertheless, this way is proved unfeasible as we can
hardly Þnd such a diagnosis algorithm that it can be well
planted in a resource-limited sensor node as well as performs
good accuracy. Second, as mentioned above, to avoid putting
all the workload of diagnosis on a certain sensor, the diagnosis
process should be dividable so that we are able to let each
node join in the diagnosis work but not just deliver their local
information to others. Third, for one sensor, its original local
information only includes the state attributes such as energy,
MAC layer backoff, neighbor table, routing table, etc. There
must be some algorithms for the nodes to reÞne those rough
data, so as to generate some kinds of data for the fusion work.

The data-ßow of LD2 is illustrated in Fig. 2. As we can
see, the basic module applies a Naive Bayesian Model which
encodes the probabilistic correlation between a set of state
attributes and root causes. After the transition, we get basic
probability assignment on the root causes. The module of
diagnosis trigger determines whether some abnormal symp-
toms exist. If so, it needs to start a new diagnosis process.
For example, if some local state values experience abnormal
changes or some special events occur like a neighbor node
has been removed from the neighbor for a long time, the
trigger module motivates a new diagnosis process to check
that whether this neighbor has crashed or not.

At the very beginning of a diagnosis process, a fusion
tree rooted by this sensor node is established. Each node

within this diagnosis area is involved in this tree. Actually the
diagnosis process is divided into several operations of evidence
fusion. Following this fusion tree, the diagnosis process is
partly executed by the intermediate nodes. The evidence fusion
module is based on D-S theory which is also known as the
theory of belief functions. D-S theory is a generalization of the
Bayesian theory of subjective probability. By combining the
unique characters of WSNs, we design an improved approach
by assigningbasic conÞdenceto the evidences according to
their different signiÞcances for the fusion system.

IV. M AIN DESIGN

In this design, we consider both diagnosis efÞciency and
diagnosis accuracy. On the one hand, in order to avoid long
distance evidence retrieval which leads to large communication
overhead, we claim to carry out the diagnosis process locally
but not at the back-end. On the other hand, to improve our
diagnosis accuracy, we need to take judgements from all nodes
within a local area into consideration, as one single node only
has limited scope and computation ability. To make the nodes
cooperate with each other to complete the diagnosis work, a
serial of interfaces and protocols need to be designed like in-
node data processing, in-network communication model. In
the following subsections, we show the design details of LD2.

A. Overview

Sink-based approaches retrieve state information from the
network so as to conduct centralized analysis. They believe
that a big picture of network is greatly helpful for network
diagnosis, as many evidences can be leveraged to validate
the diagnosis result. In CitySee, however, we observe that
almost all the root causes can be partly reßected by the sensor
nodes within a neighborhood. For example, if a sensor node
has crashed, its neighbors must realize that it stops sending
beacon messages for neighbor discovering. When a route loop
occurs, by checking the network layer sequence number (e.g.,
CTP sequence number), the nodes in the loop can realize that
some packets are repeatedly forwarded. Locally diagnosing
the network achieves real-time diagnosis, avoiding information
lost on the collection path to the sink. At the same time,
compared to one node, LD2 integrates more evidences to
validate the result and thus achieves higher accuracy.



B. Naive Bayesian ClassiÞer

Considering the resource limitation of sensor nodes, fault
detection within one single node should be achieved in energy
efÞcient way and many existing models can be applied.
For example, we can leverage simple rule-based models to
make decision based on the local evidences. Light-weight
probabilistic classiÞers like the Naive Bayesian ClassiÞer can
also be applied. We use a binary variableR to denote each
type of root cause andP(R) andP(ÂR) are the probabilities
that this failure occurs or not. Then in a diagnosis process,
sensor node is able to calculate the posterior probability of
R given its local evidences, according to the Naive Bayesian
model:

P(R|F1, F2, ...Fn) = 1
P (F1 ,F2 ,...Fn )P(R)

! n
i=1 P(Fi|R)

