MSCBD 5002: Knowledge Discovery and Data Mining

Instructor: Lei Chen

Acknowledgement: Slides modified by Dr. Lei Chen based on the slides provided by Jiawei Han, Micheline Kamber, and Jian Pei and Pete Barnum

©2012 Han, Kamber & Pei. All rights reserved.
Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary
Types of Data Sets

- **Record**
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: term-frequency vector
 - Transaction data

- **Graph and network**
 - World Wide Web
 - Social or information networks
 - Molecular Structures

- **Ordered**
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data

- **Spatial, image and multimedia:**
 - Spatial data: maps
 - Image data:
 - Video data:

Table Examples

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>team</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>played</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ball</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>game</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timeout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>season</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Document 1**
 - TID 1: Bread, Coke, Milk
 - TID 2: Beer, Bread
 - TID 3: Beer, Coke, Diaper, Milk
 - TID 4: Beer, Bread, Diaper, Milk
 - TID 5: Coke, Diaper, Milk
Important Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion
Data Objects

- Data sets are made up of data objects.
- A **data object** represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called *samples*, *examples*, *instances*, *data points*, *objects*, *tuples*.
- Data objects are described by **attributes**.
- Database rows -> data objects; columns -> attributes.
Attributes

- **Attribute (or dimensions, features, variables):** a data field, representing a characteristic or feature of a data object.
 - *E.g.*, *customer ID, name, address*

- **Types:**
 - Nominal
 - Binary
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled
Attribute Types

- **Nominal**: categories, states, or “names of things”
 - *Hair_color* = \{auburn, black, blond, brown, grey, red, white\}
 - marital status, occupation, ID numbers, zip codes

- **Binary**
 - Nominal attribute with only 2 states (0 and 1)
 - **Symmetric binary**: both outcomes equally important
 - e.g., gender
 - **Asymmetric binary**: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

- **Ordinal**
 - Values have a meaningful order (ranking) but magnitude between successive values is not known.
 - *Size* = \{small, medium, large\}, grades, army rankings
Numeric Attribute Types

- **Quantity** (integer or real-valued)
- **Interval**
 - Measured on a scale of *equal-sized units*
 - Values have order
 - E.g., *temperature in C° or F°, calendar dates*
 - No true zero-point
- **Ratio**
 - Inherent *zero-point*
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - E.g., *temperature in Kelvin, length, counts, monetary quantities*
Discrete vs. Continuous Attributes

- **Discrete Attribute**
 - Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
 - Sometimes, represented as integer variables
 - Note: Binary attributes are a special case of discrete attributes

- **Continuous Attribute**
 - Has real numbers as attribute values
 - E.g., temperature, height, or weight
 - Practically, real values can only be measured and represented using a finite number of digits
 - Continuous attributes are typically represented as floating-point variables
Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary
Basic Statistical Descriptions of Data

- **Motivation**
 - To better understand the data: central tendency, variation and spread

- **Data dispersion characteristics**
 - median, max, min, quantiles, outliers, variance, etc.

- **Numerical dimensions** correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals

- **Dispersion analysis on computed measures**
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube
Measuring the Central Tendency

- **Mean (algebraic measure) (sample vs. population):**
 \[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]
 Note: \(n \) is sample size and \(N \) is population size.
 - Weighted arithmetic mean:
 - Trimmed mean: chopping extreme values

- **Median:**
 - Middle value if odd number of values, or average of the middle two values otherwise
 - Estimated by interpolation (for grouped data):
 \[\text{median} = L_1 + \left(\frac{n/2 - (\sum \text{freq})l}{\text{freq}_{\text{median}}} \right) \text{width} \]

- **Mode**
 - Value that occurs most frequently in the data
 - Unimodal, bimodal, trimodal

- **Empirical formula:**
 \[\text{mean} - \text{mode} = 3 \times (\text{mean} - \text{median}) \]
Symmetric vs. Skewed Data

