MSCIT 5210: Knowledge Discovery and Data Mining

Acknowledgement: Slides modified by Dr. Lei Chen based on the slides provided by Jiawei Han, Micheline Kamber, and Jian Pei

©2012 Han, Kamber & Pei. All rights reserved.
Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary
What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, …)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms
Clustering for Data Understanding and Applications

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market research
Clustering as a Preprocessing Tool (Utility)

- **Summarization:**
 - Preprocessing for regression, PCA, classification, and association analysis

- **Compression:**
 - Image processing: vector quantization

- **Finding K-nearest Neighbors**
 - Localizing search to one or a small number of clusters

- **Outlier detection**
 - Outliers are often viewed as those “far away” from any cluster
Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high intra-class similarity: cohesive within clusters
 - low inter-class similarity: distinctive between clusters
- The quality of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the hidden patterns
Measure the Quality of Clustering

- Dissimilarity/Similarity metric
 - Similarity is expressed in terms of a distance function, typically metric: \(d(i, j) \)
 - The definitions of distance functions are usually rather different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables
 - Weights should be associated with different variables based on applications and data semantics

- Quality of clustering:
 - There is usually a separate “quality” function that measures the “goodness” of a cluster.
 - It is hard to define “similar enough” or “good enough”
 - The answer is typically highly subjective
Considerations for Cluster Analysis

- Partitioning criteria
 - Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)

- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region) vs. non-exclusive (e.g., one document may belong to more than one class)

- Similarity measure
 - Distance-based (e.g., Euclidian, road network, vector) vs. connectivity-based (e.g., density or contiguity)

- Clustering space
 - Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)
Requirements and Challenges

- Scalability
 - Clustering all the data instead of only on samples
- Ability to deal with different types of attributes
 - Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering
 - User may give inputs on constraints
 - Use domain knowledge to determine input parameters
- Interpretability and usability
- Others
 - Discovery of clusters with arbitrary shape
 - Ability to deal with noisy data
 - Incremental clustering and insensitivity to input order
 - High dimensionality
Major Clustering Approaches (I)

- **Partitioning approach:**
 - Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
 - Typical methods: k-means, k-medoids, CLARANS

- **Hierarchical approach:**
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, CAMELEON

- **Density-based approach:**
 - Based on connectivity and density functions
 - Typical methods: DBSACN, OPTICS, DenClue

- **Grid-based approach:**
 - Based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE
Major Clustering Approaches (II)

- **Model-based:**
 - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: EM, SOM, COBWEB

- **Frequent pattern-based:**
 - Based on the analysis of frequent patterns
 - Typical methods: p-Cluster

- **User-guided or constraint-based:**
 - Clustering by considering user-specified or application-specific constraints
 - Typical methods: COD (obstacles), constrained clustering

- **Link-based clustering:**
 - Objects are often linked together in various ways
 - Massive links can be used to cluster objects: SimRank, LinkClus
Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary
Partitioning Algorithms: Basic Concept

- **Partitioning method**: Partitioning a database D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (d(p, c_i))^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - **k-means** (MacQueen’67, Lloyd’57/’82): Each cluster is represented by the center of the cluster
 - **k-medoids** or PAM (Partition around medoids) (Kaufman & Rousseeuw’87): Each cluster is represented by one of the objects in the cluster
The \textit{K-Means} Clustering Method

- Given k, the \textit{k-means} algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., \textit{mean point}, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change
An Example of K-Means Clustering

- **The initial data set**

- **Partition objects into \(k \) nonempty subsets**

- **Repeat**
 - Compute centroid (i.e., mean point) for each partition
 - Assign each object to the cluster of its nearest centroid

- **Until no change**

- **K=2**

- Arbitrarily partition objects into \(k \) groups

- **Update the cluster centroids**

- **Loop if needed**

- **Reassign objects**

- **Update the cluster centroids**
The *K*-Means Clustering Method

Example

- Arbitrarily choose K object as initial cluster center.
- Assign each object to the most similar center.
- Update the cluster means.
- Reassign.
- Update the cluster means.
- Reassign.
Consider the following 6 two-dimensional data points:

