
1DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

LECTURE 11
STORAGE AND FILE STRUCTURE

DSAA 5012
Advanced Data Management for Data 

Science



2DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

DBMS ARCHITECTURE

data

indices
system catalog

(data dictionary)

statistical data

authorization and 
integrity manager

transaction 
managerfile managerbuffer manager

application 
program 

object code

compiler 
and linker

query evaluation engine

DML compiler and organizer

DML queries DDL interpreter

application 
interfaces

application 
programs query tools administration 

tools

naïve users
(tellers, web users)

application 
programmers

sophisticated users 
(analysts)

database 
administrators

storage manager

disk storage

query processor

use use usewrite



3DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

➨ Overview of Physical Storage Media

Database Buffer

Record Organization

– Fixed Length Records

– Variable Length Records

File Organization

– Heap File

– Sequential File

– Hash File

Data-Dictionary Storage

Overview of Physical Storage Media

STORAGE AND FILE STRUCTURE: OUTLINE

12, 13



4DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

STORAGE DEVICE HIERARCHY

12.1
a
c
c
e
s
s
 s

p
e
e
d

c
o
s
t

higher

lower

c
a
p
a
c
it
y

re
lia

b
ili

ty

higher

lower

magnetic tapes

optical disks

hard disk drive (HDD)

flash memory (SSD)

main memory (RAM)

cache

Secondary 

storage

Tertiary 

storage

Primary 

storage

I/O boundary

v
o

la
ti

le
p

e
rs

is
te

n
t



6DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

HARD DISK DRIVE (HDD)

⚫ The platters spin.

⚫ The arm assembly moves in 

or out to position a head on 

a desired track.

⚫ Tracks under all the heads 

make a (imaginary) cylinder.

⚫ Only one head reads/writes 

at any one time since it is 

hard for all heads to line up 

on a track exactly.

⚫ The page/block size is often 

the unit of retrieval and is a 

multiple of the sector size

(which is fixed).

Most common secondary storage device.

A sector is the smallest unit that 

can be physically read/written.

12.3

Disk READ/WRITE operations are much 

slower than in-memory operations.



8DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

DISK PAGE ACCESS

⚫ Time to access (read/write) a page on an HDD consists of:

seek Time to move the arms to position the disk head on a

time track. Seek time varies from about 4 to 15 msec.

rotational Time to wait for the page (sector) to rotate under the head.

delay (latency) Rotational delay varies from 2 to 7 msec.

transfer Time to move data to/from the disk surface.

time The transfer rate is about 1 msec. per 4KB page.

☞ Seek time and rotational delay dominate.

☞ Sequential I/O is much faster than random I/O.

☞ The key to better I/O performance:

reduce seek time/rotational delay!



9DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

✓ Overview of Physical Storage Media

➨ Database Buffer

File Organization

– Fixed Length Records

– Variable Length Records

Record Organization in Files

– Heap File

– Sequential File

– Hash File

Data-Dictionary Storage

STORAGE AND FILE STRUCTURE: OUTLINE

12, 13



10DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

STORAGE ACCESS

⚫ To reduce seek time/rotational delay, database systems try to 

minimize page transfers (read/write) between disk and memory.

⚫ The number of disk accesses can be reduced by keeping as 

many pages as possible in main memory.

Buffer – the portion of main memory available to store copies of 

disk pages.

☞ NOTE: main memory space for storing disk pages is limited!

Buffer manager – the subsystem responsible for managing the in-

memory buffer space.

☞ The goal of the buffer manager is to minimize disk accesses.

12.6

Data must be in RAM for an application to operate on it!



11DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

BUFFER MANAGEMENT

Buffer Pool

Application

Database

When the buffer is full, 

the choice of page to 

replace is dictated by 

the replacement policy.

Main memory (RAM)

Disk

occupied page
(retrieved from disk)

free page

Read

Write

Input

Output

buffer manager

Page request

P
a

g
e

 a
c

c
e
s

s

13.5



13DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

BUFFER REPLACEMENT POLICIES

⚫ Most operating systems replace (evict) the 

page least recently used (LRU strategy).