- Median, mean and mode of symmetric, positively and negatively skewed data
Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - **Quartiles**: Q_1 (25th percentile), Q_3 (75th percentile)
 - **Inter-quartile range**: $IQR = Q_3 - Q_1$
 - **Five number summary**: min, Q_1, median, Q_3, max
 - **Boxplot**: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - **Outlier**: usually, a value higher/lower than 1.5 x IQR

- Variance and standard deviation (*sample*: s, *population*: σ)
 - **Variance**: (algebraic, scalable computation)
 \[
 s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \right]
 \]
 \[
 \sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^{n} x_i^2 - \mu^2
 \]
 - **Standard deviation** s (*or* σ) is the square root of variance s^2 (*or* σ^2)
Boxplot Analysis

- **Five-number summary** of a distribution
 - Minimum, Q1, Median, Q3, Maximum

- **Boxplot**
 - Data is represented with a box
 - The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
 - The median is marked by a line within the box
 - Whiskers: two lines outside the box extended to Minimum and Maximum
 - Outliers: points beyond a specified outlier threshold, plotted individually
Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From $\mu - \sigma$ to $\mu + \sigma$: contains about 68% of the measurements (μ: mean, σ: standard deviation)
 - From $\mu - 2\sigma$ to $\mu + 2\sigma$: contains about 95% of it
 - From $\mu - 3\sigma$ to $\mu + 3\sigma$: contains about 99.7% of it
Graphic Displays of Basic Statistical Descriptions

- **Boxplot**: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value x_i is paired with f_i, indicating that approximately 100 f_i% of data are $\leq x_i$
- **Quantile-quantile (q-q) plot**: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- **Scatter plot**: each pair of values is a pair of coordinates and plotted as points in the plane
Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent
Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions
Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)

- Plots **quantile** information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately $100 f_i\%$ of the data are below or equal to the value x_i
Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.
Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane.
Positively and Negatively Correlated Data

- The left half fragment is positively correlated
- The right half is negatively correlated
Uncorrelated Data
Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary
Similarity and Dissimilarity

Similarity
- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range $[0,1]$

Dissimilarity (e.g., distance)
- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Proximity refers to a similarity or dissimilarity
Visual Similarity

- Color
- Texture
Uses for Visual Similarity Measures

- Classification
 - Is it a horse?

- Image Retrieval
 - Show me pictures of horses.

- Unsupervised segmentation
 - Which parts of the image are grass?
Histogram Example
Cumulative Histogram
Adaptive Binning
Higher Dimensional Histograms

- Histograms generalize to any number of features
 - Colors
 - Textures
 - Gradient
 - Depth
Distance Metrics

\[
\begin{align*}
\text{Euclidian distance of 5 units} & \quad = \quad \text{Grayvalue distance of 50 values} \\
? & \quad = ?
\end{align*}
\]
Bin-by-bin

Bad!

Good!
Cross-bin

Bad!

Good!
Distance Measures

- Heuristic
 - Minkowski-form
 - Weighted-Mean-Variance (WMV)
- Nonparametric test statistics
 - χ^2 (Chi Square)
 - Kolmogorov-Smirnov (KS)
 - Cramer/von Mises (CvM)
- Information-theory divergences
 - Kullback-Liebler (KL)
 - Jeffrey-divergence (JD)
- Ground distance measures
 - Histogram intersection
 - Quadratic form (QF)
 - Earth Movers Distance (EMD)
Heuristic Histogram Distances

- Minkowski-form distance L_p
 \[D(I, J) = \left(\sum_i |f(i, I) - f(i, J)|^p \right)^{1/p} \]

- Special cases:
 - L_1: absolute, cityblock, or Manhattan distance
 - L_2: Euclidian distance
 - L_{∞}: Maximum value distance
More Heuristic Distances

- Weighted-Mean-Variance
 - Only includes minimal information about the distribution

\[D^r(I, J) = \frac{|\mu_r(I) - \mu_r(J)|}{|\sigma(\mu_r)|} + \frac{|\sigma_r(I) - \sigma_r(J)|}{|\sigma(\sigma_r)|} \]
Examples