Where P(F1, F2, ...Fn) is a scaling factor which only
depends on the evidences(F1, F2, ..., Fn). (F1, F2, ..., Fn)
denotes the metrics of current sensor node as well as its neigh-
bors. During the training stage, we should estimate the value
of P(R), P(ÂR) and P(Fi|R). These parameter values can
be learned from the historical data. The storage cost of Naive
Bayesian classiÞer is(1 + 2nr ) parameters for each failure
type wheren denotes the number of metrics and each metric
hasr discrete values (Considering the computation capability
of sensor nodes, we discretize the continuous metrics in this
work to simplify the probability computation).

C. Evidence Fusion

How to make multiple nodes within a local area cooperate
with each other to detect network failures is non-trivial. The
main challenges are three-fold. First, communication about
evidence transferring must use channel itself, which means,
we have no out-of-band channel for diagnosis. If we incur
a large amount of transmission overhead during the evidence
fusion, new network failures may happen, which is also known
as Heisenbug. Second, complicated fusion algorithms are not
applicable for the system as a sensor node is resource limited.
For the same reason, the algorithm should be dividable to avoid
putting much data at one node. Third, the algorithm must en-
sure a local consensus to the Þnal diagnosis report. Moreover,
to achieve real-time diagnosis, the period of diagnosis process
must be short.

1) Improved Dempster-Shafer Theory:D-S theory is a
generalization of the Bayesian theory of subjective probability.
It is based on two ideas: the idea of obtaining degrees of belief
for one question from subjective probabilities for a related
question, and DempsterÕs rule for combining such degrees of
belief when they are based on independent items of evidence.

Supposem1 andm2 are two basic probability assignments
(i.e., mass function) over the frame of discernmentW . In-
tuitively, mi(U) describes the extent to which the evidence
supportsU, whereU ! 2W , i = 1 , 2. The fusion formula by
D-S theory is:

m12(X i) =

"
#

$

%
A j ! B k = X i

m1 (Aj )m2 (Bk )

1!
%

A j ! B k = !
m1 (Aj )m2 (Bk )

if X i "= !

0 if X i = !

WhereX i, Aj , Bk ! 2W .
k12 =

%
Aj " Bk =φ m1(Aj)m2(Bk) is calledconßict factor

of two evidencesm1 and m2. Notably, there can be two
evidencesm1 and m2 which are totally conßicting such that
k12 = 1 , therefore mass functions are not always combinable.
What is more, even if they are not totally conßicting but highly
conßicting, that is,k12 # 1, the combination result always
goes against the practical sense. Many works are proposed to
address this issue. In general, they can be classiÞed into two
types. One is to modify the combination rules, while the other
one is to improve the evidence models.

The methods to modify the combination rules discuss two
cases when the evidences are reliable and unreliable respec-
tively. Nevertheless, they both mainly consider how to assign
the conßicting evidence, like how to decide the ratio between
the event possibilities when conßict happens. In [18], the
authors propose that on the basis of reliable evidences, the
main reason of conßict is the incompleteness in the frame
of discernment, i.e., some unknown event possibilities exist.
[24], [9] all believe that not all the evidences are reliable.
They propose that the conßicting part between the evidences
should be discarded or reassigned to the other possibilities.
In practice, when there are a large amount of evidences
need to join in the fusion task, we hope that the evidences
can be grouped by some metrics such that we can conduct
the fusion task regardless of the fusion order to reduce the
computation work. Unfortunately, above improved methods all
fail to support associative law. This work fully combines the
unique characters of WSNs, and designs following improved
D-S theory for LD2.

Suppose the frame of discernment in our evidence model is
W = { R0, R1, ...Rn} . W consists of different root causes
{ R1, R2, ...Rn} in the network. Besides, it also has a ba-
sic event Òno problemÓR0, which indicates that no exact
diagnosis result is produced. We let each nodeNi only
generates possibility valuemi(Rj) for each single root cause
Rj according to its own local information. That is,mi(U) = 0
for any U ! 2W and |U| > 1.

