1 The Nature of Waves

We’re mainly going to talk about sound waves, but many of these things will apply to other types of waves.

1.1 How do we represent waves?

In [49]: freq = 1 # hz - cycles per second
 amplitude = 3
 time_to_plot = 2 # second
 sample_rate = 100 # samples per second
 num_samples = sample_rate * time_to_plot

 t = np.linspace(0, time_to_plot, num_samples)
 signal = [amplitude * np.sin(freq * i * 2*np.pi) for i in t] # Explain the 2*pi

 setup_graph(x_label='time (in seconds)', y_label='amplitude', title='time domain')
 plt.plot(t, signal)

Out[49]: [<matplotlib.lines.Line2D at 0x7f6ddaee32d0>]

In [48]: import matplotlib
import scipy
from __future__ import division
import scikits.audiolab as audio
import numpy as np
import matplotlib.pyplot as plt
import pylab

%matplotlib inline

Graphing helper function
def setup_graph(title='', x_label='', y_label='', fig_size=None):
 fig = plt.figure()
 if fig_size != None:
 fig.set_size_inches(fig_size[0], fig_size[1])
 ax = fig.add_subplot(111)
 ax.set_title(title)
 ax.set_xlabel(x_label)
 ax.set_ylabel(y_label)
1.2 In the context of sound, what would a wave like this represent?

- Answer: Changes in air pressure
- When the graph is above $x=0$, the pressure of the air is more than “normal” (air is moving toward you)
- When the graph is below $x=0$, the pressure of the air is less than “normal” (air is moving away from you)

2 Example of a real sound wave

In [50]: (input_signal, sample_rate, bits) = audio.wavread("audio_files/vowel_ah.wav")
 time_array = np.arange(0, len(input_signal)/sample_rate, 1/sample_rate)
 setup_graph(title='Ah vowel sound', x_label='time (in seconds)', y_label='amplitude', fig_size=(14,7))
 _ = plt.plot(time_array[0:4000], input_signal[0:4000])
3 The Superposition Principle

- If you add a bunch of waves together, it forms one wave.
- Hearing me talk while knocking on the desk

4 Example

In [51]: # Two subplots, the axes array is 1-d
 x = np.linspace(0, 2 * np.pi, 100)
 y1 = 5 * np.sin(x)
 y2 = 0 * np.sin(2*x)
 y3 = 3 * np.sin(3*x)
 y4 = 2 * np.sin(4*x)

 f, axarr = plt.subplots(4, sharex=True, sharey=True)
 f.set_size_inches(12,6)
 axarr[0].plot(x, y1)
 axarr[1].plot(x, y2)
 axarr[2].plot(x, y3)
 axarr[3].plot(x, y4)
 _ = pylab.show()
5 Wave Interference Example

5.0.1 This is how noise-canceling headphones work

In [53]: y5 = np.sin(3 * x)
y6 = -1 * np.sin(3 * x)
```python
f, axarr = plt.subplots(3, sharex=True, sharey=True)
axarr[0].plot(x, y5, 'b')
axarr[1].plot(x, y6, 'g')
axarr[2].plot(x, y5 + y6, 'r')
_ = pylab.show()
```