- \(x_1: (0, 0) \), \(x_2:(1, 0) \), \(x_3(1, 1) \), \(x_4(2, 1) \), \(x_5(3, 1) \), \(x_6(3, 0) \)

- If \(k=2 \), and the initial means are \((0, 0) \) and \((2, 1) \), (using Euclidean Distance)

- Use K-means to cluster the points.
Now we know the initial means:
- **Mean_one**\((0, 0)\) and **mean_two**\((2, 1)\),
- We are going to use Euclidean Distance to calculate the distance between each point and each mean.

For example:
- **Point x1** \((0, 0)\), point x1 is exactly the initial **mean_one**, so we can directly put x1 into cluster one.
Next we check Point x_2 (1, 0)

Distance1:

$$x_{2\text{-and-mean_one}} = \sqrt{(1 - 0)^2 + (0 - 0)^2} = 1$$

Distance2:

$$x_{2\text{-and-mean_two}} = \sqrt{(1 - 2)^2 + (0 - 1)^2} = 2\sqrt{2}$$

Distance1 < Distance2, so point x_2 is closer to mean_one, Thus x_2 belongs to cluster one.
Similarly for point \(x_3 \) \((1, 1)\),

Distance1:

\[
x_3\text{_and_mean_one} = 2\sqrt{(1 - 0)^2 + (1 - 0)^2} = 2\sqrt{2}
\]

Distance2:

\[
x_3\text{_and_mean_two} = 2\sqrt{(1 - 2)^2 + (1 - 1)^2} = 1
\]

Distance1 > Distance2, so point \(x_3 \) is closer to mean_two, Thus \(x_3 \) belongs to cluster two.
K-Means

Next point x_4 (2, 1),

- point x_4 is exactly the initial mean_two, so we can directly put x_4 into cluster two.

Next point x_5 (3, 1),

Distance1:

$$x_{5\text{ and mean_one}} = 2\sqrt{(3 - 0)^2 + (1 - 0)^2} = 2\sqrt{10}$$

Distance2:

$$x_{5\text{ and mean_two}} = 2\sqrt{(3 - 2)^2 + (1 - 1)^2} = 1$$

Distance1 > Distance2, so point x_5 is closer to mean_two, thus x_5 belongs to cluster two.
Next point x_6 (3, 0),

Distance 1:

$$x_{6_and_mean_one} = \sqrt[2]{(3 - 0)^2 + (0 - 0)^2} = 2\sqrt{9}$$

Distance 2:

$$x_{6_and_mean_two} = \sqrt[2]{(3 - 2)^2 + (0 - 1)^2} = 2\sqrt{2}$$

Distance 1 $> \text{Distance 2}$, so point x_6 is closer to mean_two, thus x_6 belongs to cluster two.
Now the two clusters are as follows:

Cluster One:
- \(x_1(0, 0), x_2(1, 0)\)

Cluster Two:
- \(x_3(1, 1), x_4(2, 1), x_5(3, 1), x_6(3, 0)\)

Now update the cluster means:

Mean of Cluster One:
- \(\text{mean}_\text{one} = ((0+1)/2, (0+0)/2) = (0.5, 0)\)

Mean of Cluster Two:
- \(\text{mean}_\text{two} = ((1+2+3+3)/4, (1+1+1+0)/4) = (2.25, 0.75)\)
K-Means

Now **re-assign the points** according to the new means:
mean_one(0.5, 0) and **mean_two** (2.25, 0.75)

For example, x1 (0,0)

Distance1:
\[x_{1\text{_and_mean_one}} = \sqrt{(0 - 0.5)^2 + (0 - 0)^2} = \sqrt{0.25} \]

Distance2:
\[x_{1\text{_and_mean_two}} = \sqrt{(0 - 2.25)^2 + (0 - 0.75)^2} = \sqrt{5.625} \]

Distance1 < Distance2, So point x1 should remain in the cluster one.

