Ensemble Learning: An Introduction

Adapted from Slides by Tan, Steinbach, Kumar
General Idea

Original Training data

\[D \]

\[D_1 \quad D_2 \quad \cdots \quad D_{t-1} \quad \cdots \quad D_t \]

\[C_1 \quad C_2 \quad \cdots \quad C_{t-1} \quad \cdots \quad C_t \]

Step 1: Create Multiple Data Sets

Step 2: Build Multiple Classifiers

Step 3: Combine Classifiers
Why does it work?

• Suppose there are 25 base classifiers
 – Each classifier has error rate, $\varepsilon = 0.35$
 – Assume classifiers are independent
 – Probability that the ensemble classifier makes a wrong prediction:
 $$\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1 - \varepsilon)^{25-i} = 0.06$$
Examples of Ensemble Methods

• How to generate an ensemble of classifiers?
 – Bagging
 – Boosting
Bagging

- Sampling with replacement

- Build classifier on each bootstrap sample
- Each sample has probability \((1 - 1/n)^n\) of being selected as test data
- Training data = \(1 - (1 - 1/n)^n\) of the original data

<table>
<thead>
<tr>
<th>Data ID</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Data</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Bagging (Round 1)</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Bagging (Round 2)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bagging (Round 3)</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>
The 0.632 bootstrap

• This method is also called the 0.632 bootstrap
 – A particular training data has a probability of 1-1/n of not being picked
 – Thus its probability of ending up in the test data (not selected) is:

$$\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

 – This means the training data will contain approximately 63.2% of the instances
Example of Bagging

Assume that the training data is:

0.3 to 0.7: -1
0.3

Goal: find a collection of 10 simple thresholding classifiers that collectively can classify correctly.
-Each simple (or weak) classifier is:
 \[(x \leq K \rightarrow \text{class} = +1 \text{ or } -1 \text{ depending on which value yields the lowest error; where } K \text{ is determined by entropy minimization)}\]
<table>
<thead>
<tr>
<th>Bagging Round 1:</th>
<th>Bagging Round 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.1</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bagging Round 3:</th>
<th>Bagging Round 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.1</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bagging Round 5:</th>
<th>Bagging Round 6:</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.1</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bagging Round 7:</th>
<th>Bagging Round 8:</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.1</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bagging Round 9:</th>
<th>Bagging Round 10:</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.1</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.1</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 5.35. Example of bagging.
Bagging (applied to training data)

<table>
<thead>
<tr>
<th>Round</th>
<th>$x=0.1$</th>
<th>$x=0.2$</th>
<th>$x=0.3$</th>
<th>$x=0.4$</th>
<th>$x=0.5$</th>
<th>$x=0.6$</th>
<th>$x=0.7$</th>
<th>$x=0.8$</th>
<th>$x=0.9$</th>
<th>$x=1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Sum</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-6</td>
<td>-6</td>
<td>-6</td>
<td>-6</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sign</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>True Class</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 5.36. Example of combining classifiers constructed using the bagging approach.

Accuracy of ensemble classifier: 100% 😊
Bagging- Summary

• Works well if the base classifiers are unstable (complement each other)
• Increased accuracy because it reduces the variance of the individual classifier
• Does not focus on any particular instance of the training data
 – Therefore, less susceptible to model over-fitting when applied to noisy data
• What if we want to focus on a particular instances of training data?
In general,
- **Bias** is contributed to by the training error; a complex model has low bias.
- **Variance** is caused by future error; a complex model has High variance.
- Bagging reduces the variance in the base classifiers.

Figure 5.32. Bias-variance decomposition.
Figure 5.33. Two decision trees with different complexities induced from the same training data.
(a) Decision boundary for decision tree.

(b) Decision boundary for 1-nearest neighbor.

Figure 5.34. Bias of decision tree and 1-nearest neighbor classifiers.
Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of a boosting round
Boosting

• Records that are wrongly classified will have their weights increased
• Records that are classified correctly will have their weights decreased

```
Original Data  1  2  3  4  5  6  7  8  9  10
Boosting (Round 1) 7  3  2  8  7  9  4  10  6  3
Boosting (Round 2) 5  4  9  4  2  5  1  7  4  2
Boosting (Round 3) 4  4  8  10 4  5  4  6  3  4
```

• Example 4 is hard to classify
 • Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds
Boosting

• Equal weights are assigned to each training instance \((1/d)\) for round 1) at first
• After a classifier \(C_i\) is learned, the weights are adjusted to allow the subsequent classifier \(C_{i+1}\) to “pay more attention” to data that were misclassified by \(C_i\).
• Final boosted classifier \(C^*\) combines the votes of each individual classifier
 – Weight of each classifier’s vote is a function of its accuracy
• Adaboost – popular boosting algorithm
Adaboost (Adaptive Boost)

