
1DSAA 5012 L7: SQL20 February 2021©

LECTURE 7
STRUCTURED QUERY LANGUAGE (SQL)

DSAA 5012
Advanced Data Management for Data

Science

2DSAA 5012 L7: SQL20 February 2021©

✓ SQL Basic Structure and Operations

✓ Additional Basic Operations

➨ Aggregate Functions

– Group By Clause

– Having Clause

Nested Subqueries and Set Operations

Database Definition

Database Modification

Using SQL in Applications

STRUCTURED QUERY LANGUAGE (SQL): OUTLINE

3, 4, 5

3DSAA 5012 L7: SQL20 February 2021©

EXAMPLE BANK RELATIONAL SCHEMA

Branch(branchName, district, assets)

Client(clientId, name, address, district)

Loan(loanNo, amount, branchName)

Account(accountNo, balance, branchName)

Borrower(clientId, loanNo)

Depositor(clientId, accountNo)

Attribute names in

italics are foreign

key attributes.

4DSAA 5012 L7: SQL20 February 2021©

AGGREGATE FUNCTIONS

⚫ An aggregate function operates on an attribute of a relation and

returns a single value (i.e., a table with one row and one column).

count number of tuples / values avg average value

stdev standard deviation of values max maximum value

sum sum of values (total) min minimum value

⚫ For avg, stdev and sum the input must be numbers.

⚫ For other functions, the input can be non-numeric (e.g., strings).

⚫ All aggregate functions, except count(*), ignore null values in the

input collection and return a value of null for an empty collection.

☞ The count of an empty collection is defined to be 0.

3.7

5DSAA 5012 L7: SQL20 February 2021©

AGGREGATE FUNCTIONS: COMPUTATION

Query: Find the average account balance at the Pacific Place

branch.

select avg(balance) as avgBalance

from Account

where branchName='Pacific Place';

Account

accountNo balance branchName

A-102 40000 Star House

A-222 75000 Pacific Place

A-201 90000 Star House

A-215 75000 Pacific Place

A-217 7500 Langham Place

A-224 100000 Pacific Place

balance

75000

75000

100000

accountNo balance branchName

A-222 75000 Pacific Place

A-215 75000 Pacific Place

A-224 100000 Pacific Place

Select the tuples
where branch name
equals Pacific Place.

Project on the
balance attribute

retaining duplicates.

Calculate the
average.

avg(balance)

avgBalance

83333.33

Account

accountNo balance branchName

A-102 40000 Star House

A-222 75000 Pacific Place

A-201 90000 Star House

A-215 75000 Pacific Place

A-217 7500 Langham Place

A-224 100000 Pacific Place

accountNo balance branchName

A-222 75000 Pacific Place

A-215 75000 Pacific Place

A-224 100000 Pacific Place

3.7.1

Account(accountNo, balance, branchName)

6DSAA 5012 L7: SQL20 February 2021©

The distinct keyword

removes duplicates.Why?

Duplicates are retained

for aggregate functions!Why?

AGGREGATE FUNCTIONS: EXAMPLES

Query: Find the number of accounts.

select count(*)

from Account;

Same as:

select count(branchName)

from Account;

Different from:

select count(distinct branchName)

from Account;

☞ Remember * stands

for all attributes.

Cannot say:

select count(distinct *)

from Account;

SQL does not allow the

use of distinct with count(*).

Account(accountNo, balance, branchName)

Account

accountNo balance branchName

A-102 40000 Star House

A-222 75000 Pacific Place

A-201 90000 Star House

A-215 75000 Pacific Place

A-217 7500 Langham Place

A-224 100000 Pacific Place

7DSAA 5012 L7: SQL20 February 2021©

GROUP BY CLAUSE

A group by clause permits aggregate results to be displayed (e.g.,

max, min, sum, etc.) for groups. For example, group by x will get a

result for every different value of x.

☞ Aggregate queries without group by return a single number.