Repeat the same for the other data points.
After this re-assign iteration:

Cluster One:
\(x_1(0, 0), x_2(1, 0), x_3(1, 1) \)

Cluster Two:
\(x_4(2, 0), x_5(3, 1), x_6(3, 0) \)

Now update the cluster means:

Mean of Cluster One:
\[
\text{mean}_\text{one} = \left(\frac{0+1+1}{3}, \frac{0+0+1}{3} \right) = (0.667, 0.33)
\]

Mean of Cluster Two:
\[
\text{mean}_\text{two} = \left(\frac{2+3+3}{3}, \frac{0+1+0}{3} \right) = (2.67, 0.33)
\]
Now **re-assign the points** according to the **new** means: mean_one(0.667, 0.33) and mean_two (2.67, 0.33)

…

However, after the re-assign process, we find that the clusters remain the same, **so we can stop here since there is no change at all**.

So the final results are :

Cluster One:

x1(0, 0), x2(1, 0), x3(1, 1)

Cluster Two:

x4(2, 0), x5(3, 1), x6(3, 0)
Comments on the *K-Means* Method

- **Strength:** *Efficient:* $O(tkn)$, where n is # objects, k is # clusters, and t is # iterations. Normally, $k, t << n$.
 - Comparing: PAM: $O(k(n-k)^2)$, CLARA: $O(ks^2 + k(n-k))$
- **Comment:** Often terminates at a *local optimal*
- **Weakness**
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify k, the *number* of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
 - Sensitive to noisy data and *outliers*
 - Not suitable to discover clusters with *non-convex shapes*
Variations of the *K-Means* Method

- Most of the variants of the *k-means* which differ in
 - Selection of the initial *k* means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: *k-modes*
 - Replacing means of clusters with *modes*
 - Using new dissimilarity measures to deal with categorical objects
 - Using a *frequency*-based method to update modes of clusters
 - A mixture of categorical and numerical data: *k-prototype* method
What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster
PAM: A Typical K-Medoids Algorithm

K=2

Do loop
Until no change

Swapping O and O_{random} If quality is improved.
PAM (Partitioning Around Medoids) (1987)

- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
 - Select k representative objects arbitrarily
 - For each pair of non-selected object h and selected object i, calculate the total swapping cost TC_{ih}
 - For each pair of i and h,
 - If $TC_{ih} < 0$, i is replaced by h
 - Then assign each non-selected object to the most similar representative object
 - repeat steps 2-3 until there is no change
PAM Clustering: Total swapping cost \(TC_{ih} = \sum_j C_{jih} \)

\[C_{jih} = d(j, h) - d(j, i) \]

\[C_{jih} = 0 \]

\[C_{jih} = d(j, t) - d(j, i) \]

\[C_{jih} = d(j, h) - d(j, t) \]
K-Medoids Method: Example

Data Objects

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Goal: create two clusters

Choose randomly two medoids

O₂ = (3,4)
O₈ = (7,4)
K-Medoids Method: Example

Data Objects

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>O_2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>O_3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>O_4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>O_5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>O_6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>O_7</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>O_8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>O_9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>O_{10}</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

→ Assign each object to the closest representative object

→ Using L1 Metric (Manhattan), we form the following clusters

$\text{Cluster1} = \{O_1, O_2, O_3, O_4\}$

$\text{Cluster2} = \{O_5, O_6, O_7, O_8, O_9, O_{10}\}$
K-Medoids Method: Example

Data Objects

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>O_2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>O_3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>O_4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>O_5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>O_6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>O_7</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>O_8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>O_9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>O_{10}</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

→ Compute the absolute error criterion [for the set of Medoids (O_2, O_8)]

\[E = \sum_{i=1}^{k} \sum_{p \in C_i} |p - o_i| = |o_1 - o_2| + |o_3 - o_2| + |o_4 - o_2| + |o_5 - o_8| + |o_6 - o_8| + |o_7 - o_8| + |o_9 - o_8| + |o_{10} - o_8| \]
K-Medoids Method: Example

