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Abstract—Indoor localization is of great importance for a range 
of pervasive applications, attracting many research efforts in the 
past two decades. Most radio-based solutions require a process of 
site survey, in which radio signatures are collected and stored for 
further comparison and matching. Site survey involves intensive 
costs on manpower and time. In this work, we study unexploited 
RF signal characteristics and leverage user motions to construct 
radio floor plan that is previously obtained by site survey. On this 
basis, we design WILL, an indoor localization approach based on 
off-the-shelf WiFi infrastructure and mobile phones. WILL is 
deployed in a real building covering over 1600m2, and its 
deployment is easy and rapid since site survey is no longer needed. 
The experiment results show that WILL achieves competitive 
performance comparing with traditional approaches. 

I. INTRODUCTION 
Pervasive and mobile systems for context-aware computing 

are growing at a phenomenal rate. In most of today’s 
applications such as pervasive medicare, smart space, wireless 
sensor surveillance, mobile peer-to-peer computing, [1], [2], [3] 
etc., location is one of the most essential contexts. In the 
literature of pervasive computing, wireless indoor localization 
has been extensively studied and many solutions are proposed 
to provide room-level localization services, such as locating a 
person or a printer in an office building.  

A majority of previous localization approaches employ 
Received Signal Strength (RSS) as a metric for location 
determination. RSS fingerprints can be easily obtained for most 
off-the-shelf equipments, such as WiFi- or ZigBee-compatible 
devices. In these methods, localization is divided into two 
phases: training and serving. In the first phase, traditional 
methods involve a site survey process, in which engineers 
record the RSS fingerprints (e.g., WiFi signal strengths from 
multiple Access Points, APs) at every position of an interesting 
area and accordingly build a fingerprint database. Next in the 
serving phase, when a user sends a location query with its 
current RSS fingerprint, localization algorithms retrieve the 
fingerprint database and return the matched fingerprints as well 
as corresponding locations.  

Although site survey is time-consuming, labor-intensive, 
and easily affected by environmental dynamics, it is inevitable 
for those RSS fingerprint matching based approaches based on 
RSS fingerprint matching, since the fingerprint database is 
constructed based on on-site fingerprint collection. 

To avoid site survey, researchers turn to characterizing 
wireless signal propagation. They aim to build accurate signal 
attenuation models and use RSS as an indication of signal 
propagating distance. Unfortunately, attenuation models 
perform poorly due to unpredictable signal propagation in 
complex and dynamic indoor environments, lacking technical 
potentials for practical uses. 

The advance of wireless and embedded technology has 
fostered the flourish of smartphone market. Nowadays, mobile 
phones possess powerful computation and communication 
capability, and are equipped with different kinds of built-in 
sensors for various functions. Accompanying with users round-
the-clock, mobile phones can be viewed as an increasingly 
important information interface between users and 
environments. These advances lay solid foundations of 
breakthrough technology for indoor localization.  

On this basis, we reassess existing localization schemes and 
explore the possibility of using previously unavailable 
information for wireless indoor localization. Considering user 
movements, originally separated RSS fingerprints are 
connected under certain semantics. Similarly, studying the 
penetrating-wall effect of wireless signals is a good starting 
point for characterizing different rooms or functional areas. 
These observations motivate us to design rapidly deployed 
localization approaches without the laborious site survey 
process.  

In this study, we propose WILL, a wireless indoor logical 
localization approach. By exploiting user motions from mobile 
phones, we successfully remove the site survey process of 
traditional approaches, while achieving competitive 
localization accuracy. The rationale behind WILL is that human 
motions can be applied to connect previously independent 
radio signatures under certain semantics. WILL requires no 
prior knowledge of AP locations, and users are not required for 
explicit participation to label measured data with corresponding 
locations, even in the training phase. In all, such features 
introduce new prospective techniques for indoor localization. 

To validate this design, we deploy a prototype system and 
conduct extensive experiments in a middle-size academic 
building in Tsinghua University. Experiment results show that 
RSS-based indoor localization can achieve room-level location 
accuracy even without site survey. The average room 
localization accuracy, namely, accuracy of locating fingerprints  



  
Figure 1: Abrupt signal changes  through a wall. AP1 is deployed in Room I and 

AP2 in an adjacent Room II. Both data are measured at fixed locations. 
Figure 2: Acceleration signatures of 10 steps (each step marked with a cross). 

 
to the rooms they are actually collected from, is over 80%, 
which is competitive to existing solutions.  