Query: Find the number of accounts for each branch.

select branchName, count(*)

from Account

group by branchName;

3.7.2

Account(accountNo, balance, branchName)

8DSAA 5012 L7: SQL20 February 2021©

Account

accountNo balance branchName

A-102 40000 Star House

A-222 75000 Pacific Place

A-201 90000 Star House

A-215 75000 Pacific Place

A-217 7500 Langham Place

A-224 100000 Pacific Place

GROUP BY CLAUSE (cont’d)

Query: Find the number of accounts for each branch.

select branchName, count(*)

from Account

group by branchName;

branchName count(*)

Star House 2

Pacific Place 3

Langham Place 1

Group the tuples
by branch name.

For each group, count the
number of tuples in the group.

accountNo balance branchName

A-102 40000 Star House

A-201 90000 Star House

A-222 75000 Pacific Place

A-215 75000 Pacific Place

A-224 100000 Pacific Place

A-217 7500 Langham Place

Account(accountNo, balance, branchName)

9DSAA 5012 L7: SQL20 February 2021©

An attribute in the select clause must

also appear in the group by clause.

The opposite is not true!

Attributes in the group by clause do not

need to appear in the select clause.

Which balance value to output for each group? Illegal! Why?

select branchName, balance, count(*)

from Account

group by branchName;

GROUP BY CLAUSE: ATTRIBUTES

accountNo balance branchName

A-102 40000 Star House

A-201 90000 Star House

A-222 75000 Pacific Place

A-215 75000 Pacific Place

A-224 100000 Pacific Place

A-217 7500 Langham Place

Query: Find the balance and the number of accounts for each
branch.

Account(accountNo, balance, branchName)

10DSAA 5012 L7: SQL20 February 2021©

GROUP BY CLAUSE: ATTRIBUTES (cont’d)

Query: Find the balance and the number of accounts for each
branch.

branchName balance count

Star House 40000 1

Star House 90000 1

Pacific Place 75000 2

Pacific Place 100000 1

Langham Place 7500 1

select branchName, balance, count(*)

from Account

group by branchName, balance;

Either is

legal SQL.

select branchName, sum(balance), count(*)

from Account

group by branchName;

branchName
sum

(balance)
count

Star House 130000 2

Pacific Place 25000 3

Langham Place 7500 1

Account(accountNo, balance, branchName)

11DSAA 5012 L7: SQL20 February 2021©

select branchName, count(distinct clientId)

from Depositor natural join Account

group by branchName;

clientId branchName

1 Star House

2 Pacific Place

4 Langham Place

3 Pacific Place

1 Star House

5 Pacific Place

clientId branchName

1 Star House

2 Pacific Place

4 Langham Place

3 Pacific Place

1 Star House

5 Pacific Place

clientId branchName

1 Star House

1 Star House

4 Langham Place

3 Pacific Place

2 Pacific Place

5 Pacific Place

GROUP BY CLAUSE: WITH JOIN

count

clientId branchName

1 Star House

4 Langham Place

3 Pacific Place

2 Pacific Place

5 Pacific Place

branchName count

Star House 1

Langham Place 1

Pacific Place 3

group by distinct

Account(accountNo, balance, branchName) Depositor(clientId, accountNo)

Query: Find the number of depositors for each branch.

JOIN⇒ (clientId, accountNo, balance, branchName)

☞ Group by and aggregate functions apply to the join result.

12DSAA 5012 L7: SQL20 February 2021©

HAVING CLAUSE

The having clause allows a condition to be applied to groups rather

than to individual tuples.

Query: Find the names and average balances of all branches

where the average account balance is more than $8000.

select branchName, avg(balance)

from Account

group by branchName

having avg(balance)>8000;

accountNo balance branchName

A-102 40000 Star House

A-201 90000 Star House

A-222 75000 Pacific Place

A-215 75000 Pacific Place

A-224 100000 Pacific Place

A-217 7500 Langham Place

avg(65000.00)

avg(83333.33)

avg(7500.00)

✓

✓

X

3.7.3

Any condition that

appears in the

having clause

refers to the groups

and is applied after

the formation of the

groups.

Any attribute in the

having clause that

is not aggregated

must appear in the

group by clause.