Data Objects

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>O₂</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>O₃</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>O₄</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>O₅</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>O₆</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>O₇</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>O₈</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>O₉</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>O₁₀</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

→ The absolute error criterion **[for the set of Medoids (O₂, O₈)]**

\[
E = (3 + 4 + 4) + (3 + 1 + 1 + 2 + 2) = 20
\]
K-Medoids Method: Example

Data Objects

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>O_2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>O_3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>O_4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>O_5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>O_6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>O_7</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>O_8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>O_9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>O_{10}</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Choose a random object O_7

Swap O_8 and O_7

Compute the absolute error criterion [for the set of Medoids (O_2, O_7)]

\[E = (3 + 4 + 4) + (2 + 2 + 1 + 3 + 3) = 22 \]
K-Medoids Method: Example

Data Objects

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>O₂</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>O₃</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>O₄</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>O₅</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>O₆</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>O₇</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>O₈</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>O₉</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>O₁₀</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

→ Compute the cost function

Absolute error [for O₂, O₇] – Absolute error [O₂, O₈]

\[S' = 22 - 20 \]

\[S > 0 \Rightarrow \text{it is a bad idea to replace O₈ by O₇} \]
K-Medoids Method

Data Objects

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>O_2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>O_3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>O_4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>O_5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>O_6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>O_7</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>O_8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>O_9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>O_{10}</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

- In this example, changing the medoid of cluster 2 did not change the assignments of objects to clusters.

- What are the possible cases when we replace a medoid by another object?
PAM Clustering: Finding the Best Cluster Center

- Case 1: \(p \) currently belongs to \(o_j \). If \(o_j \) is replaced by \(o_{\text{random}} \) as a representative object and \(p \) is the closest to one of the other representative object \(o_i \), then \(p \) is reassigned to \(o_i \).
What Is the Problem with PAM?

- Pam is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean.
- Pam works efficiently for small data sets but does not scale well for large data sets.
 - $O(k(n-k)^2)$ for each iteration
 - where n is # of data, k is # of clusters

ضغط: Sampling-based method

CLARA(Clustering LARge Applications)
CLARA (Clustering Large Applications) (1990)

- **CLARA** (Kaufmann and Rousseeuw in 1990)
 - Built in statistical analysis packages, such as SPlus
 - It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- **Strength:** deals with larger data sets than *PAM*
- **Weakness:**
 - Efficiency depends on the sample size
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased
CLARANS (“Randomized” CLARA) (1994)

- **CLARANS** (A Clustering Algorithm based on Randomized Search) (Ng and Han’94)
 - Draws sample of neighbors dynamically
 - The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of \(k \) medoids
 - If the local optimum is found, it starts with new randomly selected node in search for a new local optimum
- Advantages: More efficient and scalable than both **PAM** and **CLARA**
- Further improvement: Focusing techniques and spatial access structures (Ester et al.’95)
The K-Medoid Clustering Method

- **K-Medoids Clustering**: Find *representative* objects (*medoids*) in clusters
 - **PAM** (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)
 - Starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - **PAM** works effectively for small data sets, but does not scale well for large data sets (due to the computational complexity)
 - Efficiency improvement on PAM
 - **CLARA** (Kaufmann & Rousseeuw, 1990): PAM on samples
 - **CLARANS** (Ng & Han, 1994): Randomized re-sampling
Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary
Hierarchical Clustering

- Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition.

![Diagram of hierarchical clustering process]

- Agglomerative (AGNES)
- Divisive (DIANA)
AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical packages, e.g., Splus
- Use the **single-link** method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster
Dendrogram: Shows How Clusters are Merged

Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram.