The rest of the paper is organized as follows. We 
investigate the state-of-the-art on indoor localization 
technology in Section II. Section III presents our design 
overview. The generation of virtual rooms is studied in Section 
IV. In Section V, the techniques of floor plan mapping, a key 
step of constructing the relation between virtual rooms and 
ground-truth floor plan without site survey, are discussed in 
detail. Section VI summarizes the entire working process of 
WILL when it receives a location query. The prototype 
implementation and experiments are discussed in Section VII. 
We conclude the work in Section VIII. 

II. RELATED WORK 

Location information is essential for a wide range of 
pervasive and mobile applications, such as wireless sensor 
networks, mobile social networks, location-based services, 
smart space, [1], [2], [3] etc. Especially, in the literature of 
indoor localization, a well-known research direction in 
pervasive and mobile computing, many techniques have been 
proposed in the past two decades.  

Infrastructure-based techniques. Earliest approaches rely 
on installing specific infrastructure for indoor localization, such 
as LANDMARC [4] based on RFID systems, Active Badge [5] 
based on infrared beacons, Cricket [6] based on ultrasound 
devices, VOR [7] using VOR base station, and PinPoint [8] 
relying on special hardware they called PP2. Infrastructure-
based techniques are cost-consuming, labor-intensive and 
improper to scale as ubiquitous indoor localization schemes. 

Fingerprinting-based techniques. Adopting the 
fingerprint matching method, some localization approaches 
bypass pre-installed hardware. The main idea is to fingerprint 
the surrounding signatures at every location in the areas of 
interests and build a fingerprint database. The location is then 
estimated by mapping the measured fingerprints against that 
database. Researchers have striven to exploit different 
signatures of the existing devices or reduce the mapping effort. 
Most of these techniques utilize the RF signals such as [9], [10], 
[11], [12], [13], [14], [15]. SurroundSense [16] performs 
logical location estimation based on ambience features 
including sound, light, color, WiFi, etc. They all need site 
survey over areas of interests. The considerable manual cost 

and efforts, as well as the inflexibility to environment dynamics 
are the main drawbacks of site-survey-based methods. 

Model-based techniques. An RF propagation model, e.g., 
the log-distance path loss (LDPL) model, is used to estimate 
locations according to the measured RSS values. These 
techniques reduce the measurement efforts at the cost of 
decreasing localization accuracy due to the irregular RF 
propagation in indoor environment. In addition, most of these 
techniques require the placement of additional infrastructure, 
modifications to off-the-shelf APs, or knowledge of AP 
locations and power settings. The systems described in [17], 
[18] use the LDPL model and [19] uses a more sophisticated 
ray-tracing model, while [20] uses a Bayesian hierarchical 
model. Moreover, model based techniques are vulnerable to 
environment dynamics.  

Different from previous work relying on infrastructure and 
propagation model, WILL adopts the fingerprinting technique 
but avoids site survey. WILL users are not involved in any 
work of data collection. 

III. OVERVIEW 

A. Unexploited Potential for Localization 
WiFi technology has shown its great potentials for 

ubiquitous localization as it is available in a large amount of 
buildings through personal electronic devices like mobile 
phones and laptops.  

By investigating the temporal and spatial characteristics of 
indoor RF propagation of WiFi signals, we discover some 
easily overlooked but dramatically useful characteristics. A key 
observation is that signals may encounter a considerable abrupt 
change while passing through a wall (as shown in Figure 1). As 
a result, RSS of a same AP can vary significantly in two rooms. 
We have been observing this wall-penetrating effect of radio 
signals when we use wireless routers in everyday life. Such 
characteristic, however, has not been fully utilized for 
positioning. As shown in Figure 1, the variation of AP's signal 
strength can be used to distinguish different rooms. 

On the other hand, smartphones integrate various kinds of 
sensors such as accelerometer, magnetometer, gyroscope, etc., 
offering new opportunities to capture environment signatures 
and to detect user behaviors. WILL exploits accelerometers to 
obtain user movements and utilizes moving traces to assist 
localization. 
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Tri-axial accelerometers provide the apparent evidence of 
human walking patterns [21]. As illustrated in Figure 2, the 
acceleration variation for walking users is clearly different 
from those static. Amplitude of about 2m/s2

 is caused by foot 
lifting and around 3m/s2 by foot down. This signature is 
integrated in WILL to detect user motions and collect user 
traces. 

WILL provides human localization service through locating 
mobile phones. Even though mobile phones can integrate 
sensors like compasses, cameras, microphones, gyroscopes, 
WILL uses only accelerometers since no human participation is 
involved for such sensors. Moreover, different from many 
previous work using accelerometers for step counting or 
displacement estimation, WILL utilizes accelerometer sensors 
to explore reachability between different areas. 