Account(accountNo, balance, branchName)

14DSAA 5012 L7: SQL20 February 2021©

HAVING CLAUSE: EXAMPLE

Query: Find the branch names in Central and Western district

where the average account balance is more than $8000.

select branchName as branch

from Account natural join Branch

where district='Central and Western'

group by branchName

having avg(balance)>8000;

First, find the records

that satisfy the where

clause predicate.

Then, form the

groups (include only

those tuples that

satisfy the where

clause predicate).

Finally, apply the

having clause to

each group.

Account(accountNo, balance, branchName) Branch(branchName, district, assets)

SQL Evaluation Note

In most relational DBMSs, an alias defined

in the select clause cannot be used in most

other clauses. This is because the order

of execution of a select statement is:

1. from clause 4. having clause

2. where clause 5. select clause

3. group by clause 6. order by clause

Consequently, a column or alias name

defined in a clause executed later cannot

be used in an earlier clause.

15DSAA 5012 L7: SQL20 February 2021©

STRUCTURED QUERY
LANGUAGE (SQL)

EXERCISES 1, 2

16DSAA 5012 L7: SQL20 February 2021©

EXAMPLE RELATIONAL SCHEMA AND DATABASE

Sailor

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

11 tuples

Reserves

sailorId boatId rDate

22 101 10/10/17

22 102 10/10/17

22 103 08/10/17

22 104 07/10/17

31 102 10/11/17

31 103 06/11/17

31 104 12/11/17

64 101 05/09/17

64 102 08/09/17

74 103 08/09/17

99 104 08/08/17

11 tuples

Boat

boatId bName color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

105 Serenity Cyan

5 tuples

Sailor(sailorId, sName, rating, age)

Boat(boatId, bName, color)

Reserves(sailorId, boatId, rDate)

Attribute names in

italics are foreign

key attributes.

17DSAA 5012 L7: SQL20 February 2021©

EXERCISE 1

Sailor

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

11 tuples

Reserves

sailorId boatId rDate

22 101 10/10/17

22 102 10/10/17

22 103 08/10/17

22 104 07/10/17

31 102 10/11/17

31 103 06/11/17

31 104 12/11/17

64 101 05/09/17

64 102 08/09/17

74 103 08/09/17

99 104 08/08/17

11 tuples

Boat

boatId bName color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

105 Serenity Cyan

5 tuples

Find the boat name and the number

of reservations for each red boat.

18DSAA 5012 L7: SQL20 February 2021©

EXERCISE 1

select bName, count(*) as reservationCount

from Boat natural join Reserves

where color='red'

group by boatId;

☞ All non-aggregate attributes in the select clause

must appear in the group by clause
(i.e., bName must appear in the group by clause).

Illegal!!!

Why?

☞ (Interlake, 3), (Marine, 3)

Is this a

correct

solution?

Boat(boatId, bName, color) Reserves(sailorId, boatId, rDate)

Find the boat name and the number

of reservations for each red boat.

19DSAA 5012 L7: SQL20 February 2021©

sailorId boatId rDate bName color

22 102 10/10/17 Interlake red

22 104 07/10/17 Marine red

31 102 10/11/17 Interlake red

31 104 12/11/17 Marine red

64 102 08/09/17 Interlake red

99 104 08/08/17 Marine red

sailorId boatId rDate bName color

22 102 10/10/17 Interlake red

22 104 07/10/17 Marine red

31 102 10/11/17 Interlake red

31 104 12/11/17 Marine red

64 102 08/09/17 Interlake red

99 104 08/08/17 Marine red

EXERCISE 1 (cont’d)

select bName, count(*) as reservationCount

from Boat natural join Reserves

where color='red'

group by bName, boatId;

☞ (Interlake, 3), (Marine, 3)

bName reservationCount

Interlake 3

Marine 3

a group

a group

Reservations for red boats.

Name and count of the

number of reservations

for each red boat.

Boat(boatId, bName, color) Reserves(sailorId, boatId, rDate)

Find the boat name and the number

of reservations for each red boat.