A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.
DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own
Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., \(\text{dist}(K_i, K_j) = \min(t_{ip}, t_{jq}) \)

- Complete link: largest distance between an element in one cluster and an element in the other, i.e., \(\text{dist}(K_i, K_j) = \max(t_{ip}, t_{jq}) \)

- Average: avg distance between an element in one cluster and an element in the other, i.e., \(\text{dist}(K_i, K_j) = \text{avg}(t_{ip}, t_{jq}) \)

- Centroid: distance between the centroids of two clusters, i.e., \(\text{dist}(K_i, K_j) = \text{dist}(C_i, C_j) \)

- Medoid: distance between the medoids of two clusters, i.e., \(\text{dist}(K_i, K_j) = \text{dist}(M_i, M_j) \)
 - Medoid: a chosen, centrally located object in the cluster
Centroid, Radius and Diameter of a Cluster (for numerical data sets)

- **Centroid**: the “middle” of a cluster
 \[C_m = \frac{\sum_{i=1}^{N} t_{ip}}{N} \]

- **Radius**: square root of average distance from any point of the cluster to its centroid
 \[R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}} \]

- **Diameter**: square root of average mean squared distance between all pairs of points in the cluster
 \[D_m = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^2}{N(N-1)}} \]
Dendrogram

- Hierarchic grouping can be represented by two-dimensional diagram known as a **dendrogram**.
Distance

- Single Linkage
- Complete Linkage
- Group Average Linkage
- Centroid Linkage
- Median Linkage
Single Linkage

- Also, known as the **nearest neighbor** technique
- Distance between groups is defined as that of the closest pair of data, where only pairs consisting of one record from each group are considered

![Cluster A](#) ![Cluster B](#)
Find the smallest value, merge them

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>6.0</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>10.0</td>
<td>9.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>9.0</td>
<td>8.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Update Distance

Dendrogram

Distance

0 1.0 2.0 3.0 4.0 5.0
1 and 2 as a whole

\[
\begin{pmatrix}
(12) & 3 & 4 & 5 \\
0 & \begin{pmatrix}
3 & 5.0 & 0.0 \\
4 & 9.0 & 4.0 & 0.0 \\
5 & 8.0 & 5.0 & 3.0 & 0.0
\end{pmatrix}
\end{pmatrix}
\]
Repeat:
find the smallest one, merge
Dendrogram

Distance

5.0 4.0 3.0 2.0 1.0 0

(12) 3 (4 5)

\[
\begin{pmatrix}
0.0 \\
5.0 & 0.0 \\
8.0 & 4.0 & 0.0
\end{pmatrix}
\]
\begin{align*}
(12) & \quad 3 \quad (4 \ 5) \\
(12) & \quad \begin{pmatrix}
0.0 \\
5.0 & 0.0 \\
8.0 & 4.0 & 0.0
\end{pmatrix} \\
(3 \ 4 \ 5) & \quad \begin{pmatrix}
0.0 \\
5.0 & 0.0
\end{pmatrix}
\end{align*}
(12)(3 4 5)
(12)
\[
\begin{pmatrix}
 0.0 \\
 5.0 & 0.0
\end{pmatrix}
\]
(12)(3 4 5)

(12)

\[
\begin{pmatrix}
0.0 \\
5.0 & 0.0
\end{pmatrix}
\]

(3 4 5)

Dendrogram

Distance

5.0 4.0 3.0 2.0 1.0 0
Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary
Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - **DBSCAN**: Ester, et al. (KDD’96)
 - **DENCLUE**: Hinneburg & D. Keim (KDD’98)
 - **CLIQUE**: Agrawal, et al. (SIGMOD’98) (more grid-based)
Density-Based Clustering: Basic Concepts

- Two parameters:
 - Eps: Maximum radius of the neighbourhood
 - $MinPts$: Minimum number of points in an Eps-neighbourhood of that point

- $N_{Eps}(q)$: \{p belongs to D | dist(p,q) ≤ Eps\}

- Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. Eps, $MinPts$ if
 - p belongs to $N_{Eps}(q)$
 - core point condition:
 \[|N_{Eps} (q)| \geq MinPts \]

MinPts = 5
Eps = 1 cm
Density-Reachable and Density-Connected

- Density-reachable:
 - A point p is **density-reachable** from a point q w.r.t. Eps, $MinPts$ if there is a chain of points p_1, \ldots, p_n, $p_1 = q$, $p_n = p$ such that p_{i+1} is directly density-reachable from p_i.