- Using
 - Color (CIE Lab)
 - Color + XY
 - Texture (Gabor filter bank)
<table>
<thead>
<tr>
<th>L1 distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jeffrey divergence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\chi^2) statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quadratic form distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Earth Mover Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Concluding thought

= it depends on the application
Data Matrix and Dissimilarity Matrix

- **Data matrix**
 - n data points with p dimensions
 - Two modes

- **Dissimilarity matrix**
 - n data points, but registers only the distance
 - A triangular matrix
 - Single mode
Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)

- **Method 1:** Simple matching
 - \(m \): # of matches, \(p \): total # of variables
 - \[d(i, j) = \frac{p - m}{p} \]

- **Method 2:** Use a large number of binary attributes
 - creating a new binary attribute for each of the \(M \) nominal states
Proximity Measure for Binary Attributes

- A contingency table for binary data

<table>
<thead>
<tr>
<th></th>
<th>Object (i)</th>
<th>Object (j)</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(q)</td>
<td>0</td>
<td>(q + r)</td>
</tr>
<tr>
<td>0</td>
<td>(s)</td>
<td>(t)</td>
<td>(s + t)</td>
</tr>
<tr>
<td>sum</td>
<td>(q + s)</td>
<td>(r + t)</td>
<td>(p)</td>
</tr>
</tbody>
</table>

- Distance measure for symmetric binary variables:

\[
d(i, j) = \frac{r + s}{q + r + s + t}
\]

- Distance measure for asymmetric binary variables:

\[
d(i, j) = \frac{r + s}{q + r + s}
\]

- Jaccard coefficient (\textit{similarity} measure for \textit{asymmetric} binary variables):

\[
sim_{Jaccard}(i, j) = \frac{q}{q + r + s}
\]

- Note: Jaccard coefficient is the same as “coherence”:

\[
coherence(i, j) = \frac{\text{sup}(i, j)}{\text{sup}(i) + \text{sup}(j) - \text{sup}(i, j)} = \frac{q}{(q + r) + (q + s) - q}
\]
Dissimilarity between Binary Variables

- Example

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Fever</th>
<th>Cough</th>
<th>Test-1</th>
<th>Test-2</th>
<th>Test-3</th>
<th>Test-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>M</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mary</td>
<td>F</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Jim</td>
<td>M</td>
<td>Y</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

\[
d(jack, mary) = \frac{0 + 1}{2 + 0 + 1} = 0.33
\]
\[
d(jack, jim) = \frac{1 + 1}{1 + 1 + 1} = 0.67
\]
\[
d(jim, mary) = \frac{1 + 2}{1 + 1 + 2} = 0.75
\]
Standardizing Numeric Data

- **Z-score:**
 \[z = \frac{x - \mu}{\sigma} \]
 - \(X \): raw score to be standardized, \(\mu \): mean of the population, \(\sigma \): standard deviation
 - the distance between the raw score and the population mean in units of the standard deviation
 - negative when the raw score is below the mean, “+” when above

- An alternative way: Calculate the mean absolute deviation
 \[s_f = \frac{1}{n} (|x_{1f} - m_f| + |x_{2f} - m_f| + \ldots + |x_{nf} - m_f|) \]
 where
 \[m_f = \frac{1}{n}(x_{1f} + x_{2f} + \ldots + x_{nf}) \]
 - standardized measure (z-score):
 \[z_{if} = \frac{x_{if} - m_f}{s_f} \]

- Using mean absolute deviation is more robust than using standard deviation
Example:
Data Matrix and Dissimilarity Matrix

Data Matrix

<table>
<thead>
<tr>
<th>point</th>
<th>attribute1</th>
<th>attribute2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>x2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>x3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>x4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Dissimilarity Matrix
(with Euclidean Distance)

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>3.61</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>2.24</td>
<td>5.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x4</td>
<td>4.24</td>
<td>1</td>
<td>5.39</td>
<td>0</td>
</tr>
</tbody>
</table>
Distance on Numeric Data: Minkowski Distance