B. System Architecture 
In this subsection, we present the overall vision of WILL, 

as shown in Figure 3. The working process of WILL consists 
of two phases: training and service. We describe high level 
architecture and present the details later. 

During the training phase (database construction), users in a 
building work with routine business while their mobile phones 
automatically measure WiFi signal strengths and record built-in 
sensor readings. The raw data are collected in the fingerprint 
collection module on the mobile phone side. All raw 
fingerprints (not tagged with a known location) are pre-
processed in fingerprint processing module and divided into 
two types: space-continuous and space-discontinuous 
according to users’ motion states when the fingerprints are 
measured. Both types of fingerprints are classified into 
different virtual rooms, which are virtual containers of 
fingerprints with high similarity. Space-continuous data are 
further used for building logical floor plan. A logical floor plan 
shows a view of relative location relationship, especially the 
connectivity and reachability, between the virtual rooms. 
Logical floor plan is constructed by leveraging user trace 
information from the space-continuous data which connects 
previously independent fingerprints. Afterwards, the logical 
floor plan is mapped to a given ground truth one by using a 
novel method. By doing so, we associate the isolated 
fingerprints with physical rooms. Floor plan database stores 
these associated relationships. 

In the service phase, when a user sends a location query 
with his currently measured data using mobile phone, WILL 
server will response the user with the estimated location. The 
query may contain a variety of information, including WiFi 
measurements and sensory data. The localization engine 
consults the fingerprint database to localize the virtual room 
and then obtain the corresponding physical room from floor 
plan database. Then location estimation and, if possible, the 
floor plan that the user currently locates at are sent back to the 
user. The querying data can be simultaneously used as 
collected fingerprints to update the databases. 

IV. VIRTUAL ROOM GENERATION 
In this section, we define virtual room and describe how to 

extract unique features of fingerprints from raw data. 
Afterwards, we classify fingerprints into a number of virtual 
rooms. 
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Figure 3: WILL architecture. 

 

A. Fingerprint Collection 
WILL users do not need to deliberately collect data even in 

the database building phase. They just work in offices, 
consume in shopping malls, or have a rest at coffee shops, 
walking or sitting. The information of WiFi signals and sensor 
readings is collected automatically by their cell phones. 

A regular record can be represented as Dt = < F, A >, where 
F and A indicate the WiFi signal fingerprint and accelerometer 
value, respectively. Assuming totally n APs in the building, the 
WiFi signals fingerprint F can be represented as 

 1 2[ , ,..., ]nF f f f  (1) 

where fi denotes the RSS value of the ith AP. 
The motion state of users, walking or staying, is determined 

by accelerometer readings. Records of walking users are 
integrated as an entire user trace , where  is a 
set of RSS fingerprints and  a set of acceleration values of a 
user trace. Such records are called space-continuous as they are 
measured during user’s movements. For ease of presentation, 
we refer to continuous data as space-continuous data in this 
paper hereafter.  

Note that the raw data collected by the mobile phones are 
noisy due to the measurement errors as well as the signal 
fluctuations. Some pre-processing schemes are employed in the 
fingerprint collection module to smooth raw data.  

B. Fingerprint Processing 
Due to signal instability, it is inadequate to utilize absolute 

RSS values directly for location estimation. In this work, we 
propose the RSS stacking difference as the fingerprint feature, 
which means the cumulative difference between one AP and all 
other APs. RSS stacking difference embodies the RSS gap 
relations of the RSS fingerprint at a specific time and location 
and acquires a relatively stable feature of radio signals. 

Formally, given two fingerprints F = [f1, f2, …, fn] and 
F′=[f1′, f2′, …, fn′], the dissimilarity (Euclidean distance) 
between them using feature of RSS stacking difference can be 
calculated by the following formulae:
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where I is an indicative function. 

C. Virtual Rooms 
Fingerprints are partitioned into different virtual rooms 

according to the values of RSS stacking difference. A virtual 
room is a virtual container which consists of the fingerprints 
with high similarity. Formally, if ϕ(F1, F2)<ξ, F1 and F2 are 
treated to be in the same virtual room, where ξ is a dissimilarity 
threshold of the room. 