%
0# j# n mi(Rj) = 1 .

DeÞnition 1. The distance betweenm1 andm2 is:

d(m1, m2) =
&

1
2 (M 1 $ M 2)T (M 1 $ M 2)

WhereM i = [ mi(R0), mi(R1), ...mi(Rn)]T , i = 1 , 2, and
we also have0 % d(m1, m2) % 1:

d(m1, m2) =
&

1
2

%
0# j# n (m1(Rj) $ m2(Rj))2

=
&

1
2

%
0# j# n (m2

1(Rj) + m2
2(Rj) $ 2m1(Rj)m2(Rj))

%
&

1
2

%
0# j# n (m2

1(Rj) + m2
2(Rj))



%
&

1
2 [(

%
0# j# n m1(Rj))

2 + (
%

0# j# n m2(Rj))
2] = 1

DeÞnition 2. The similar degree ofm1 andm2 is:

s(m1, m2) = 1 $ d(m1, m2)

As we can see, the greater similar degree ofm1 and
m2, the more similar analysis two evidences describe. If we
have one evidence which is similar to all the others, then
we believe that this evidence is important. Suppose we have
N evidencese1, e2, ... eN , and their corresponding basic
probability assignments arem1, m2, ... mN .

DeÞnition 3. The basic conÞdenceof ei (i = 1 , 2...N ) is:

" i =
%

1# j# N,j$=i s(mi, mj)

To avoid huge computation cost, sometimes we can also
randomly sample some evidences to compose astandard set
S, hence every evidencemi computes the total similar degree
to S as itsbasic conÞdence: " i =

%
sj %S,mi $=sj

s(mi, sj).
After normalization, we get the relative importance ofmi

to the evidence which has the greatestbasic conÞdence:
# i = " i/ max1# j# N " j . The normalization could be omitted
when the fusion task is divided into small ones and a global
maximum value is unknown, i.e.,# i = " i. Then we transfer
the basic probability assignments by multiplying thebasic
conÞdence, making them of equal importance in new fusion
system:

m&
i(Ri) = # imi(Ri) &1 % i % n.
m&

i(R0) = # imi(R0) + (1 $ # i)

Notably, if there are only two evidences involved in the
fusion task. Becauses(mi, mj) = s(mj , mi), they have
the samebasic conÞdenceeven if one of them provides
inaccurate evidence. To address this issue, we need to set a
thresholdFt such that more thanFt evidences are allowed
to utilize DeÞnition 3 to conduct evidence fusion. In our
implementation, we setFt equals 4.

In this new fusion system, forRi (i=1,2... n), we reduce
the impact of those evidences with less importance. That is, to
conÞrm whetherRi happens or not mainly relies on the other
evidences. On the contrary, forR0 we increase the impact
of those evidences with less importance, so as to average
the conÞdence to the other root causes. After transferring the
basic probability assignments, all the evidences are of equal
importance, then we can utilize D-S theory to conduct evi-
dence fusion. Our improved D-S theory is designed for LD2Õs
evidence model. We choose not to change the combination
rules but reÞne the evidences. It also satisÞes that the fusion
result keeps the same even if we change the fusion order, i.e.,
supports associative law. It is very important for our design, as
we canÕt ensure that the fusion tree has the same architecture
all the time (details in subsectionFusion Algorithm).
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2) Fusion Algorithm: In this part we present our speciÞc
algorithms for evidence fusion. First we introduce the fusion
tree. Every diagnosis process is rooted by a node, which
detects abnormal network symptoms such as node crash, trafÞc
contention, route loop and so on. It triggers a diagnosis model
as well as determines the diagnosis area, then broadcasts
diagnosis request beacons (DREQ) to establish the fusion tree.
Basically we need to determine the diagnosis area for each
symptom. For example, to Þnd out whether a node has crashed
or not can ask for one-hop neighborsÕ evidences, while to Þnd
out whether a route loop exists or not should visit all the
nodes transmitting the relevant packets. All the information
must be involved in DREQ for the nodes to know about the
details of diagnosis task. To the other nodes, after receiving
DREQ, they are involved in the fusion tree if they locate in the
diagnosis area. Once they join in the fusion tree, they should
keep broadcasting DREQ to inform other related nodes. In
the process of constructing fusion tree, each node records its
parent node and child nodes for following evidence collection.

