
Mining Frequent Patterns

from Data Streams

Acknowledgement: Slides modified by Dr. Lei Chen
based on the slides provided by Charu Aggarwal

And Jiawei Han, Jure Leskovec

OUTLINE

l Data Streams

l Characteristics of Data Streams
l Key Challenges in Stream Data

l Frequent Pattern Mining over Data Streams

l Counting Itemsets
l Lossy Counting
l Extensions

Data Stream

l What is the data stream?
l A data stream is an ordered sequence of instances that in many

applications of data stream mining can be read only once or a
small number of items using limited computing and storage
capabilities.

4

Data Streams

l Traditional DBMS
l Data stored in finite, persistent data sets

l Data Streams
l Continuous, ordered, changing, fast, huge amount
l Managed by Data Stream Management System (DSMS)

5

DBMS versus DSMS

l Persistent relations
l One-time queries
l Random access
l “Unbounded” disk store
l Only current state matters
l No real-time services
l Relatively low update rate
l Data at any granularity
l Assume precise data
l Access plan determined by

query processor, physical DB
design

l Transient streams
l Continuous queries
l Sequential access
l Bounded main memory
l Historical data is important
l Real-time requirements
l Possibly multi-GB arrival rate
l Data at fine granularity
l Data stale/imprecise
l Unpredictable/variable data

arrival and characteristics

6

Data Streams

l Data Streams
l Data streams - continuous, ordered, changing, fast, huge amount

l Traditional DBMS - data stored in finite, persistent data sets

l Characteristics of Data Streams
l Fast changing and requires fast, real-time response

7

Characteristics of Data Streams

l Data Streams
l Data streams—continuous, ordered, changing, fast, huge amount

l Traditional DBMS—data stored in finite, persistent data sets

l Characteristics
l Fast changing and requires fast, real-time response
l Huge volumes of continuous data, possibly infinite
l Data stream captures nicely our data processing needs of today

APPLICATIONS

Example: Freeboard.io - Dashboards For the Internet Of Things - https://freeboard.io/

Sensors

Weather

Stock Exchange

Self Driving Cars

Trends

Tweets

Logs

Articles/News
...

Wikipedia Edits

ATM Transactions

Chats

Television

Seisms

Music similarities

CO2 Level

Car Tracking
...

9

Stream Data Applications

l Telecommunication calling records
l Business: credit card transaction flows
l Network monitoring and traffic engineering
l Financial market: stock exchange
l Engineering & industrial processes: power supply &

manufacturing
l Sensor, monitoring & surveillance: video streams, RFIDs
l Security monitoring
l Web logs and Web page click streams
l Massive data sets (even saved but random access is too

expensive)

10

Characteristics of Data Streams

l Data Streams
l Data streams—continuous, ordered, changing, fast, huge amount

l Traditional DBMS—data stored in finite, persistent data sets

l Characteristics
l Fast changing and requires fast, real-time response
l Huge volumes of continuous data, possibly infinite
l Data stream captures nicely our data processing needs of today
l Random access is expensive—single scan algorithm (can only have

one look)
l Store only the summary of the data seen thus far
l Most stream data are at pretty low-level or multi-dimensional in

nature, needs multi-level and multi-dimensional processing

11

Key Challenges in Stream Data

l Mining precise freq. patterns in stream data: unrealistic

l Infinite length

l Concept-drift

l Concept-evolution

l Feature evolution

Key Challenges: Infinite Length

l Infinite length

l In many data mining situations, we do not know the entire
data set in advance. Stream management is important when
the input rate is controlled externally

l Examples: Google queries, Twitter or Facebook status
updates

l Infinite length: Impractical to store and use all
historical data

l Requires infinite storage

l And running time

Key Challenges: Infinite Length

0 1 1
0

1
1

1
1

0

0 0

0

Key Challenges: Concept-Drift

Negative instance
Positive instance

A data chunk

Current hyperplane

Previous hyperplane

Instances victim of concept-drift

Key Challenges: Concept-Evolution

l Concept-evolution occurs when a new class arrives in the stream.
l In this example, we again see a data chunk having two dimensional

data points.
l There are two classes here, + and -. Suppose we train a rule-based

classifier using this chunk
l Suppose a new class x arrives in the stream in the next chunk.
l If we use the same classification rules, all novel class instances will

be misclassified as either + or -.