Virtual rooms are generated by applying data mining 
approaches on fingerprints. We adopt several clustering 
techniques, including KMeans, FarthestFirst, EM, and 
FilteredCluster, which are implemented in WEKA, a popular 
classification and clustering tool. Among different techniques, 
KMeans demonstrates its high accuracy and efficiency for this 
application. Detailed results of performance comparison are 
shown in Figure 9. After virtual room generation, each 
fingerprint is tagged with a virtual room label. In addition, each 
room R is marked with a representative fingerprint F[R] for fast 
location estimation (See Section VI). This representative 
fingerprint, along with the dissimilarity threshold ξ is 
dynamically determined and updated according to the 
fingerprint database. In addition, both parameters are room 
specific, namely, each room has a distinct value for each 
parameter. 

V. FLOOR PLAN CONSTRUCTION 
Without site survey, the key challenge of localization is 

how to figure out the locations where fingerprints are measured. 
In this section, we provide a matching based technique that 
finds a perfect match between logical floor plan of generated 
virtual rooms and the ground truth one. The mapping of the 
logical and ground truth floor plan tells the correspondence of 
fingerprints and their measured locations. 

A. Logical Floor Plan 
Previous work mostly focuses on a single location or a 

single room. The relationship of different rooms is not 
sufficiently excavated. In WILL, traces of user’s motion 
indicate the reachability among virtual rooms, which are used 
to construct the logical floor plan for virtual rooms. 

A logical floor plan is a diagram showing the view of the 
reachability among virtual rooms. It is formalized as an 
undirected graph P = (V, E), a.k.a. the logical graph, where 
each vertex v V denotes a virtual room and an edge (u, v) E 
indicates that the virtual room u and v are reachable. Two 
rooms A and B are referred to be connected in logical floor 
plan if and only if a user can walk from A to B seamlessly 
without passing any other room. We observed that user 
movements inside a building, from one room to another or 
through the corridors, might indicate the connectivity between 
rooms. For ease of understanding, we take an example in the 
ground truth floor plan (as shown in Figure 4). If a user walks 
from room A to room B through a  corridor  segment C,  then it  

 
Figure 4: Examples of user traces from users walking inside the building 

 
can be derived that C is reachable from both A and B but A is 
not directly connected to B on only this condition. We assume 
that reachability is bidirectional, namely, if room A is 
reachable from room B, then B is also considered reachable 
from A.  

A series of fingerprints can be collected during their 
movements. As fingerprints are labeled with virtual rooms, an 
entire trace may traverse different virtual rooms. In addition, 
the sequence of the virtual rooms being traversed can be 
obtained because the trace is timestamped and ordered.  

Concretely, we consider a single user trace  
where  = [F1, F2, …, Fm] and  = [A1, A2, …, Am] indicate 
the a sequence of m fingerprints and acceleration readings 
collected during the user’s movement. Each Fi belongs to a 
virtual room Ri. Hence  corresponds to a series of virtual 
rooms  = [R1, R2, …, Rm]. Accordingly, the reachability 
between virtual rooms can be obtained by following rule: if Ri 
≠ Ri+1, which means the user walks into virtual room Ri+1 from 
Ri, then Ri and Ri+1 is marked to be reachable to each other. In 
other words, an edge (Ri, Ri+1) is added to the logical floor plan 
P if (Ri, Ri+1) E. Fusing a large amount of user traces together, 
the logical floor plan P is constructed.  

B. Floor Plan Mapping 
Logical floor plan needs to be mapped to the ground truth 

floor plan, which is available to the estate manager of a 
building who is also supposed to be the provider of location 
services in this building. For convenience, the ground truth 
floor plan is also referred to physical floor plan hereafter. In the 
following, we provide a graph mapping method and improve 
the mapping result later by introducing assistive techniques like 
global reference point. 

The physical floor plan, i.e., the physical graph,  is modeled 
with an undirected graph P′ = (V’, E′) where each vertex v V′ 
indicates a room (or a functional area) and each edge (u,v) E′ 
means the reachability of two rooms u and v. Under this 
scheme, the corridors are connected to most rooms while the 
adjacent rooms are not connected if no door exists between 
them. Note that the corridors can be divided into several 
segments, mainly according to the sizes. The modeled physical 
floor plan of our experiments is shown in Figure 6, where the 
corridor is segmented into four parts. Given the logical floor 
plan P = (V, E) and the ground truth floor plan P′ = (V′, E′), we 
define the floor plan mapping as a function p: V V′. In WILL, 
we set the numbers of virtual rooms is at least equal to the 
number of physical areas; i.e., |V|≥|V′|. 

We propose a subsection mapping method (SSMM) which 
contains three stages: skeleton mapping, branch-knot mapping 
and the correction. The virtual rooms with higher betweenness 
are in prior mapped in skeleton mapping while the rest are 



mapped using bipartite matching in branch-knot mapping. The 
initial mapping results are slightly adjusted in the correction 
stage. 