20DSAA 5012 L7: SQL20 February 2021©

sailorId boatId rDate bName color

22 102 10/10/17 Interlake red

22 104 07/10/17 Marine red

31 102 10/11/17 Interlake red

31 104 12/11/17 Marine red

64 102 08/09/17 Interlake red

99 104 08/08/17 Marine red

EXERCISE 1 (cont’d)

select bName, count(*) as reservationCount

from Boat natural join Reserves

where color='red'

group by bName;

☞ (Interlake, 3), (Marine, 3)

bName reservationCount

Interlake 3

Marine 3

Do you see

any problems

with this

solution?

a group

a group

Reservations for red boats.

Name and count of the

number of reservations

for each red boat.

Boat(boatId, bName, color) Reserves(sailorId, boatId, rDate)

Find the boat name and the number

of reservations for each red boat.

21DSAA 5012 L7: SQL20 February 2021©

sailorId boatId rDate bName color

22 101 10/10/17 Interlake blue

64 101 05/09/17 Interlake blue

22 102 10/10/17 Interlake red

31 102 10/11/17 Interlake red

64 102 08/09/17 Interlake red

22 103 08/10/17 Clipper green

31 103 06/11/17 Clipper green

74 103 08/09/17 Clipper green

22 104 07/10/17 Marine red

31 104 12/11/17 Marine red

99 104 08/08/17 Marine red

sailorId boatId rDate bName color

22 101 10/10/17 Interlake blue

64 101 05/09/17 Interlake blue

22 102 10/10/17 Interlake red

31 102 10/11/17 Interlake red

64 102 08/09/17 Interlake red

22 103 08/10/17 Clipper green

31 103 06/11/17 Clipper green

74 103 08/09/17 Clipper green

22 104 07/10/17 Marine red

31 104 12/11/17 Marine red

99 104 08/08/17 Marine red

EXERCISE 1 (cont’d)

bName reservationCount

Interlake 5

Clipper 3

Marine 3

select bName, count(*) as reservationCount

from Boat natural join Reserves

group by bName;

Since bName is not unique,

grouping on it can get an

incorrect result!

Suppose we

change the

query to this.

What is the

result?

a group

a group

a group

Find the boat name and the number

of reservations for each boat.

Boat(boatId, bName, color) Reserves(sailorId, boatId, rDate)

22DSAA 5012 L7: SQL20 February 2021©

sailorId boatId rDate bName color

22 101 10/10/17 Interlake blue

64 101 05/09/17 Interlake blue

22 102 10/10/17 Interlake red

31 102 10/11/17 Interlake red

64 102 08/09/17 Interlake red

22 103 08/10/17 Clipper green

31 103 06/11/17 Clipper green

74 103 08/09/17 Clipper green

22 104 07/10/17 Marine red

31 104 12/11/17 Marine red

99 104 08/08/17 Marine red

EXERCISE 1 (cont’d)

bName reservationCount

Interlake 2

Interlake 3

Clipper 3

Marine 3

select bName, count(*) as reservationCount

from Boat natural join Reserves

group by bName, boatId;

Correct

solution.

a group

a group

a group

a group

Recall:

attributes in the

group by clause

do not have to

appear in the

select clause.

Boat(boatId, bName, color) Reserves(sailorId, boatId, rDate)

Find the boat name and the number

of reservations for each boat.

23DSAA 5012 L7: SQL20 February 2021©

EXERCISE 2

Sailor

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

11 tuples

Reserves

sailorId boatId rDate

22 101 10/10/17

22 102 10/10/17

22 103 08/10/17

22 104 07/10/17

31 102 10/11/17

31 103 06/11/17

31 104 12/11/17

64 101 05/09/17

64 102 08/09/17

74 103 08/09/17

99 104 08/08/17

11 tuples

Boat

boatId bName color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

105 Serenity Cyan

5 tuples

Find the sailor id and number of reservations made for each sailor.

24DSAA 5012 L7: SQL20 February 2021©

EXERCISE 2

Find the sailor id and number of reservations made for each sailor.

select sailorId, count(sailorId) as reservationCount

from Reserves

group by sailorId; How to include
all sailors?

sailorId reservationCount

22 4

31 3

64 2

74 1

99 1

select sailorId, count(sailorId) as reservationCount

from Sailor natural join Reserves

group by sailorId;

sailorId reservationCount

22 4

31 3

64 2

74 1

99 1

What’s the
problem?