Notably, in the process of establishing fusion tree, the root
also needs to sample astandard setfor following evidence
fusion. As mentioned above, utilizingstandard setcan reduce
the computation cost. Besides, in our fusion system, it greatly
reduces the transmission overhead as we have no need to
collect all the evidences to assign a globalbasic conÞdence.
In LD2, we make thestandard setconsist of the evidences
from the root node and its direct child nodes. Every DREQ
packet containsstandard setsuch that each node in the fusion
tree is able to calculate its ownbasic conÞdencerespectively.

The establishment of fusion tree Þnishes until no DREQ
is transmitted. What follows is the evidence fusion process.
First all the leaf nodes send out a leaf-query beacon (LQUE)
to make sure that it indeed has no child node in the fusion tree.
Actually LQUE is used to make up the lost DREQ. If there is



Algorithm 1 Fusion Tree Establishment Algorithm
1: Denote the node ID asid.
2: Initiate a null valueparentID to record the parent ID.
3: Initiate an empty setSchildren to record the child nodes.
4: if Trigger component detects abnormal symptomsthen
5: Trigger a local-diagnosis process.
6: Determine diagnosis area.
7: Sample thestandard setfor the fusion system.
8: Broadcast request beacon (DREQ).
9: end if

10: if Receive DREQthen
11: if Already in the treethen
12: Check the parent Þled of this DREQ, denoted asp.
13: if p = id then
14: Add the source node of this DREQ intoSchildren.
15: end if
16: else if In the diagnosis areathen
17: Assign the source ID of this DREQ toparentID .
18: Update the parent Þled value byparentID .
19: Broadcast DREQ.
20: end if
21: end if

no reply to the LQUE, it transfers its local evidence (DEVI)
to its parent node in the tree. Otherwise it updates its child
set and waits for the evidences from the child nodes. To the
intermediate nodes, they must collect all the evidences from
its child nodes and Þnally sends the fusion result to its parent
node. To avoid evidence lost, each intermediate node is able to
ÒremindÓ its child nodes by broadcasting child-query beacons
(CQUE), hence the lost evidences can be retransmitted.

As we can see, the structure of fusion tree has much
dynamics as we connect the nodes by broadcasting DREQ.
What is more, the fusion order strictly follows the fusion tree
from leaf nodes to the root node. Fortunately, inTheorem
1 it proves that the fusion result of LD2 keeps consistent,
regardless of the fusion order. This character helps our fusion
system greatly reduce the maintainance overhead of fusion
tree, as well as enable to ignore the impact of network
topology.

V. EVALUATION

We evaluate LD2 through a real indoor testbed consisting of
50 TelosB motes. Two metrics are mainly used for evaluating
LD2Õs accuracy: false negative rate (i.e., miss detection rate)
and false positive rate (i.e., false alarm rate). False negative
rate is deÞned as the proportion of faulty cases which are
detected as normal, while false positive rate is deÞned as the
proportion of normal cases which are detected as faulty.

Basically we implement a CTP application in the network,
for the analysis of impact with different diagnosis approaches.
In this work, we implement two modules for diagnosing the
network: LD2 and TinyD2. TinyD2 presents the concept of
self-diagnosis which encourages each sensor node to run a
embedded Þnite state machine to Þnd out the root cause.