Skeleton mapping. Betweenness centrality [22] is a 
measure of a vertex’s centrality within a graph. Vertices that 
occur on many shortest paths between other vertices have 
higher betweenness than those do not. Formally, for a graph G 
= (V, E), let CB(v) denote the betweenness centrality of a vertex 
v, then CB(v) is calculated by the following equation: 

 
( )st

B
s v t V st

v
C v  (4) 

where σst is the number of shortest paths from s to t, and σst(v) 
is the number of shortest paths from s to t that pass through 
vertex v. As shown in Figure 6, the vertices in the center 
(labeled C1, C2, C3, and C4) apparently have higher 
betweenness than others. 

Let c be a constant. In skeleton mapping stage, the c 
vertices which have the highest betweenness in P are mapped 
to other c vertices with highest betweenness in P′. Here the 
mapping goal is to minimizing the total difference of 
betweenness for all matching pairs. The constant c is adjusted 
according to the graph structures. In WILL, this parameter c is 
simply set equal to the number of corridor segments in physical 
graph because those corridor segment vertices surely have 
higher betweenness under our physical graph model. 

Branch-knot mapping. The rest of vertices in P are 
mapped using the sum of shortest paths length as weights. In 
other words, for each vertex v in graph P, its weight w(v) 
equals to the sum of all shortest path lengths from v to all other 
vertices in P, namely, w(v) = ∑u P, u≠v d(v, u) where d(v, u) is 
the length of the shortest path from v to u. The weight of each 
vertex in P′ is calculated in the same way. Then the mapping 
goal is to minimize the total weight difference, say, W(p) = 
∑v V|w(v) –w(p(v))|. 

We formalize the branch-knot mapping as a weighted 
minimum bipartite matching (WMBM) problem where every 
vertex in P is matched to another vertex in P′, resulting in a 
perfect matching. The WMBM problem is then performed 
using the Kuhn-Munkras (KM) [23] algorithm as follows. Put 
all unmatched vertices in P to a set L, and all vertices in P′ into 
a set R. To achieve perfect matching, |L|-|R| fake vertices are 
added to R if |L|>|R|; otherwise |R|-|L| fake vertices are added to 
L (Without loss of generality, we assume |L|>|R| below). 
Construct a bipartite graph GB = (VB, EB), where VB =L R. For 
each vertex v VB, the weight w(v) is the same as in P or P′ if 
v V V′; Otherwise w(v)=∞ when v is a fake vertex. L and R 
are disjoint and all edges in EB go between L and R. For 
vertices u L and v R, edge (u, v) EB if u could be matched to 
v and the weight of (u, v) is set to be w(u, v)=|w(u)-w(v)|. As 
each vertex in P is possible to be matched to any vertex in P′, 
the resulting bipartite graph GB is a complete bipartite graph 
K|L|,|L|. 

Afterwards, the KM algorithm is performed on GB and 
returns a matching result of M=[p(v1), p(v2), …, p(v|L|)] where 
p(vi) indicates vi L is matched to p(vi) R. As there may be |L|-
|R| fake vertices in R (if |L|>|R|), the matching result M needs to 
be modified to remove those fake vertices. For each vertex 
vi V, if p(vi) V′, then p(vi) is changed to v′ such that w(vi, v′) = 

Algorithm 1  Correction 
correction = false 
for each vertex s in SP 

if ND(NP(s), NM(s)) > |NM(s)|/2 then
find v  SP′ minimizing ND(NP(s), NM(v)) 
map s to v
correction = true 

else 
for each vertex v in NP(s) NI(s)-{s} 

if v NP(s) and v NI(t) and v SP then 
remove mapping from s to v 
correction = true 

else if v NP(s) and v is  not mapped then 
find u NM(t) minimizing |w(v)-w(p(u))| 
set p(v) = p(u)  
correction = true 

end if 
end for 

end if 
end for 

 
min{w(vi, vj′), vj′ V′}. By branch-knot mapping, every vertex 
in V unmapped upon skeleton mapping is matched to one and 
only one vertex in V′. The details of KM algorithm are 
described in [23] and we omit them in this paper. 

Combining the result of skeleton mapping and branch-knot 
mapping, an original mapping is obtained. Let MI = [p(v1), 
p(v2), …, p(vn)] be the initial mapping result, where p(vi) 
denotes vi V is mapped to p(vi) V′. Figure 11(a) and (b) show 
the result of skeleton mapping and branch-knot mapping, 
respectively. Evident from Figure 11, mapping errors could 
exist in the initial mapping result. We perform the correction 
stage of SSMM to fix some error mapping. 