X	X	X	X	X				

X	X	X		X	X	XX	X	X	X	X	X		

XX		X	X	X	X	X	X	X	X	X	X	

X	X	X	X	X	XX	X	X	X	X	X

X		X	X	X																			X			X		

Novel class
y

x1

y1

y2

x

++++	++

++	+	+	++

+	+++	++	+

++	+	+	+	++	+	

+++++	++++	+++																							

+	++	+		+	++	++	+			

- - - - -

- - - - -

- - - - -

+	+	+	+	+	+	+	+	

+	+	+	+	+	+	+	+	

- - - - - - -

- - - - - - - - - - - - - - - -

-- - - - - - - - - - - - - - -

-- - - - - - - - - - - - - - -

- - - - - - - -- - - - -

Classification rules:

R1. if (x > x1 and y < y2) or (x < x1
and y < y1) then class = +

R2. if (x > x1 and y > y2) or (x < x1
and y > y1) then class = -

A

C
D

B

y

x1

y1

y2

x

++++	++

++	+	+	++

+	+++	++	+

++	+	+	+	++	+	

+++++	++++	+++																							

+	++	+		+	++	++	+			

- - - - -

- - - - -

- - - - -

+	+	+	+	+	+	+	+	

+	+	+	+	+	+	+	+	

- - - - - - -

- - - - - - - - - - - - - - - -

-- - - - - - - - - - - - - - -

-- - - - - - - - - - - - - - -

- - - - - - - -- - - - -

A

CD

B

Key Challenges: Dynamic Features

l Why new features evolving
l Infinite data stream

l Normally, global feature set is unknown
l New features may appear

l Concept drift
l As concept drifting, new features may appear

l Concept evolution
l New type of class normally holds new set of features

Feature Extraction
& Selection

i + 1st chunkith chunk

Existing classification models need complete fixed features and apply to all the
chunks. Global features are difficult to predict. One solution is using all English
words and generate vector. Dimension of the vector will be too high.

Current
model

Training
New Model

Feature Space
Conversion

Classification &
Novel Class Detection

runway, climb runway, clear,
ramp

runway, ground,
ramp

Feature Set

ith chunk and i + 1st

chunk and models have
different feature sets

Key Challenges: Dynamic Features

Frequent Pattern Mining

over Data Stream

l Items Counting

l Lossy Counting
l Extensions

Items Counting

20

Counting Bits – (1)

l Problem:	given	a	stream	of	0’s	and	1’s,	be	

prepared	to	answer	queries	of	the	form	“how	

many	1’s	in	the	last	k	 bits?”	where	k≤ N.
l Obvious	solution:	store	the	most	recent	N bits.

l When	new	bit	comes	in,	discard	the	N	+1st bit.

21

Counting Bits – (2)

l You	can’t	get	an	exact	answer	without	storing	

the	entire	window.

l Real	Problem:	what	if	we	cannot	afford	to	

store	N bits?

l E.g.,	we’re	processing	1	billion	streams	and	N	 =	1	
billion

l But	we’re	happy	with	an	approximate	answer.

22

DGIM* Method

l Store	O(log2N)	bits	per	stream.

l Gives	approximate	answer,	never	off	by	more	

than	50%.

l Error	factor	can	be	reduced	to	any	fraction	>	0,	with	

more	complicated	algorithm	and	proportionally	more	

stored	bits.

*Datar, Gionis, Indyk, and Motwani

23

Something That Doesn’t

(Quite) Work

l Summarize	exponentially	increasing	regions	of	

the	stream,	looking	backward.

l Drop	small	regions	if	they	begin	at	the	same	

point	as	a	larger	region.

24

Key Idea

l Summarize	blocks	of	stream	with	specific	

numbers	of	1’s.

l Block	sizes (number	of	1’s)	increase	

exponentially	as	we	go	back	in	time

25

Example: Bucketized Stream

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

26

Timestamps

l Each	bit	in	the	stream	has	a	timestamp,	starting	
1,	2,	…

l Record	timestamps	modulo	N (the	window	size),	

so	we	can	represent	any	relevant timestamp	in	

O(log2N)	bits.

27

Buckets

l A	bucket in	the	DGIM	method	is	a	record	

consisting	of:

1. The	timestamp	of	its	end	[O(log	N)	bits].
2. The	number	of	1’s	between	its	beginning	and	end	

[O(log	log	N)	bits].
l Constraint	on	buckets:	number	of	1’s	must	be	

a	power	of	2.

l That	explains	the	log	log	N in	(2).