Algorithm 2 Evidence Fusion Algorithm
1: if Schildren is empty (leaf node)then
2: Broadcast leaf-query beacon (LQUE) to ensure that it

is a leaf node.
3: if No reply to LQUEthen
4: Transmit local evidence (DEVI) to its parent.
5: else
6: Update the child setSchildren.
7: end if
8: else
9: Maintain an evidence setSevidence to record the re-

ceived evidences from the child nodes.
10: Add local evidence intoSevidence.
11: while Receive DEVIdo
12: Add this DEVI into Sevidence.
13: end while
14: for eachChild i in Schildren do
15: if Sevidence does not contain the DEVI fromChild i

then
16: Transmit child-query beacon (CQUE) toChild i.
17: end if
18: end for
19: if Has Collected all the evidences from child nodes

then
20: Evidence Fusion.
21: TransmitSevidence to parent node.
22: end if
23: end if
24: if Receive LQUEthen
25: Check the source ID of this LQUE, denoted asp.
26: if p = parentID then
27: Reply to this LQUE.
28: end if
29: end if
30: if Receive CQUEthen
31: Transmit local DEVI.
32: end if

During the tests, we manually inject three types of failures:
node crash, trafÞc contention and the route loop. For each
failure, we conduct 60 cases. We also change the power level
to discuss the performance of two approaches in different
diagnosis densities (i.e., the number of neighbor nodes).

A. Time Cost

Figure 3(a) illustrates the network topology of our testbed
consisting of 50 motes. First we discuss the time cost during
the diagnosis process. Generally we divide the cost into two
parts: fusion tree establishment and evidence fusion process.
As mentioned in section IV, the fusion tree is related to the
diagnosis area which is determined by the symptoms. In the
experiments, we make above three network failures have the
same diagnosis area. Node 25 (i.e., the red mote) has 16
neighbors (i.e., the green motes). When node 25 crashes or
trafÞc contention occurs at node 25, the diagnosis area involves
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Fig. 3. Testbed topology. We inject three failures in (a) respectively,
making their diagnosis area the same: node 25 (red mote) is crashed; trafÞc
contention occurs at node 25; a route loop (blue arrows) exists among node
25Õs neighbors (green motes). Besides, we let node 13 (i.e., the blue mote in
(b),(c),(d),(e)) trigger the diagnosis process. The tree structure of (b),(c),(d)
and (e) respectively occurs 36%,31%,18% and 9% in all the cases.

all its neighbors. Besides, we let a routing loop exist among all
these neighbors (i.e., the blue arrows). That is, their diagnosis
area is the neighbors of node 25. We also make node 13 as
the root node of fusion tree.

Figures 3(b) 3(c) 3(d) and 3(e) describe four of most
frequent structures when we are establishing the fusion tree.
Figure 4 shows the time cost of sampling evidences and estab-
lishing fusion tree. As mentioned in section IV, the process of
sampling evidences is used to assign a localbasic conÞdence
to each node in evidence fusion, while establishing fusion tree
mainly includes broadcasting and receiving beacons. As we
can see, the time cost is stable for all the tree structures, i.e.,
about 19ms in sampling evidences and 39ms in establishing
fusion tree. Figure 5 shows the CDF of the time cost of
evidence fusion in three diagnosis process. In 80% of cases
for detecting node crash, LD2 Þnishes evidence fusion in
a 16-node area within 95ms. For trafÞc contention, it costs
more than 133ms for 60% of cases as the DEVI packet
contains 3 possible root causes (i.e., ingress overßow, egress
overßow, bad link) thus more combination work is needed.
Figure 6 depicts the CDF of the total time cost for diagnosing
node crash, trafÞc contention and route loop respectively. We
observe similar trends in two CDF Þgures as the process of
evidence fusion costs most of time in LD2.
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B. Diagnosis Accuracy