- Density-connected
 - A point p is **density-connected** to a point q w.r.t. Eps, $MinPts$ if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and $MinPts$.
DBSCAN: Density-Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points.
- Discovers clusters of arbitrary shape in spatial databases with noise.

A point is a **core point** if it has more than a specified number of points (MinPts) within Eps.

- These are points that are at the interior of a cluster.

A **border point** has fewer than MinPts within Eps, but is in the neighborhood of a core point.

- Eps = 1cm
- MinPts = 5
DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and $MinPts$
- If p is a core point, a cluster is formed
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed
- If a spatial index is used, the computational complexity of DBSCAN is $O(n \log n)$, where n is the number of database objects. Otherwise, the complexity is $O(n^2)$
Given a point p and a non-negative real number ε, the ε-neighborhood of point p, denoted by $N(p)$, is the set of points q (including point p itself) such that the distance between p and q is within ε.
According to ε-neighborhood of point p, we classify all points into three types:

- **core points**: Given a point p, if the size of $N(p)$ is at least MinPts, then p is said to be a core point.
- **border points**: Given a point p, p is said to be a border point if it is not a core point but $N(p)$ contains at least one core point.
- **noise points**: Given a point p, p is said to be a noise point if it is neither a core point nor a border point.
Consider the following 9 two-dimensional data points:
\[x_1(0,0), x_2(1,0), x_3(1,1), x_4(2,2), x_5(3,1), x_6(3,0), \\
 x_7(0,1), x_8(3,2), x_9(6,3) \]
Use the Euclidean Distance with Eps = 1 and MinPts = 3
(Eps is short for epsilon: ε)
Find all core points, border points and noise points, and show the final clusters using DBCSAN algorithm.
Example

Data Points

- X1(0, 0)
- X2(1, 0)
- X3(1, 1)
- X4(2, 2)
- X5(3, 1)
- X6(3, 0)
- X7(0, 1)
- X8(3, 2)
- X9(6, 3)
Calculate the $N(p)$, ϵ-neighborhood of point p

- $N(x1) = \{x1, x2, x7\}$
- $N(x2) = \{x2, x1, x3\}$
- $N(x3) = \{x3, x2, x7\}$
- $N(x4) = \{x4, x8\}$
- $N(x5) = \{x5, x6, x8\}$
- $N(x6) = \{x6, x5\}$
- $N(x7) = \{x7, x1, x3\}$
- $N(x8) = \{x8, x4, x5\}$
- $N(x9) = \{x9\}$
Find all core points according to $N(p)$

- If the size of $N(p)$ is at least MinPts, then p is said to be a core point.
- Here the given MinPts is 3, thus the size of $N(p)$ is at least 3.

We can find:

- $N(x_1) = \{x_1, x_2, x_7\}$
- $N(x_2) = \{x_2, x_1, x_3\}$
- $N(x_3) = \{x_3, x_2, x_7\}$
- $N(x_5) = \{x_5, x_6, x_8\}$
- $N(x_7) = \{x_7, x_1, x_3\}$
- $N(x_8) = \{x_8, x_4, x_5\}$
Thus core points are:
\{x_1, x_2, x_3, x_5, x_7, x_8\}

Then according to the definition of border points: given a point \(p \), \(p \) is said to be a \textbf{border point} if it is not a core point but \(N(p) \) contains at least one core point.

\begin{align*}
N(x_4) &= \{x_4, x_8\} \\
N(x_6) &= \{x_6, x_5\},
\end{align*}

here \(x_8 \) and \(x_5 \) are \textbf{core points}, So both \(x_4 \) and \(x_6 \) are border points.