• Input:
 – Training set D containing N instances
 – T rounds
 – A classification learning scheme

• Output:
 – A composite model
Adaboost: Training Phase

• Training data D contain N labeled data \((X_1, y_1), (X_2, y_2), (X_3, y_3), \ldots (X_N, y_N)\)
• Initially assign equal weight \(1/N\) to each data
• To generate \(T\) base classifiers, we need \(T\) rounds or iterations
• Round \(i\), data from D are sampled with replacement, to form \(D_i\) (size \(n\))
• Each data’s chance of being selected in the next rounds depends on its weight
 – Each time the new sample is generated directly from the training data D with different sampling probability according to the weights; these weights are not zero
Adaboost: Training Phase

• Base classifier C_i, is derived from training data of D_i
• Error of C_i is tested using D
• Weights of training data are adjusted depending on how they were classified
 – Correctly classified: Decrease weight
 – Incorrectly classified: Increase weight
• Weight of a data indicates how hard it is to classify it (directly proportional)
Adaboost: Testing Phase

- The lower a classifier error rate, the more accurate it is, and therefore, the higher its weight for voting should be.
- Weight of a classifier C_i’s vote is
 $$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$
- Testing:
 - For each class c, sum the weights of each classifier that assigned class c to X (unseen data)
 - The class with the highest sum is the WINNER!

$$C^*(x_{test}) = \arg \max_y \sum_{i=1}^{T} \alpha_i \delta(C_i(x_{test}) = y)$$
Example: AdaBoost

- Base classifiers: C_1, C_2, \ldots, C_T

- Error rate: $(i =$ index of classifier, $j =$ index of instance $)$

 $\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$

- Importance of a classifier:

 $\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$
Example: AdaBoost

- Assume: N training data in D, T rounds, (x_j, y_j) are the training data, C_i, a_i are the classifier and weight of the i^{th} round, respectively.
- Weight update on all training data in D:

\[
w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \left\{ \begin{array}{ll}
\exp^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\
\exp^{\alpha_i} & \text{if } C_i(x_j) \neq y_j
\end{array} \right.
\]

where Z_i is the normalization factor

\[
C^*(x_{test}) = \arg \max_y \sum_{i=1}^{T} \alpha_i \delta(C_i(x_{test}) = y)
\]
Illustrating AdaBoost

Original Data

0.1

0.1

0.1

Data points for training

Boosting Round 1

0.0094

0.0094

0.4623

B1

\(\alpha = 1.9459 \)
Illustrating AdaBoost

Boosting Round 1

Boosting Round 2

Boosting Round 3

Overall

\[\alpha = 1.9459 \]

\[\alpha = 2.9323 \]

\[\alpha = 3.8744 \]
Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Random Forests grows many trees
 - Ensemble of unpruned decision trees
 - Each base classifier classifies a “new” vector of attributes from the original data
 - Final result on classifying a new instance: voting. Forest chooses the classification result having the most votes (over all the trees in the forest)
Random Forests

• Introduce two sources of randomness: “Bagging” and “Random input vectors”
 – Bagging method: each tree is grown using a bootstrap sample of training data
 – Random vector method: At each node, best split is chosen from a random sample of m attributes instead of all attributes
Random Forests

Figure 5.40. Random forests.
Methods for Growing the Trees

- Fix a $m \leq M$. At each node
 - Method 1:
 - Choose m attributes randomly, compute their information gains, and choose the attribute with the largest gain to split
 - Method 2:
 - (When M is not very large): select L of the attributes randomly. Compute a linear combination of the L attributes using weights generated from $[-1,+1]$ randomly. That is, new $A = \sum (W_i \times A_i)$, $i=1..L$.
 - Method 3:
 - Compute the information gain of all M attributes. Select the top m attributes by information gain. Randomly select one of the m attributes as the splitting node.
Random Forest Algorithm: method 1 in previous slide

• M input features in training data, a number \(m << M \) is specified such that at each node, \(m \) features are selected at random out of the \(M \) and the best split on these \(m \) features is used to split the node. (In weather data, \(M=4 \), and \(m \) is between 1 and 4)

• \(m \) is held constant during the forest growing

• Each tree is grown to the largest extent possible (deep tree, overfit easily), and there is no pruning
Generalization Error of Random Forests (page 291 of Tan book)

- It can be proven that the generalization Error $\leq \frac{\rho(1-s^2)}{s^2}$,
 - ρ is the average correlation among the trees
 - s is the strength of the tree classifiers
 - Strength is defined as *how certain* the classification results are on the training data on average
 - How certain is measured $\Pr(C_1|X) - \Pr(C_2|X)$, where C_1, C_2 are class values of two highest probability in decreasing order for input instance X.
- Thus, higher diversity and accuracy is good for performance