⚫ LRU can be a bad strategy for certain access 

patterns involving repeated scans of data. 

Example: compute the join of two relations r and s

using a nested loop.

Best in this case: replace the page most recently 

used (MRU strategy).

⚫ A DBMS usually has its own buffer manager 

that uses statistical information regarding the 

probability that a request will reference a 

particular relation or page.

Suppose memory can 

hold 10 pages and 

relation s needs 8 pages.

relation r⋈ relation s

1

2

n

9

1

2

8

...

...

b

u

f

f

e

r

p

o

o

l
3

4
d

i

s

k

For each page in r

For each page in s
.
.
.

1

10

o

u

t

p

u

t

r

S



14DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

✓ Overview of Physical Storage Media

✓ Database Buffer

➨ Record Organization

– Fixed Length Records

– Variable Length Records

File Organization

– Heap File

– Sequential File

– Hash File

Data-Dictionary Storage

STORAGE AND FILE STRUCTURE: OUTLINE

12, 13



15DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

RECORD ORGANIZATION

Record organization is the organization of data items, which 

usually represent attributes, into physically stored records.

⚫ A database is stored as

– a collection of files where

– each file is a sequence of records and

– each record is a sequence of fields

that occupy several bytes.

⚫ Most common organization:

– assume the record size is fixed (i.e., each record occupies a fixed 

number of bytes).

– each file has records of one type only.

– different files are used for different relations.

☞ This organization is easiest to implement.

13.2

file
fields

1 2 3 m-1 m

r

e

c

o

r

d

s

1 …

2 …

3 …

4 …

5 …

6 …
.
.
.

n …



16DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

FIXED-LENGTH RECORDS: RELATIVE LOCATION

⚫ In each page, store record i starting from 

byte n  (i – 1), where n is the size of 

each record in bytes.

⚫ Record access is simple, but records 

may cross (span) pages.

☞ Normally file systems do not allow records 

to cross page boundaries (unspanned).

☞ Consequently, there may be some unused 

space at the end of a page.

record 1 A-102 Perryridge 400

record 2 A-305 Round Hill 350

record 3 A-215 Mianus 700

record 4 A-101 Downtown 500

record 5 A-222 Redwood 700

record 6 A-201 Perryridge 900

record 7 A-217 Brighton 750

record 8 A-110 Downtown 600

record 9 A-218 Perryridge 700

⚫ To reclaim space when record i is deleted, shift records up.

⚫ However, moving records inside a page is not good when 

records are pointed to by: 

1. other records (e.g., foreign keys). 2. index entries.

Catalog: account#, branchName, balance

13.2.1



17DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

FIXED-LENGTH RECORDS: FREE LISTS

⚫ Do not move records in a page; 

instead, store the address of the 

first deleted record in the file 

header (the first record).

⚫ Use the first deleted record to 

store the address of the second 

deleted record and so on.

⚫ Can think of these stored 

addresses as pointers since they 

“point” to the location of a record.

header

record 1 A-102 Perryridge 400

record 2

record 3 A-215 Mianus 700

record 4 A-101 Downtown 500

record 5

record 6 A-201 Perryridge 900

record 7

record 8 A-110 Downtown 600

record 9 A-218 Perryridge 700

⚫ This is a more space-efficient representation since we can 

reuse space for normal attributes of free records to store the 

pointers. (No pointers are stored in records being used.)

Catalog: account#, branchName, balance



18DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

VARIABLE-LENGTH RECORDS:
BYTE-STRING REPRESENTATION

⚫ Variable-length records arise in database systems due to:

– Storage of multiple types of records in a file.

– Records that allow variable lengths for one or more fields (e.g., 

varchar data type).

– Records that allow repeating fields (not allowed in relational 

DBMSs).

⚫ Simple (but bad) solution: byte-string representation

– Store each record one after the other as a string of bytes.