28

Representing a Stream by Buckets

l Either	one	or	two	buckets	with	the	same	

power-of-2	number	of	1’s.

l Buckets	do	not	overlap	in	timestamps.

l Buckets	are	sorted	by	size.

l Earlier	buckets	are	not	smaller	than	later	buckets.

l Buckets	disappear	when	their	end-time	is	>	N
time	units	in	the	past.

29

Updating Buckets – (1)

l When	a	new	bit	comes	in,	drop	the	last	(oldest)	

bucket	if	its	end-time	is	prior	to	N time	units	

before	the	current	time.

l If	the	current	bit	is	0,	no	other	changes	are	

needed.

30

Updating Buckets – (2)

l If	the	current	bit	is	1:

1. Create	a	new	bucket	of	size	1,	for	just	this	bit.

◆ End	timestamp	=	current	time.

2. If	there	are	now	three	buckets	of	size	1,	combine	the	

oldest	two	into	a	bucket	of	size	2.

3. If	there	are	now	three	buckets	of	size	2,	combine	the	

oldest	two	into	a	bucket	of	size	4.

4. And	so	on	…

31

Example

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

32

Querying

l To	estimate	the	number	of	1’s	in	the	most	

recent	N bits:

1. Sum	the	sizes	of	all	buckets	but	the	last.

2. Add	half	the	size	of	the	last	bucket.

l Remember:	we	don’t	know	how	many	1’s	of	

the	last	bucket	are	still	within	the	window.

33

Example: Bucketized Stream

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

34

Error Bound

l Suppose	the	last	bucket	has	size	2k.

l Then	by	assuming	2k	-1 of	its	1’s	are	still	within	

the	window,	we	make	an	error	of	at	most	2k	-1.

l Since	there	is	at	least	one	bucket	of	each	of	

the	sizes	less	than	2k,	the	true	sum	is	at	least	1	

+	2	+	..	+	2k-1 =	2k	-1.

l Thus,	error	at	most	50%.

Frequent Pattern Mining

over Data Stream

l Items Counting
l Lossy Counting

l Extensions

LOSSY COUNTING

37

Mining Approximate Frequent Patterns

l Mining precise freq. patterns in stream data: unrealistic
l Even store them in a compressed form, such as FPtree

l Approximate answers are often sufficient (e.g., trend/pattern analysis)
l Example: A router is interested in all flows:

l whose frequency is at least 1% (σ) of the entire traffic stream
seen so far

l and feels that 1/10 of σ (ε = 0.1%) error is comfortable
l How to mine frequent patterns with good approximation?

l Lossy Counting Algorithm (Manku & Motwani, VLDB’02)
l Major ideas: not tracing items until it becomes frequent
l Adv: guaranteed error bound
l Disadv: keep a large set of traces

38

Lossy Counting for Frequent Single Items

Bucket 1 Bucket 2 Bucket 3

Divide stream into ‘buckets’ (bucket size is 1/ ε = 1000)

39

First Bucket of Stream

Empty
(summary) +

At bucket boundary, decrease all counters by 1

40

Next Bucket of Stream

+

At bucket boundary, decrease all counters by 1

41

Approximation Guarantee

n Given: (1) support threshold: σ, (2) error threshold: ε, and (3)
stream length N

n Output: items with frequency counts exceeding (σ – ε) N
n How much do we undercount?

If stream length seen so far = N and bucket-size = 1/ε
then frequency count error £ #buckets

= N/bucket-size = N/(1/ε) = εN
n Approximation guarantee

n No false negatives
n False positives have true frequency count at least (σ–ε)N
n Frequency count underestimated by at most εN

42

Lossy Counting For Frequent Itemsets

Divide Stream into ‘Buckets’ as for frequent items
But fill as many buckets as possible in main memory one time

Bucket 1 Bucket 2 Bucket 3

If we put 3 buckets of data into main memory one time,
then decrease each frequency count by 3

43

Update of Summary Data Structure

2
2

1
2
1
1
1

summary data 3 bucket data
in memory

4
4

10
2
2
0

+

3
3

9

summary data

Itemset () is deleted.
That’s why we choose a large number of buckets
– delete more