Obviously, \(x_9 \) is a \textbf{noise} point.
Core points, Border points, Noise points

- Core Points are:
 \{x_1, x_2, x_3, x_5, x_7, x_8\}

- Border Points:
 \{x_4, x_6\}

- Noise Points:
 \{x_9\}
DBSCAN: The Algorithm

- **Arbitrary** select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and $MinPts$
- If p is a **core** point, a **cluster** is formed
- If p is a **border** point, no points are density-reachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed
DBSCAN: Example step by step

- **Arbitrary** select a point \(p \), **now we choose** \(x_1 \)
- Retrieve all points density-reachable from \(x_1 \):
 \[\{x_2, x_3, x_7\} \]
- Here \(x_1 \) is a **core** point, a **cluster** is formed.
- So we have **Cluster_1**: \(\{x_1, x_2, x_3, x_7\} \)
- Next we choose \(x_5 \),
- Retrieve all points density-reachable from \(x_5 \):
 \[\{x_8, x_4, x_6\} \]
DBSCAN: Example step by step

- Here x5 is a core point, a cluster is formed.
- So we have Cluster_2: \{x5, x4, x8, x6\}
- Next we choose x9, x9 is a noise point, noise points do NOT belong to any clusters.
- Thus the algorithm stops here.
Final Clusters using DBSCAN

Data Points

Cluster_1
- $X_1(0, 0)$
- $X_2(1, 0)$
- $X_3(1, 1)$
- $X_7(0, 1)$

Cluster_2
- $X_5(3, 1)$
- $X_6(3, 0)$
- $X_8(3, 2)$
- $X_4(2, 2)$

Noise Point
- $X_9(6, 3)$
DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.
DBSCAN online Demo

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary
Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods
 - **STING** (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)
 - **WaveCluster** by Sheikholeslami, Chatterjee, and Zhang (VLDB’98)
 - A multi-resolution clustering approach using wavelet method
 - **CLIQUE**: Agrawal, et al. (SIGMOD’98)
 - Both grid-based and subspace clustering
STING: A Statistical Information Grid Approach

- Wang, Yang and Muntz (VLDB’97)
- The spatial area is divided into rectangular cells
- There are several levels of cells corresponding to different levels of resolution
The STING Clustering Method

- Each cell at a high level is partitioned into a number of smaller cells in the next lower level.
- Statistical info of each cell is calculated and stored beforehand and is used to answer queries.
- Parameters of higher level cells can be easily calculated from parameters of lower level cell:
 - count, mean, s, min, max
 - type of distribution—normal, uniform, etc.
- Use a top-down approach to answer spatial data queries.
- Start from a pre-selected layer—typically with a small number of cells.
- For each cell in the current level compute the confidence interval.
STING Algorithm and Its Analysis

- Remove the irrelevant cells from further consideration
- When finish examining the current layer, proceed to the next lower level
- Repeat this process until the bottom layer is reached
- Advantages:
 - Query-independent, easy to parallelize, incremental update
 - $O(K)$, where K is the number of grid cells at the lowest level
- Disadvantages:
 - All the cluster boundaries are either horizontal or vertical, and no diagonal boundary is detected
CLIQUE (Clustering In QUEst)

- Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD’98)
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- CLIQUE can be considered as both density-based and grid-based
 - It partitions each dimension into the same number of equal length interval
 - It partitions an m-dimensional data space into non-overlapping rectangular units
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - A cluster is a maximal set of connected dense units within a subspace
CLIQUE: The Major Steps

- Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.
- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster
$\tau = 3$
Strength and Weakness of \textit{CLIQUE}

\textbf{Strength}

- \textit{automatically} finds subspaces of the highest dimensionality such that high density clusters exist in those subspaces
- \textit{insensitive} to the order of records in input and does not presume some canonical data distribution
- scales \textit{linearly} with the size of input and has good scalability as the number of dimensions in the data increases