Correction. Sort all vertices in P in descending order of 
betweenness. Find a watershed value b of betweenness such 
that vertices with betweenness higher than b are apparently 
larger than those with betweenness lower than b. Formally, let 
vh be the vertex with the smallest betweenness higher than b 
and vl be the vertex with the largest betweenness lower than b. 
Then b is determined such that CB(vh)-CB(vl) = max{|CB(vi)- 
CB(vi+1)|, vi,vi+1 V}. Define a skeleton set SP of P as below: SP 
= {v: CB(v) > b, v V}. For each skeleton vertex s SP, define a 
neighboring tree T(s) of s. T(s) is similar to a depth-first tree 
with s as root, but with a little difference. In the depth-first 
search (DFS) procedure starting from s, the DFS stops and 
traces back when encountering a skeleton vertex. Let NP(s) 
denote the vertices set in neighboring tree T(s). Then NP(s) is 
the neighboring set (NS) of skeleton vertex s. The skeleton set 
SP  of P′ and its NS are defined and generated in the same way 
as in P. 

For each v V′, define a clan C(v) of v as C(v)={u: p(u)=v, 
u V}. Thus V′ contains |V′| clans. For each s SP, let t=p(s) and 
define a mapping NS of s as NM(s) = ( ) ( )

Pv N t C v( ) (v N (P
C( where ' ( )PN t

is the NS of t. For a skeleton vertex s SP, define the 
neighboring distance (ND) of NP(s) and NM(s) as: ND(NP(s), 
NM(s)) = |NM(s)|-|NP(s)∩NM(s)|. In other words, ND(NP(s), 
NM(s)) indicates the number of vertices which are in NM(s) but  
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Figure 5: Floor plan of the building in Tsinghua University. APs with unknown 
locations are not marked.  

Figure 6: Ground truth floor plan graph. Vertices marked with ‘Z’ denote 
physical rooms and vertices marked with ‘C’ denote corridor segments. 

 
 

not in NP(s). Then the correction of initial mapping is 
performed according to the value of ND, as outlined by 
Algorithm 1. 

Repeat Algorithm 1 until no correction occurs. Then the 
final mapping result M = [p(v1), p(v2), …, p(vn)], vi V, is 
achieved. The ultimate results of SSMM on two graphs are 
depicted in Figure 11(c). 

VI. LOCALIZATION USING WILL 
We have constructed the fingerprint database and the floor 

plan database during the training phase of WILL. The 
association between these two databases is also established. In 
this section, we describe the entire working process of WILL 
when it receives location queries, which corresponds to the 
localization engine module in WILL system. 

A. Localization 
Recall Section IV, we mark each virtual room R with a 

representative fingerprint F[R] after they are generated from 
the fingerprints. We use the mean value of all fingerprints in 
virtual room R as F[R]. Formally, F[R] can be calculated by the 
following formulas: 

 
1[ ]

| |
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i
FR

F R F
|

iFiR

F
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 (5) 

where  is the set of fingerprints that belong to R. 
When one user visits a building where WILL is deployed, 

the user queries WILL server for his/her current location with a 
record Dt = < F, A >, where t is the timestamp, F and A indicate 
WiFi signals and accelerometer values, respectively. The 
localization engine of WILL first determines the virtual room F 
belongs to, and then consults the floor plan database to obtain 
the mapped physical room, which is the response to be sent 
back to the user. F is estimated to be in the virtual room which 
has the shortest distance to F among all virtual rooms. 
Formally, the virtual room localization defers to the below rule: 
F belongs to virtual room Ri if the dissimilarity of F and F[Ri] 
satisfies 

 ( , [ ]) min ( , [ ]),i j jF F R F F R R  (6) 

and
 ( , [ ])iF F R  (7) 

where ϕ is the dissimilarity defined by Equation (2),  is the 
set of all virtual rooms and ξ denotes the dissimilarity threshold 
of rooms. Fingerprints beyond above two equations are treated 

as outliers and discarded. Assume that virtual room Ri is 
mapped to a physical area , then the user location is 
estimated as zone  and the result is sent back to users with, if 
possible, the floor plan. 

We design the localization engine as lightweight as possible 
for the purpose of better user experience on mobile phones and 
making WILL easily scalable. 

B. Database Update 
The floor plan and the fingerprint database can be updated 

over time to capture environment dynamics. In addition, the 
data collected in the training phase of WILL may contain 
deviations. They might not roundly reflect the overall situation 
of the building. As a result, updating is necessary to remedy 
such deviations. We execute two types of update operations in 
WILL: minor update and major update.  

