Improving Search Relevance for Short Queries in Community Question Answering

A joint research by Microsoft and USTC

Presented by: Huang Zonghao
Community Question
Answering
Community Question Answering

stackoverflow
YAHOO! ANSWERS
Quora
MATHEMATICS
Chegg
Baidu
Cwiki
Topic

• Short question query on CQA
 • Users tend to type in short questions while searching on CQA
 • The website is supposed to get users intention behind the short questions
 • To promote the questions
 • To give the suggestions
the new macbook

New macbook........
I am buying a new macbook even though i just bought mine about 4-5 months ago. But when i buy it i want to transfer the old to the new, and then i want to clear off my old one. so when i sell it th...
1 Answer · Laptops & Notebooks

Is the new MacBook...?
really worth it? how does it compare to the old solid white one? what better features does it have? i'm not really a computer whizz when it comes to technical terms so try to explain it plainly.
1 Answer · Laptops & Notebooks

Should I regret buying a new Macbook?
I just bought a brand new macbook yesterday. first of all, i'm finding it VERY confusing since i'm so used to my pc. second, i was excited about being able to edit my home dvds. what they...
5 Answers · Laptops & Notebooks

If i get a new macbook?
If i get a new macbook, can i transfer all my itunes purchases to the new computer? thanks! thats great and all, but i want a macbook so can you answer my question?
5 Answers · Laptops & Notebooks

Buying a new macbook?
Hello. I want to buy a new macbook (the white one), because I don't want to spend more money on the Macbook Pro as I do not need what is much better and I prefer the new design. Can anyone help?
• Examine how to improve search relevance for short queries in CQA question search
Difficulties

- Short — lack of information
- Community — lack of universality
- Need to find both adequate samples and accurate models
Approach

- User intent mining — built up the database
- Model tuning
- Combine the result of both source
User Intent Mining

- Two expectations
 - The most interesting and the most important aspect of the query
 - The most popular subtopic of the query
Three Different Sources

- CQA archives
- Web Search Logs
- Top search results from a commercial search engine
CQA Archives

• Use the relation between the question and description
 • treat the questions as sources and the corresponding descriptions as targets
 • term by term translation model
 • \(P_{cqa}(t|q) = \varepsilon \sum_{w \in q} P_{tp}(t|w)P_{ml}(w|q) + (1 - \varepsilon)P_{ml}(t|C) \)
 • rank the terms and generate the intent word set

\[W = \{(t, \varphi)\} \]
Query Log

• Users click reflects their intents
• Find the relation between the input keywords and the clicks
• generate the intent word set

\[W = \{(t, \varphi)\} \]
Web Search Results

- Capture the searching results from the commercial searching engine
 - for time sensitive factors
 - use scores to rank each term
Input: Query q, top M search results R, window size l, weight parameters η, σ, τ
Output: Intent term set $W = \{(t, \varphi)\}$

1: H \leftarrow titles of documents in R
2: S \leftarrow snippets of documents in R
3: U \leftarrow URLs of documents in R
4: A \leftarrow concatenate T, S and U as a single string;
5: L \leftarrow length of A
6: F \leftarrow $\{(t, f)\} = \emptyset$
7: for i: 1 to L do
8: if $A[i] \in q$ then
9: for j: $-l$ to l do
10: if F contains key $A[i + j]$ then
11: $F[A[i + j]]$ \leftarrow $F[A[i + j]] + 1$
12: else
13: F \leftarrow $F \cup \{(A[i + j], 1)\}$
14: W \leftarrow $\{(t, \varphi)\} = \emptyset$
15: for each $(t, \varphi) \in F$ do
16: φ \leftarrow 0
17: for each $h \in H$ do
18: φ $+$ \leftarrow $\eta \cdot BM25(t, h, H)$
19: for each $s \in S$ do
20: φ $+$ \leftarrow $\sigma \cdot BM25(t, s, S)$
21: for each $u \in U$ do
22: φ $+$ \leftarrow $\tau \cdot BM25(t, u, U)$
23: φ \leftarrow $\varphi \cdot f$
24: W \leftarrow $W \cup \{(t, \varphi)\}$
25: rank W in descending order of φ
26: return W
Comparison of three Sources

- CQA — more descriptions, comments and suggestions
- Query log — more information based
- Web search result — more time sensitive

<table>
<thead>
<tr>
<th>Query</th>
<th>Intent words from CQA</th>
<th>Intent words from query log</th>
<th>Intent words from search results</th>
</tr>
</thead>
<tbody>
<tr>
<td>usain bolt</td>
<td>fastest, world, record, olympics</td>
<td>biography, twitter, girlfriend</td>
<td>2013, gold, moscow, championship</td>
</tr>
<tr>
<td>superbowl</td>
<td>patriots, steelers, giants, nfl</td>
<td>story, history, 2012, ticket, xlvi</td>
<td>ticket, 2013, nfl, history, commercial</td>
</tr>
<tr>
<td>egypt</td>
<td>cairo, country, arabic, pyramids</td>
<td>morsi, election, ancient, history</td>
<td>revolution, brotherhood, police</td>
</tr>
</tbody>
</table>
Models