44

Pruning Itemsets – Apriori Rule

If we find itemset () is not frequent itemset,
then we needn’t consider its superset

3 bucket data
in memory

1

+

summary data

2
2
1

1

45

Summary of Lossy Counting

l Strength
l A simple idea
l Can be extended to frequent itemsets

l Weakness:
l Space bound is not good
l For frequent itemsets, they do scan each record many times
l The output is based on all previous data. But sometimes, we are

only interested in recent data
l A space-saving method for stream frequent item mining

l Metwally, Agrawal, and El Abbadi, ICDT'05

Extensions

47

Extensions

l Lossy Counting Algorithm (Manku & Motwani, VLDB’02)
l Mine frequent patterns with Approximate frequent patterns.

l Keep only current frequent patterns. No changes can be detected.

l FP-Stream (C. Giannella, J. Han, X. Yan, P.S. Yu, 2003)
l Use tilted time window frame.

l Mining evolution and dramatic changes of frequent patterns.

l Moment (Y. Chi, ICDM ‘04)
l Very similar to FP-tree, except that keeps a dynamic set of items.

l Maintain closed frequent itemsets over a Stream Sliding Window

48

Lossy Counting versus FP-Stream

l Lossy Counting (Manku & Motwani VLDB’02)

l Keep only current frequent patterns—No changes can be detected

l FP-Stream: Mining evolution and dramatic changes of frequent

patterns (Giannella, Han, Yan, Yu, 2003)

l Use tilted time window frame

l Use compressed form to store significant (approximate) frequent

patterns and their time-dependent traces

Summary of FP-Stream

l Mining Frequent Itemsets at Multiple Time
l Granularities Based in FP-Growth
l Maintains

l Pattern Tree
l Tilted-time window

l Advantages
l Allows to answer time-sensitive queries
l Places greater information to recent data

l Drawback
l Time and memory complexity

Moment

l Regenerate frequent itemsets from the entire window
whenever a new transaction comes into or an old
transaction leaves the window

l Store every itemset, frequent or not, in a traditional data
structure such as the prefix tree, and update its support
whenever a new transaction comes into or an old
transaction leaves the window

l Drawback
l Mining each window from scratch - too expensive

l Subsequent windows have many freq patterns in common
l Updating frequent patterns every new tuple, also too expensive

Summary of Moment

l Computes closed frequents itemsets in a sliding window
l Uses Closed Enumeration Tree
l Uses 4 type of Nodes:

l Closed Nodes
l Intermediate Nodes
l Unpromising Gateway Nodes
l Infrequent Gateway Nodes

l Adding transactions
l Closed items remains closed

l Removing transactions
l Infrequent items remains infrequent

References

[Agrawal’ 94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In VLDB, pages 487–499, 1994.
[Cheung’ 03] W. Cheung and O. R. Zaiane, “Incremental mining of frequent patterns without
candidate generation or support,” in DEAS, 2003.
[Chi’ 04] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz, “Moment: Maintaining closed frequent
itemsets over a stream sliding window,” in ICDM, November 2004.
[Evfimievski’ 03] A. Evfimievski, J. Gehrke, and R. Srikant, “Limiting privacy breaches in privacy
preserving data mining,” in PODS, 2003.
[Han’ 00] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
SIGMOD, 2000.
[Koh’ 04] J. Koh and S. Shieh, “An efficient approach for maintaining association rules based
on adjusting fp-tree structures.” in DASFAA, 2004.
[Leung’ 05] C.-S. Leung, Q. Khan, and T. Hoque, “Cantree: A tree structure for efficient
incremental mining of frequent patterns,” in ICDM, 2005.
[Toivonen’ 96] H. Toivonen, “Sampling large databases for association rules,” in VLDB, 1996,
pp. 134–145.
Barzan Mozafari, Hetal Thakkar, Carlo Zaniolo: Verifying and Mining Frequent Patterns from
Large Windows over Data Streams. ICDE 2008: 179-188
Hetal Thakkar, Barzan Mozafari, Carlo Zaniolo. Continuous Post-Mining of Association Rules in
a Data Stream Management System. Chapter VII in Post-Mining of Association Rules:
Techniques for Effective Knowledge Extraction, Yanchang Zhao; Chengqi Zhang; and
Longbing Cao (eds.), ISBN: 978-1-60566-404-0.