- **Minkowski distance**: A popular distance measure

\[d(i, j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \cdots + |x_{ip} - x_{jp}|^h} \]

where \(i = (x_{i1}, x_{i2}, \ldots, x_{ip}) \) and \(j = (x_{j1}, x_{j2}, \ldots, x_{jp}) \) are two \(p \)-dimensional data objects, and \(h \) is the order (the distance so defined is also called L-\(h \) norm)

- **Properties**
 - \(d(i, j) > 0 \) if \(i \neq j \), and \(d(i, i) = 0 \) (Positive definiteness)
 - \(d(i, j) = d(j, i) \) (Symmetry)
 - \(d(i, j) \leq d(i, k) + d(k, j) \) (Triangle Inequality)

- A distance that satisfies these properties is a **metric**
Special Cases of Minkowski Distance

- $h = 1$: Manhattan (city block, L_1 norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors
 \[d(i, j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|\]

- $h = 2$: (L$_2$ norm) Euclidean distance
 \[d(i, j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + ... + |x_{i_p} - x_{j_p}|^2)}\]

- $h \to \infty$. “supremum” (L$_{\text{max}}$ norm, L_∞ norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors
 \[d(i, j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|\]
Example: Minkowski Distance

Dissimilarity Matrices

Manhattan (L₁)

<table>
<thead>
<tr>
<th>point</th>
<th>attribute 1</th>
<th>attribute 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>x2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>x3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>x4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x4</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Euclidean (L₂)

<table>
<thead>
<tr>
<th>L₂</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>3.61</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>2.24</td>
<td>5.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x4</td>
<td>4.24</td>
<td>1</td>
<td>5.39</td>
<td>0</td>
</tr>
</tbody>
</table>

Supremum

<table>
<thead>
<tr>
<th>L∞</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, \ldots, M_f\}$
 - map the range of each variable onto $[0, 1]$ by replacing i-th object in the f-th variable by
 $$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$
- compute the dissimilarity using methods for interval-scaled variables
Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects
 \[
 d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}
 \]
- \(f \) is binary or nominal:
 \(d_{ij}^{(f)} = 0 \) if \(x_{if} = x_{jf} \), or \(d_{ij}^{(f)} = 1 \) otherwise
- \(f \) is numeric: use the normalized distance
- \(f \) is ordinal
 - Compute ranks \(r_{if} \) and
 - Treat \(z_{if} \) as interval-scaled
 \[
 z_{if} = \frac{r_{if} - 1}{M_f - 1}
 \]
Cosine Similarity

- A **document** can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

<table>
<thead>
<tr>
<th>Document</th>
<th>team</th>
<th>coach</th>
<th>hockey</th>
<th>baseball</th>
<th>soccer</th>
<th>penalty</th>
<th>score</th>
<th>win</th>
<th>loss</th>
<th>season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document1</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Document2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Document3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Document4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$
\cos(d_1, d_2) = \frac{(d_1 \cdot d_2)}{||d_1|| \ ||d_2||},
$$

where \cdot indicates vector dot product, $||d||$: the length of vector d.
Example: Cosine Similarity

- \(\cos(d_1, d_2) = \frac{d_1 \cdot d_2}{||d_1|| \cdot ||d_2||} \),
 where \(\cdot \) indicates vector dot product, \(||d|| \): the length of vector \(d \)

- Ex: Find the **similarity** between documents 1 and 2.

 \[
 d_1 = (5, 0, 3, 0, 2, 0, 2, 0, 0, 0)

 d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

 d_1 \cdot d_2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25

 ||d_1|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481

 ||d_2|| = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+0*0+1*1)^{0.5} = (17)^{0.5} = 4.12

 \cos(d_1, d_2) = 0.94
Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary
Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
- Many types of data sets, e.g., numerical, text, graph, Web, image.
- Gain insight into the data by:
 - Basic statistical data description: central tendency, dispersion, graphical displays
 - Data visualization: map data onto graphical primitives
 - Measure data similarity
- Above steps are the beginning of data preprocessing.
- Many methods have been developed but still an active area of research.
References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain,” Similarity measures”, IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- C. Yu et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009