– Attach a special end-of-record (⊥) symbol to the end of each record.

– Problems with

➢ record deletion (results in fragmentation of free space).

➢ file growth (may require movement of records if ordered).

file 1 ⊥ 2 ⊥ 3 ⊥ 4 ⊥ 5 ⊥ …

13.2.2



19DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

VARIABLE-LENGTH RECORDS:
EMBEDDED IDENTIFICATION

⚫ Precede fields with metadata (e.g., attribute name).

⚫ Similar to approaches used for semi-structured data (e.g., XML, JSON).

⚫ Requires extra storage space, but efficient if record size is variable or 

data is missing (e.g., not applicable).

⚫ Similar problems as byte-string representation.

record 1 account# A-102 branchName Perryridge balance 400

record 2 account# A-305 branchName Round Hill balance 350

record 3 account# A-215 branchName Mianus balance 700

record 4 account# A-101 branchName Downtown balance 500

record 5 account# A-222 branchName Redwood balance 700

record 6 account# A-217 branchName Brighton balance 750



20DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

VARIABLE-LENGTH RECORDS:
RESERVED SPACE

⚫ Use fixed-length records of a known maximum length.

⚫ Unused space in shorter records is filled with a null or end-of-

record symbol.

⚫ Can result in much empty, unused space in a file if record 

lengths vary widely.

record 1 Perryridge A-102 400 A-210 900 A-218 700

record 2 Round Hill A-305 350 ⊥ ⊥ ⊥ ⊥

record 3 Mianus A-215 700 ⊥ ⊥ ⊥ ⊥

record 4 Downtown A-101 500 A-110 600 ⊥ ⊥

record 5 Redwood A-222 700 ⊥ ⊥ ⊥ ⊥

record 6 Brighton A-217 750 ⊥ ⊥ ⊥ ⊥

Catalog: branchName, account#, balance, account#, balance, …



21DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

VARIABLE-LENGTH RECORDS:
POINTER METHOD

⚫ Useful for certain types of 

records with repeating 

attributes.

⚫ Requires two kinds of pages 

in a file:

Anchor page

Contains the first records of a 

chain.

Overflow page

Contains records other than 

those that are the first records 

of a chain.

Pointers

Link related records together.

Anchor 

page

Perryridge A-102 400

Round Hill A-305 350

Mianus A-215 700

Downtown A-101 500

Redwood A-222 700

Brighton A-217 750

Overflow page A-210 900

A-218 700

A-110 600

Catalog: branchName, account#, balance

Catalog: account#, balance



22DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

VARIABLE-LENGTH RECORDS:
SLOTTED-PAGE STRUCTURE

⚫ The page header contains:

– the number of record entries.

– the end location of the free space in the page.

– the location and size of each record.

⚫ Records can be moved within a page to keep them contiguous

with no empty space between them.

☞ The page header must be updated when a record is moved.

⚫ References to records do not point directly to the records —

instead, they point to the entry for the record in the page header.

Page Header Records

Size # Entries 1 2 3 4
Free Space

Location

End of Free Space



23DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

✓ Overview of Physical Storage Media

✓ Database Buffer

✓ Record Organization

– Fixed Length Records

– Variable Length Records

➨ File Organization

– Heap File

– Sequential File

– Hash File

Data-Dictionary Storage

STORAGE AND FILE STRUCTURE: OUTLINE

12, 13



24DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

FILE ORGANIZATION

Search key: one or more attributes by which records are retrieved.

⚫ The records in a physical file are 

usually organized to facilitate 

efficient retrieval on a search key.

⚫ If the search key is a:

primary or candidate key⟹ at most 

one record is retrieved

non-key⟹ multiple records can be 

retrieved.