Minor update, being triggered frequently, deals with newly 
collected fingerprints. When user queries arrive, the attached 
fingerprints are not only used for localization, but also for 
updating virtual room features, including the representative 
fingerprints and dissimilarity thresholds. 

Major update is carried out occasionally for a large amount 
of new data, resulting in large modifications in the previous 
database. For instance, if huge data are collected through a 
long-term running, especially when enough continuous data are 
included, the floor plan is corrected using the updated logical 
floor plan. 

VII. EXPERIMENTATION AND EVALUATION 

A. Experimental Methodology 
We developed the client of WILL on the increasingly 

popular Android OS. WiFi signals are recorded with the 
frequency of around twice per second when measuring. 
Accelerometers work in two frequencies: when detecting 
motions, they record sensory data with short intervals of 50 
milliseconds; otherwise a relatively long interval of one second 
is adopted. 

We implemented our prototype on two Google Nexus S 
phones, which support WiFi and contain accelerometer sensors. 
We deployed WILL system in one floor of an office building 
covering over 1600m2 in Tsinghua University, which contains 
16 offices, of which 5 are large rooms of 142m2, 7 are small 
ones with different sizes and the other 4 are inaccessible. The 
floor plan is shown in Figure 5, where every physical zone is 
marked with a sequence number. Most rooms are installed with 
one or more APs while some have none. Totally, n=26 APs are 



 
Figure 7: Accelerometer over different postures. I: the phone is horizontally 

placed; II: the phone is sideways up; III: the phone is vertically placed 
 

installed in the floor, of which 20 are with known locations and 
are denoted in Figure 5. Note that the walls of the experimental 
building are constituted by steel keels wrapped in two wooden 
clapboards instead of reinforced concrete, which reduces the 
walls’ shielding effects of wireless signals. 

The ground truth floor plan is modeled as a physical graph. 
As depicted in Figure 5, the black triangles indicate physical 
functional zones and the edges show their connected 
relationships. In our evaluation, each physical room is modeled 
with a vertex while the corridor is divided into 4 segments. 
Each segment’s length is roughly in line with the length of the 
largest room it connects. As a result, there are total 16 
functional zones in the physical graph. 

To evaluate WILL, we need the accurate room of each user 
when the location query is submitted. We require location 
samples, especially those close to the walls, to evaluate the 
localization performance. To obtain these location-labeled data, 
we set a data acquisition point every 4m2 and collected 30 
records with manually reported locations at each point. The 
data records for evaluation are extended to be Dt = <F, A, L> 
where L is an additional tuple, location. We collected 16336 
records (dataset #1) on one phone and 14271 records (dataset 
#2) on another. All data are evenly collected from accessible 
areas in the floor. 

Space-continuous data, say, the mobility data collected 
during user movements, consist of two parts in our experiments. 
One part are collected from real user traces, the other are 
generated from the discontinuous data. To collect continuous 
data, mobile phone records the accelerometer and WiFi data 
during users’ natural movements. Totally, 30 real traces are 
extracted and additional 118 traces are generated from those 
location-labeled data. Different traces have various lengths and 
cover different areas of interests. Note that the generated traces 
are realistic because the experimental data contains manually 
labeled accurate location information. 

B. Performance 
In this section, we evaluate WILL using dataset #1 as 

training data for building databases and dataset #2 as querying 
data to localize. 
User Trace Detection 

Though the users kept their mobile phones in hand when 
collecting continuous data in our experiments, we find that the 

rhythmic acceleration signatures in human walking patterns are 
evident no matter what postures the mobile phones are. As 
depicted in Figure 7, although the most remarkable acceleration 
variation caused by walking appears on different axes, the tri-
axial accelerometer captures rhythmic fluctuations finely 
whenever the mobile phone is placed horizontally in hand, 
sideways up, or vertically held, corresponding to the segments I, 
II and III in Figure 7 respectively. 
Virtual Room Generation 

For all virtual rooms, we mark each of them with the label 
of a physical zone where the largest portion of fingerprints 
within this virtual room come. The assignment error rate (AE) 
is used for evaluation of virtual room generation which is 
referred to the percent of fingerprints tagged with a virtual 
room taking a physical zone label different from the zone 
where the fingerprints are actually collected. 