\textbf{Weakness}

- The accuracy of the clustering result may be degraded at the expense of simplicity of the method
Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary
Determine the Number of Clusters

- Empirical method
 - # of clusters ≈ √n/2 for a dataset of n points
- Elbow method
 - Use the turning point in the curve of sum of within cluster variance w.r.t the # of clusters
- Cross validation method
 - Divide a given data set into m parts
 - Use m – 1 parts to obtain a clustering model
 - Use the remaining part to test the quality of the clustering
 - E.g., For each point in the test set, find the closest centroid, and use the sum of squared distance between all points in the test set and the closest centroids to measure how well the model fits the test set
 - For any k > 0, repeat it m times, compare the overall quality measure w.r.t. different k’s, and find # of clusters that fits the data the best
Measuring Clustering Quality

- Two methods: extrinsic vs. intrinsic
- Extrinsic: supervised, i.e., the ground truth is available
 - Compare a clustering against the ground truth using certain clustering quality measure
 - Ex. BCubed precision and recall metrics
- Intrinsic: unsupervised, i.e., the ground truth is unavailable
 - Evaluate the goodness of a clustering by considering how well the clusters are separated, and how compact the clusters are
 - Ex. Silhouette coefficient
For a data set, D, of n objects, suppose D is partitioned into k clusters, C₁, …Cₖ. For each object \(o \in D \), we calculate:

- \(a(o) \) as the average distance between \(o \) and all other objects in the cluster to which \(o \) belongs.
- \(b(o) \) is the minimum average distance from \(o \) to all clusters to which \(o \) does not belong.

\[
a(o) = \frac{\sum_{o' \in C_i, o \neq o'} \text{dist}(o, o')}{|C_i| - 1}
\]

\[
b(o) = \min_{C_j:1 \leq j \leq k, j \neq i} \left\{ \frac{\sum_{o' \in C_j} \text{dist}(o, o')}{|C_j|} \right\}
\]

Silhouette coefficient of \(o \) is:

\[
s(o) = \frac{b(o) - a(o)}{\max\{a(o), b(o)\}}
\]
Measuring Clustering Quality: Extrinsic Methods

- Clustering quality measure: $Q(C, C_g)$, for a clustering C given the ground truth C_g.
- Q is good if it satisfies the following 4 essential criteria:
 - Cluster homogeneity: the purer, the better
 - Cluster completeness: should assign objects belong to the same category in the ground truth to the same cluster
 - Rag bag: putting a heterogeneous object into a pure cluster should be penalized more than putting it into a *rag bag* (i.e., “miscellaneous” or “other” category)
 - Small cluster preservation: splitting a small category into pieces is more harmful than splitting a large category into pieces
Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary
Cluster analysis groups objects based on their similarity and has wide applications. Measure of similarity can be computed for various types of data. Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods. K-means and K-medoids algorithms are popular partitioning-based clustering algorithms. Birch and Chameleon are interesting hierarchical clustering algorithms, and there are also probabilistic hierarchical clustering algorithms. DBSCAN, OPTICS, and DENCLUE are interesting density-based algorithms. STING and CLIQUE are grid-based methods, where CLIQUE is also a subspace clustering algorithm. Quality of clustering results can be evaluated in various ways.
References

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering", KDD'02
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. VLDB’98.
- V. Ganti, J. Gehrke, R. Ramakrishnan. CACTUS Clustering Categorical Data Using Summaries. KDD'99.
References (2)

References (3)

- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.
- L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A Review, SIGKDD Explorations, 6(1), June 2004
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition,
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB’98.
- A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based Clustering in Large Databases, ICDT'01.
- A. K. H. Tung, J. Hou, and J. Han. Spatial Clustering in the Presence of Obstacles, ICDE’01
- Xiaoxin Yin, Jiawei Han, and Philip Yu, “LinkClus: Efficient Clustering via Heterogeneous Semantic Links”, in Proc. 2006 Int. Conf. on Very Large Data Bases (VLDB’06), Seoul, Korea, Sept. 2006.