☞ (22, 4), (29, 0), (31, 3), (32, 0), (58, 0), (64, 2),

(71, 0), (74, 1), (85, 0), (95, 0), (99, 1)

How about joining Sailor and Reserves?

Sailor(sailorId, sName, rating, age) Reserves(sailorId, boatId, rDate)

25DSAA 5012 L7: SQL20 February 2021©

EXERCISE 2 (cont’d)

sailorId sName rating age boatId rDate

22 Dustin 7 45 101 10/10/17

22 Dustin 7 45 102 10/10/17

22 Dustin 7 45 103 08/10/17

22 Dustin 7 45 104 07/10/17

31 Lubber 8 55 102 10/11/17

31 Lubber 8 55 103 06/11/17

31 Lubber 8 55 104 12/11/17

64 Horatio 7 35 101 05/09/17

64 Horatio 7 35 102 08/09/17

74 Horatio 9 35 103 08/09/17

99 Chris 10 30 104 08/08/17

sailorId reservationCount

22 4

31 3

64 2

74 1

99 1

☞ (22, 4), (29, 0), (31, 3), (32, 0), (58, 0), (64, 2),

(71, 0), (74, 1), (85, 0), (95, 0), (99, 1)

select sailorId, count(sailorId) as reservationCount

from Sailor natural join Reserves

group by sailorId;

☞ Some Sailor tuples have no

match in the Reserves relation.

How to deal with this problem?

Find the sailor id and number of reservations made for each sailor.

Sailor(sailorId, sName, rating, age) Reserves(sailorId, boatId, rDate)

29 Brutus 1 33 - -

32 Andy 8 25 - -

58 Rusty 10 35 - -

71 Zorba 10 16 - -

85 Art 3 25 - -

95 Bob 3 63 - -

26DSAA 5012 L7: SQL20 February 2021©

EXERCISE 2 (cont’d)

select sailorId, count(boatId) as reservationCount

from Sailor natural left outer join Reserves

group by sailorId;

☞ (22, 4), (29, 0), (31, 3), (32, 0), (58, 0), (64, 2),

(71, 0), (74, 1), (85, 0), (95, 0), (99, 1)

Find the sailor id and number of reservations made for each sailor.

Sailor(sailorId, sName, rating, age) Reserves(sailorId, boatId, rDate)

Recall: left outer join keeps all copies of the common attributes;

natural left outer join keeps only one copy of the common attributes.

select sailorId, count(sailorId) as reservationCount

from Sailor natural left outer join Reserves

group by sailorId;

Is this a

correct

solution?

No! Why?

Counting is done on the sailor ids and all

of them appear at least once in the result.

27DSAA 5012 L7: SQL20 February 2021©

✓ SQL Basic Structure and Operations

✓ Additional Basic Operations

✓ Aggregate Functions

➨ Nested Subqueries and Set Operations
– Set Membership

– Set Comparison

– Empty Relation Test

– Duplicate Tuples Test

– With Clause

Database Definition

Database Modification

Using SQL in Applications

STRUCTURED QUERY LANGUAGE (SQL): OUTLINE

3, 4, 5

28DSAA 5012 L7: SQL20 February 2021©

NESTED SUBQUERIES

⚫ Every SQL statement returns a relation as the result.

☞ A relation can be null or contain only a single, atomic value.

⚫ Consequently, a value or a set of values can be replaced with a

SQL statement (i.e., with a subquery).

☞ The query is illegal if the subquery returns the wrong number

of tuples or the wrong type for the comparison.

3.8

select *

from Loan

where amount>12000;

select *

from Loan

where amount>(select avg(amount)

from Loan);

Subqueries are commonly used to test for set membership,

do set comparison or determine set cardinality.

This subquery must

return a single,

numeric value else

it is illegal.

Loan(loanNo, amount, branchName)

29DSAA 5012 L7: SQL20 February 2021©

The set of

clients who

have an

account.

