Ensemble Learning: An Introduction

Adapted from Slides by Tan, Steinbach, Kumar
General Idea

Step 1: Create Multiple Data Sets

Step 2: Build Multiple Classifiers

Step 3: Combine Classifiers
Why does it work?

• Suppose there are 25 base classifiers
 – Each classifier has error rate, $\varepsilon = 0.35$
 – Assume classifiers are independent
 – Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1 - \varepsilon)^{25-i} = 0.06$$
Examples of Ensemble Methods

• How to generate an ensemble of classifiers?
 – Bagging
 – Boosting
Bagging

• Sampling with replacement

 Data ID

<table>
<thead>
<tr>
<th>Original Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagging (Round 1)</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Bagging (Round 2)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bagging (Round 3)</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

 • Build classifier on each bootstrap sample
 • Each sample has probability \((1 - 1/n)^n\) of being selected as test data
 • Training data = \(1 - (1 - 1/n)^n\) of the original data
The 0.632 bootstrap

• This method is also called the 0.632 bootstrap
 – A particular training data has a probability of 1-1/n of not being picked
 – Thus its probability of ending up in the test data (not selected) is:

 \[
 \left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368
 \]

 – This means the training data will contain approximately 63.2% of the instances
Example of Bagging

Assume that the training data is:

![Graph showing the distribution of +1 and -1 classes between 0.3 and 0.8]

Goal: find a collection of 10 simple thresholding classifiers that collectively can classify correctly.
- Each simple (or weak) classifier is:
 \[(x \leq K \rightarrow \text{class} = +1 \text{ or } -1 \text{ depending on which value yields the lowest error; where } K \text{ is determined by entropy minimization}) \]
Bagging Round 1:

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.2</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.9</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

x <= 0.35 => y = 1
x > 0.35 => y = -1

Bagging Round 2:

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

x <= 0.65 => y = 1
x > 0.65 => y = 1

Bagging Round 3:

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
<th>0.7</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

x <= 0.35 => y = 1
x > 0.35 => y = -1

Bagging Round 4:

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
<th>0.5</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

x <= 0.3 => y = 1
x > 0.3 => y = -1

Bagging Round 5:

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.6</th>
<th>0.6</th>
<th>0.6</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

x <= 0.35 => y = 1
x > 0.35 => y = -1

Bagging Round 6:

<table>
<thead>
<tr>
<th>x</th>
<th>0.2</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.7</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

x <= 0.75 => y = -1
x > 0.75 => y = 1

Bagging Round 7:

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.4</th>
<th>0.4</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>0.9</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

x <= 0.75 => y = -1
x > 0.75 => y = 1

Bagging Round 8:

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.5</th>
<th>0.5</th>
<th>0.7</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

x <= 0.75 => y = -1
x > 0.75 => y = 1

Bagging Round 9:

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.6</th>
<th>0.7</th>
<th>0.7</th>
<th>0.8</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

x <= 0.75 => y = -1
x > 0.75 => y = 1

Bagging Round 10:

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.1</th>
<th>0.1</th>
<th>0.1</th>
<th>0.3</th>
<th>0.3</th>
<th>0.8</th>
<th>0.8</th>
<th>0.9</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
</tr>
</tbody>
</table>

x <= 0.05 => y = -1
x > 0.05 => y = 1

Figure 5.35. Example of bagging.
Bagging (applied to training data)

<table>
<thead>
<tr>
<th>Round</th>
<th>x=0.1</th>
<th>x=0.2</th>
<th>x=0.3</th>
<th>x=0.4</th>
<th>x=0.5</th>
<th>x=0.6</th>
<th>x=0.7</th>
<th>x=0.8</th>
<th>x=0.9</th>
<th>x=1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Sum</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-6</td>
<td>-6</td>
<td>-6</td>
<td>-6</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sign</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>True Class</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 5.36. Example of combining classifiers constructed using the bagging approach.

Accuracy of ensemble classifier: 100% 😊
Bagging - Summary

• Works well if the base classifiers are unstable (complement each other)
• Increased accuracy because it reduces the variance of the individual classifier
• Does not focus on any particular instance of the training data
 – Therefore, less susceptible to model over-fitting when applied to noisy data
• What if we want to focus on a particular instances of training data?
In general,
- **Bias** is contributed to by the training error; a complex model has low bias.
- **Variance** is caused by future error; a complex model has High variance.
- Bagging reduces the variance in the base classifiers.

Figure 5.32. Bias-variance decomposition.
Figure 5.33. Two decision trees with different complexities induced from the same training data.
(a) Decision boundary for decision tree.

(b) Decision boundary for 1-nearest neighbor.