- Language model for information retrieval
- Translation based language model
- Intent based Language model
Language model for information retrieval

\[P(q|Q) = \prod_{w \in q} [(1 - \lambda)P_{ml}(w|Q) + \lambda P_{ml}(w|C)] \]

- Works well when there is a great deal of overlap between a query and a candidate question
- but fail otherwise
Translation based language model

\[P_{trb}(q|Q) = \prod_{w \in q} [(1 - \lambda)P_{mx}(w|Q) + \lambda P_{ml}(w|C)] \]

where

\[P_{mx}(w|Q) = \alpha P_{ml}(w|Q) + \beta P_{tr}(w|Q) \]

\[P_{tr}(w|Q) = \sum_{v \in Q} P_{tp}(w|v)P_{ml}(v|Q). \]
A little improvement

\[P_{trba}(q|Q) = \prod_{w \in q} [(1 - \lambda)P_{mx}(w|Q, a) + \lambda P_{ml}(w|C)], \]

where

\[P_{mx}(w|Q, a) = \alpha P_{ml}(w|Q) + \beta P_{tr}(w|Q) + \gamma P_{ml}(w|a) \]

\[\gamma \text{ is an extra parameter satisfying} \quad \alpha + \beta + \gamma = 1. \]

- work well for the long questions
Intent Based Language Model

\[P_{ib}(q|Q) = \pi_0 P_{trba}(q|Q) + \sum_{i=1}^{3} \pi_i \sum_{j=1}^{N} \varphi_{ij} P_{trba}(t_{ij}|Q) \]

\[W_i = \{(t_{ij}, \varphi_{ij})\}, \ 1 \leq i \leq 3, \ 1 \leq j \leq N \]

- a combination of translation based language model and the preprocessed intent word set
Experiment

- Collect the CQA data from Yahoo Answers
- Recruit human judges to label the relevance of the candidate questions regarding the queries
Table 2: Overview of two CQA data sets

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Yahoo</th>
<th>Quora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question #</td>
<td>127,787,139</td>
<td>649,843</td>
</tr>
<tr>
<td>Description #</td>
<td>103,605,696</td>
<td>375,829</td>
</tr>
<tr>
<td>Answer #</td>
<td>894,855,746</td>
<td>1,743,259</td>
</tr>
</tbody>
</table>

Table 3: Length distribution of the labeled queries

<table>
<thead>
<tr>
<th>Total</th>
<th>Query Length</th>
<th>Avg. Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total 1 2 3 ≥4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>1782</td>
<td>658 732 289 103</td>
<td>1.94</td>
</tr>
</tbody>
</table>

Table 4: Overview of two labeled data sets

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Yahoo</th>
<th>Quora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queries #</td>
<td>1,782</td>
<td>1,782</td>
</tr>
<tr>
<td>Questions #</td>
<td>12,947</td>
<td>13,739</td>
</tr>
<tr>
<td>Questions #/query</td>
<td>7.27</td>
<td>7.71</td>
</tr>
</tbody>
</table>
Result

Table 6: Evaluation results on Yahoo data and Quora data

<table>
<thead>
<tr>
<th></th>
<th>Yahoo data</th>
<th></th>
<th>Quora data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDCG@1</td>
<td>NDCG@3</td>
<td>NDCG@5</td>
<td>NDCG@1</td>
</tr>
<tr>
<td>LDA[18]</td>
<td>63.35</td>
<td>69.91</td>
<td>72.50</td>
<td>55.72</td>
</tr>
<tr>
<td>LMIR[23]</td>
<td>67.02</td>
<td>73.83</td>
<td>76.07</td>
<td>60.72</td>
</tr>
<tr>
<td>TR[4]</td>
<td>68.27</td>
<td>73.84</td>
<td>75.98</td>
<td>60.52</td>
</tr>
<tr>
<td>TBL[15]</td>
<td>68.13</td>
<td>73.89</td>
<td>76.37</td>
<td>60.97</td>
</tr>
<tr>
<td>TAL[28]</td>
<td>69.44</td>
<td>74.95</td>
<td>76.53</td>
<td>61.96</td>
</tr>
<tr>
<td>TAL+LDA</td>
<td>70.03</td>
<td>74.02</td>
<td>75.92</td>
<td>62.71</td>
</tr>
<tr>
<td>IBLM</td>
<td>71.33</td>
<td>77.12</td>
<td>77.70</td>
<td>64.04</td>
</tr>
</tbody>
</table>
Conclusion
Q&A