Figures 7' 12 illustrate the diagnosis results of detect-
ing node crash, trafÞc contention and route loop with LD2
and TinyD2 respectively. According to Fig. 7, LD2 enables
to troubleshoot more than 92% of crashed nodes, and the
false negative rate decreases when the number of neighbors
increases. It is well understood that once a node is crashed, its
neighbor must Þnd that it is removed from the neighbor tables
for a long period. Therefore, the more neighbors, the more
determinate diagnosis. As showed in Fig. 10, the false positive
rate of LD2 is around 12% over varying diagnosis densities.
For detecting route loop, each node produces its evidence by
checking the CTP sequence number. As illustrated in Fig. 9
and 12, LD2 indeed maintains low false negative rate and false
positive rate, i.e., 5% and 6%, which means that LD2 can
successfully explore about 95% of route loops. By contrast,
TinyD2 performs unstable to detect crashed nodes and route
loops under different diagnosis densities. When the density
increases, TinyD2 often fails to achieve a consensus among
the nodes, such that hardly determines a root cause.

According to Fig. 8, LD2 correctly explores about 86% of
trafÞc contention, while TinyD2 is able to Þnd out 78% of
cases when the number of neighbors is 16. TrafÞc contention
occurs due to some reasons, such as egress overßow, ingress
overßow and bad link. It proves difÞcult for TinyD2 to use
Þnite state machine to achieve an accept state. In Fig. 11, as
we can see, TinyD2Õs false positive rate increases to 22% when
the number of neighbors is 16, while LD maintains around
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Fig. 7. False negative rate for node crash
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Fig. 8. False negative rate for trafÞc contention

5 8 10 12 16
0.00

0.08

0.16

0.24

0.32

0.40

F
a

ls
e

 n
e

g
a

tiv
e

 r
a

te

Number of neighbors

 TinyD2
 LD2

Fig. 9. False negative rate for route loop
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Fig. 10. False positive rate for node crash
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Fig. 11. False positive rate for trafÞc contention
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Fig. 12. False positive rate for route loop
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Fig. 13. Packet collection in LD2

16% under different diagnosis densities.

C. Coupling Effect with Application

Finally we discuss the coupling effect between the appli-
cation and network diagnosis. We observe that most of sink-
based approaches needs to retrieve more network information
than that generated by the application. It proves unreasonable
because some network failures such as trafÞc contention, bad
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Fig. 14. Packet collection in TinyD2

routing, can occur due to frequent large-amount collection.
TinyD2 reduces the transmission overhead by broadcasting
fault detector in the air. In practice, however, it lacks of a
speciÞc order to control the diagnosis and ensure a consensus
result. What is more, once it canÕt achieve the accept state,
much extra transmissions are required. Figure 13 and 14 depict
the packet collection of those nodes in the diagnosis area,
and each dot indicates an application packet collected by the
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sink. As we can see, when we utilize TinyD2 to conduct the
diagnosis process in the local area around timeline 30000ms,
40000ms and 50000ms, most application packets are lost. To
Þnd out the root cause, we also sniffer the beacons in this area.
As illustrated by Fig. 15, in the diagnosis process, every node
in TinyD2 generates about 28 beacons within 200ms, which
probably causes a local trafÞc contention. By contrast, the root
node and intermediate nodes in LD2 only cause about 15 and
10 beacons in 200ms.

VI. CONCLUSION

Long distance proactive information retrieval in traditional
sink-based approaches to diagnosing WSNs often incurs a
large amount of transmission overhead. What is more, sink-
based approaches can not afford real-time diagnosis. Con-
versely, sensor nodes have the Þrst-hand evidences to conduct
diagnosis process, but due to the narrow scope of system state
information, diagnosis results from single nodes are generally
inaccurate. To balance this tradeoff, this work presents LD2,
which conducts the diagnosis process in a local area. LD2
claims to distribute the diagnosis workload to the sensor nodes
within a diagnosis area. By constructing a fusion tree, each
node summarizes the evidences of its child nodes, such that the
contribution of each node converges on the root node. Thus,
a local consensus to the Þnal diagnosis report is generated
and reported to the sink. We also implement LD2 on TinyOS
2.1 and evaluate the performance on a real indoor testbed
consisting of 50 nodes.
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