Figure 5.34. Bias of decision tree and 1-nearest neighbor classifiers.
Boosting

• An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 – Initially, all N records are assigned equal weights
 – Unlike bagging, weights may change at the end of a boosting round
Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

<table>
<thead>
<tr>
<th>Original Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boosting (Round 1)</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Boosting (Round 2)</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Boosting (Round 3)</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds
Boosting

- Equal weights are assigned to each training instance (1/d for round 1) at first.
- After a classifier C_i is learned, the weights are adjusted to allow the subsequent classifier C_{i+1} to “pay more attention” to data that were misclassified by C_i.
- Final boosted classifier C^* combines the votes of each individual classifier.
 - Weight of each classifier’s vote is a function of its accuracy.
- Adaboost – popular boosting algorithm.
Adaboost (Adaptive Boost)

• Input:
 – Training set D containing N instances
 – T rounds
 – A classification learning scheme

• Output:
 – A composite model
Adaboost: Training Phase

- Training data D contain N labeled data \((X_1, y_1), (X_2, y_2), (X_3, y_3), \ldots (X_N, y_N)\)
- Initially assign equal weight \(1/d\) to each data point
- To generate \(T\) base classifiers, we need \(T\) rounds or iterations
- Round i, data from D are sampled with replacement, to form \(D_i\) (size \(N\))
- Each data’s chance of being selected in the next rounds depends on its weight
 - Each time the new sample is generated directly from the training data D with different sampling probability according to the weights; these weights are not zero
Adaboost: **Training Phase**

- Base classifier C_i, is derived from training data of D_i
- Error of C_i is tested using D_i
- Weights of training data are adjusted depending on how they were classified
 - Correctly classified: Decrease weight
 - Incorrectly classified: Increase weight
- Weight of a data indicates how hard it is to classify it (directly proportional)
Adaboost: Testing Phase

- The lower a classifier error rate, the more accurate it is, and therefore, the higher its weight for voting should be.
- Weight of a classifier C_i’s vote is
 \[\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right) \]
- Testing:
 - For each class c, sum the weights of each classifier that assigned class c to X (unseen data).
 - The class with the highest sum is the WINNER!

\[
C^*(x_{test}) = \arg \max_y \sum_{i=1}^{T} \alpha_i \delta(C_i(x_{test}) = y)
\]
Example: AdaBoost

• Base classifiers: C_1, C_2, \ldots, C_T

• Error rate: ($i =$ index of classifier, $j =$ index of instance)

$$\epsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

• Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \epsilon_i}{\epsilon_i} \right)$$
Example: AdaBoost

• Assume: N training data in D, T rounds, (x_j, y_j) are the training data, C_i, a_i are the classifier and weight of the i^{th} round, respectively.

• Weight update on all training data in D:

$$w_{j}^{(i+1)} = \frac{w_{j}^{(i)}}{Z_i} \begin{cases} \exp^{-a_i} & \text{if } C_i(x_j) = y_j \\ \exp^a_i & \text{if } C_i(x_j) \neq y_j \end{cases}$$

where Z_i is the normalization factor

$$C^*(x_{test}) = \arg \max_y \sum_{i=1}^{T} \alpha_i \delta(C_i(x_{test}) = y)$$
Illustrating AdaBoost

Initial weights for each data point

Original Data

| + + + | - - - - | + + |
| 0.1 | 0.1 | 0.1 |

Boosting Round 1

| + + + | - - - - - - |
| 0.0094 | 0.0094 | 0.4623 |

Data points for training

\[\alpha = 1.9459 \]
Illustrating AdaBoost

Boosting Round 1

\[\alpha = 1.9459 \]

Boosting Round 2

\[\alpha = 2.9323 \]

Boosting Round 3

\[\alpha = 3.8744 \]

Overall
Random Forests

• Ensemble method specifically designed for decision tree classifiers

• Random Forests grows many trees
 – Ensemble of unpruned decision trees
 – Each base classifier classifies a “new” vector of attributes from the original data
 – Final result on classifying a new instance: voting. Forest chooses the classification result having the most votes (over all the trees in the forest)
Random Forests

• Introduce two sources of randomness: “Bagging” and “Random input vectors”
 – **Bagging method**: each tree is grown using a bootstrap sample of training data
 – **Random vector method**: At each node, best split is chosen from a random sample of \(m \) attributes instead of all attributes
Random Forests

Figure 5.40. Random forests.
Methods for Growing the Trees

• Fix a $m \leq M$. At each node
 – Method 1:
 • Choose m attributes randomly, compute their information gains, and choose the attribute with the largest gain to split
 – Method 2:
 • (When M is not very large): select L of the attributes randomly. Compute a linear combination of the L attributes using weights generated from $[-1,+1]$ randomly. That is, new $A = \sum(W_i A_i)$, $i=1..L$.
 – Method 3:
 • Compute the information gain of all M attributes. Select the top m attributes by information gain. Randomly select one of the m attributes as the splitting node.
Random Forest Algorithm: method 1 in previous slide

- M input features in training data, a number m<<M is specified such that at each node, m features are selected at random out of the M and the best split on these m features is used to split the node. (In weather data, M=4, and m is between 1 and 4)
- m is held constant during the forest growing
- Each tree is grown to the largest extent possible (deep tree, overfit easily), and there is no pruning
Generalization Error of Random Forests (page 291 of Tan book)

• It can be proven that the generalization Error $\leq \rho(1-s^2)/s^2$,
 - ρ is the average correlation among the trees
 - s is the strength of the tree classifiers
 • Strength is defined as how certain the classification results are on the training data on average
 • How certain is measured $\Pr(C_1|X)-\Pr(C_2|X)$, where C_1, C_2 are class values of two highest probability in decreasing order for input instance X.

• Thus, higher diversity and accuracy is good for performance