⚫ Most common file organizations are

– heap

– sequential

– hash (random)

13.3

File Blocking Factor

The blocking factor of a file r, bfr, is 

the number of records that fit in a 

page and is equal to (for unspanned 

records)

# bytes per page / # bytes per record

Consequently, the number of pages

needed to store a file is equal to

# records / bfr



25DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

STORAGE AND FILE STRUCTURE
EXERCISE 1



26DSAA 5012 L11: EXERCISES6 March 2021©

EXERCISE 1

A Student file has 20,000 records of fixed-length. Assume the page size is

512 bytes and each record has the following fields:

name: 30 bytes, studentId: 8 bytes, address: 40 bytes, phone: 8 bytes, 

birthdate: 8 bytes, gender: 1 byte, majorDeptCode: 4 bytes, minorDeptCode: 4 bytes, 

classCode: 4 bytes, degreeProgram: 3 bytes.

An additional byte is used as a deletion marker.

a) What is the record size in bytes?

record size:

b) What is the blocking factor bfStudent?

bfStudent:

c) How many pages are needed to store the file?

pages needed:

30 + 8 + 40 + 8 + 8 + 1 + 4 + 4 + 4 + 3 + 1 = 111 bytes

512 bytes per page / 111 bytes per Student record = 4 records/page

20,000 records / 4 records per page = 5000

bf = # bytes per page / # bytes per record

# pages = # records / bfr



27DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

HEAP FILE ORGANIZATION

⚫ A record can be placed anywhere in the file where there is space 

(usually at the end).

– There is no relationship between a search key and a record’s 

location.

– As a file grows and shrinks, disk pages are allocated/de-allocated.

⚫ To support record level operations, we need to keep track of the:

– pages in a file.

– free space in pages.

– records in a page.

⚫ Some ways to manage this information:

– linked list: a header page points to full and free data pages, which 

link to each other.

– page directory: header pages, which link to each other, point to data 

pages.

13.3.1



28DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

HEAP FILE USING A PAGE DIRECTORY

⚫ The entry for a page can include the number of free bytes on 

the page.

⚫ The directory is a collection of pages; linked list implementation 

is just one alternative.

Data 

Page 1

Data 

Page 2

Data 

Page n

Header

Page

DIRECTORY

.

.

.



29DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

SEQUENTIAL FILE ORGANIZATION

⚫ The records are stored in sequential order, based on the value 
of a search key (usually, but not always, the primary key).

⚫ Retrieval of records based on the search key is efficient.

A-217 Brighton 750

A-101 Downtown 500

A-110 Downtown 600

A-215 Mianus 700

A-102 Perryridge 400

A-201 Perryridge 900

A-218 Perryridge 700

A-222 Redwood 700

A-305 Round Hill 350

13.3.2

Ordered by 

branchName.

Catalog: account#, branchName, balance



30DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

SEQUENTIAL FILE ORGANIZATION (cont’d)

⚫ Insertion – locate the position 

where the record is to be inserted.

– If there is free space, insert there.

– If no free space, insert the record in 

an overflow page (can be a heap file).

– In either case, the pointer chain must 

be updated.

⚫ Deletion – use pointer chains.

⚫ Search – binary search on search 

key; else sequential file scan.

⚫ The file needs to be reorganized 

periodically to maintain the benefits 

of the sequential order.

A-217 Brighton 750

A-101 Downtown 500

A-110 Downtown 600

A-215 Mianus 700

A-102 Perryridge 400

A-201 Perryridge 900

A-218 Perryridge 700

A-222 Redwood 700

A-305 Round Hill 350

Overflow page

A-88 North Town 800

Ordered by branchName.

Catalog: account#, branchName, balance



31DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

HASH FILE ORGANIZATION

⚫ A hash function defines a key-to-address transformation such 

that a record’s physical address can be calculated from its 

search key value.

⚫ The result of a hash function specifies in which page of the file a 

record should be stored. (Pages are also referred to as buckets.)

⚫ Insertion – apply the hash function to the search key value and 

store the record in the page calculated by the hash function.

➢ There is a direct relationship between the search key value and a 

record’s physical location.

⚫ Search – apply the same hash function to the search key value 

and retrieve the record from the page calculated by the hash 

function.