As illustrated in Figure 8, we notice that all clustering 
approaches can achieve a fairly good accuracy of over 80% on 
virtual rooms. Particularly, the KMeans approach can reach an 
accuracy of 93% when the virtual room number is set to be 16 
(equal to the physical functional zones number), which 
outperforms the best performance achieved by SurroundSense 
[16], a mobile phone localization system using many kinds of 
fingerprints relying on site survey. We are delighted even more 
that such improvement is made while fewer kinds of 
fingerprints (actually only WiFi here) are involved. The results 
benefit from the proposed feature of RSS stacking difference 
and the concept of virtual room. Figure 8 further shows that 
partitional clustering approaches (KMeans) achieve better 
performance than others like density-based clustering (EM) and 
hierarchical clustering methods (FarthestFirst).  

Both physical rooms and corridor segments can be 
partitioned well. As shown in Figure 9, AE of partition on 
physical rooms is lower than 9%. As we expected, partition on 
corridor segments is less accurate. Nevertheless, the error is 
smaller than 19%, which we think is acceptable because 
fingerprints in corridors are farraginous. In addition, there are 
no walls or other obstructions between corridor segments, 
which enlarges the fingerprint similarities between different 
corridor segments. 

It is also indicated that some virtual rooms may be 
indistinguishable. As illustrated in Figure 10, when virtual 
room number increases, we observe that AE caused by some 
specific rooms always keep relatively large. On the other hand, 
the special building structure and materials of the building, as 
described above, add to the difficulty of distinguishing rooms, 
which results in larger AE. We believe WILL would work 
better in typical modern buildings with walls of reinforced 
cement. 
Localization Accuracy 

The final localization accuracy is affected by two factors: 
the virtual room estimation accuracy and the floor plan 
mapping results. We present the mapping results and evaluate 
the ultimate localization performance using accuracy of virtual 
room localization (VRL) and physical room localization (PRL) 
in the following.  

We use the virtual room results generated by KMeans with 
virtual room number of 16 for following evaluation. The 
original mapping results of the proposed  SSMM on the  logical  
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Figure 8: Accuracy of virtual room generation 
using RSS stacking difference vs. raw fingerprints. 

Figure 9: Assignment error with virtual room 
number (using KMeans) 

Figure 10: Assignment error caused by different 
rooms. Rooms causing no AE are not indicated. 
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(a) SSMM stage 1: skeleton mapping (b) SSMM stage 2: branch-knot mapping (c) Ultimate result of SSMM. 

Figure 11: Floor plan mapping. Vertices colored the same indicate ground truth mapping pairs. 
 

and physical graphs are displayed in Figure 11(a) and (b). 
Some of the mapping errors are corrected in the correction 
stage of SSMM, as shown in Figure 11(c). As two virtual 
rooms are marked with the same physical room label, one room 
in the physical floor plan is not mapped with any virtual rooms. 
As a final result, 15 out of 16 virtual rooms are correctly 
mapped.  

We evaluate the location estimation accuracy based on the 
mapping result illustrated in Figure 11(c). To understand the 
localization accuracy of each room, we plot the cumulative 
distribution function (CDF) in Figure 12. 75% of physical 
rooms can achieve localization accuracy of 80% or more. The 
median accuracies of VRL and PRL are 89% and 90% and the 
average accuracies of them are 81% and 86%, respectively. 
Such encouraging results show competitive performance of 
WILL comparing with traditional site survey based methods. 

Furthermore, to evaluate the practical user experience of 
WILL, we simulated 100 virtual users and observe localization 
accuracy of their queries. Each user is assigned to a set of 100 
to 200 fingerprints, randomly selected from data set #2. The 
results are depicted in Figure 13, where we see that accuracy of 
VRL is much higher than that of PRL. Concretely, all users 
acquire the accuracy of 80% or more for both VRL and PRL. 
Furthermore, around 60% of these virtual users can enjoy an 
accuracy of over 90%. The median and average accuracy of per 
user are both around 90% of PRL. 

VIII. CONCLUSION 
Previous indoor localization approaches mostly rely on 

labor-intensive site survey over every location. In this paper, 
we presented WILL, an indoor logical localization approach 
without site survey or knowledge of AP locations and power 
settings. The main idea is to combine WiFi fingerprints with 
user movements. Fingerprints are partitioned into different 
virtual rooms and a logical floor plan is accordingly 
constructed. Localization is achieved by finding a matching 
between logical and ground truth floor plan. We implement 
WILL in a typical office building and it achieves an average 
room-level accuracy of 86%, which is competitive to existing 
designs. We believe WILL demonstrates its advantage on low 
human cost, a long-standing and universal will in wireless 
indoor localization. Future research in physical floor plan 
construction, sophisticated floor plan mapping as well as user 
behavior detection should make WILL a ubiquitous indoor 
positioning system. 
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Figure 12: CDF of per room accuracy. Figure 13: CDF of per user accuracy. 
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