➢ A record can often be retrieved by accessing only one page.



32DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

EXAMPLE HASH FILE ORGANIZATION

⚫ Assume we want to store an Employee relation with 100,000 records and 

we can put 100 records per page (i.e., the blocking factor, bfEmployee, is 

100).

⚫ Consequently, we need # records / bfEmployee = 100,000 / 100 = 1,000

pages to store the records.

⚫ To allow for future insertions, we can allocate 1,250 pages (buckets) 

for the relation (i.e., so that pages are only 80% full).

⚫ We want to organize the file so that we can efficiently answer equality 

selections on salary ⟹ salary is the search key .

Example query: Find all employee records whose salary is equal to $15,500.

⚫ To support this query, the hash function might have the form

h(salary)=(a*salary+b) modulo 1250.



33DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

EXAMPLE HASH FILE ORGANIZATION (CONT”D) 

☞ Good for equality search

on hash value only!

Query: Find all employee records 

whose salary is equal to X.

Hash function

h(salary)=(3*salary+4) modulo 1250

salary value = 15,500

overflow page

page 254

page 1

page 2

page 1250

hash function

.

.

.

.

.

.

File pages.

Search key: salary

Compute the hash function of the salary and 

find the records in the corresponding page.

Insert a new Employee record.

Compute the hash function of salary and 

insert the record in the corresponding page.

If the page is full, create an overflow page

and insert the new record there.



35DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

SIMPLISTIC ANALYSIS OF FILE ORGANIZATIONS

⚫ When analyzing and comparing different file organizations, for 

simplicity we will:

– ignore CPU costs (e.g., searching a page in memory).

– approximate I/O costs by ignoring I/Os saved due to page 

prefetching.

– do average-case analysis using several simplistic assumptions.

➢ Single record insert and delete

➢ For heap files

o Equality selection is on the key; therefore, there is exactly one match.

o A record insert is always at the end of a file.

➢ For sequential files

o File compaction happens after a record deletion.

o Selection is on sort field(s).

➢ For hash files

o No overflow pages.

o 80% page occupancy.



36DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

PAGE I/O COST OF OPERATIONS

☞ Several assumptions underlie these (rough) estimates!

Operation Heap File Sequential File Hash File

Scan all records B B 1.251 B

Equality search2 0.5 B log2 B3 1

Range search B
log2 B + 

# of pages with matches
1.251 B

Insert 24 Equality search + B5 2

Delete Equality search + 1 Equality search + B5 2

B is the number of pages in a file.

1 Assumes 80% occupancy of pages to allow for future additions. Thus, 1.25B pages are needed to store all records.

2 Assumes the search is on the key value.

3 Assumes binary search is used.

4 Assumes the record is inserted at the end of the file – read last page and write it back.

5 Assumes insert/delete is in the middle of the file and need to read and write all pages in second half of the file.

file 1 2 3 4 5 6 … B



39DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

STORAGE AND FILE STRUCTURE: SUMMARY

⚫ Available data storage options have different cost/performance.

☞ HDDs most commonly used DBMS storage device.

⚫ DBMS performance is highly dependent on the assignment of 

relation tuples to disk pages.

☞Often the bottleneck in DBMS performance.

☞ Buffer management is very important.

⚫ DBMSs use file organizations provided by operating systems to 

store data.

☞ Heap, sequential or hash.



40DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

✓ Introduction

✓ Entity-Relationship (E-R) Model and Database Design

✓ Relational Algebra

✓ Structured Query Language (SQL)

✓ Relational Database Design

✓ Storage and File Structure

➨ Indexing

Query Processing

Query Optimization

Transactions

Concurrency Control

Recovery System

NoSQL Databases

COMP 3311: SYLLABUS



41DSAA 5012 L11: STORAGE & FILE STRUCTURE6 March 2021©

STORAGE AND FILE STRUCTURE
EXERCISES 2, 3, 4

Upload your completed exercise 

worksheet to Canvas by March 

10th 11 p.m.