SET MEMBERSHIP: IN

Query: Find all clients who have both an account and a loan.

3.8.1

select distinct clientId

from Borrower

where clientId in (select clientId

from Depositor);

The in operator tests for the

presence of set membership

(i.e., selects clients in the

Borrower set only if they are in

the Depositor set).

Duplicates are retained.

Borrower(clientId, loanNo) Depositor(clientId, accountNo)

30DSAA 5012 L7: SQL20 February 2021©

SET MEMBERSHIP: NOT IN

Query: Find all clients who have a loan, but do not have an

account.

select distinct clientId

from Borrower

where clientId not in (select clientId

from Depositor);

The set of

clients who

have an

account.

The not in operator tests for the

absence of set membership

(i.e., selects clients in the

Borrower set only if they are not

in the Depositor set).

Duplicates are retained.

Borrower(clientId, loanNo) Depositor(clientId, accountNo)

31DSAA 5012 L7: SQL20 February 2021©

select branchName

from Branch

where assets > (select min(assets)

from Branch

where district='Central and Western');

SET COMPARISON: SOME

Query: Find the names of all branches that have greater assets

than some (i.e., at least one) branch located in Central

and Western.

☞ Equivalent to: Find the names of all branches that have

greater assets than the minimum assets of

any branch located in Central and Western.

3.8.2

select branchName

from Branch

where assets >some (select assets

from Branch

where district='Central and Western');

The set of assets

values of all

branches in Central

and Western.

The where clause is true if the assets value of a Branch tuple is

greater than at least one member of the set of all assets values

of branches in Central and Western (i.e., greater than the

minimum assets value in the set). Duplicates are retained.

Branch(branchName, district, assets)

33DSAA 5012 L7: SQL20 February 2021©

select branchName

from Branch

where assets > (select max(assets)

from Branch

where district='Central and Western');

SET COMPARISON: ALL

Query: Find the names of those branches that have greater

assets than all branches located in Central and Western.

☞ Equivalent to: Find the names of all branches that have

greater assets than the maximum assets of

any branch located in Central and Western.

select branchName

from Branch

where assets >all (select assets

from Branch

where district='Central and Western');

The set of assets

values of all

branches in Central

and Western.

The where clause is true if the assets value of a Branch tuple is

greater than each of the members of the set of all assets values

of branches in Central and Western (i.e., greater than the

maximum assets value in the set). Duplicates are retained.

Branch(branchName, district, assets)

35DSAA 5012 L7: SQL20 February 2021©

STRUCTURED QUERY
LANGUAGE (SQL)

EXERCISES 3, 4

36COMP 3311 L7: EXERCISES20 February 2021©

EXERCISE 3

Sailor

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

11 tuples

Reserves

sailorId boatId rDate

22 101 10/10/17

22 102 10/10/17

22 103 08/10/17

22 104 07/10/17

31 102 10/11/17

31 103 06/11/17

31 104 12/11/17

64 101 05/09/17

64 102 08/09/17

74 103 08/09/17

99 104 08/08/17

11 tuples

Boat

boatId bName color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

105 Serenity Cyan

5 tuples

Find the records (tuples) of the sailors with the highest rating.

37COMP 3311 L7: EXERCISES20 February 2021©

select *

from Sailor

where rating=max(rating);

EXERCISE 3

select *, max(rating)

from Sailor;

A query that returns multiple tuples

cannot contain an aggregate function.

☞ There are multiple tuples in the

result, but only one max value!

There is no max(rating) value to

compare in the where clause.

☞ The max rating value must be

obtained by a select statement!

Find the records (tuples) of the sailors with the highest rating.

Is this a

correct

solution?

No! Why?

Is this a

correct

solution?

No! Why?

☞ (58, Rusty, 10, 35), (71, Zorba, 10, 16), (99, Chris, 10, 30)

Sailor(sailorId, sName, rating, age)

38COMP 3311 L7: EXERCISES20 February 2021©

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

select *

from Sailor

where rating=(select max(rating)

from Sailor);

EXERCISE 3 (cont’d)

Find the records (tuples) of the sailors with the highest rating.

☞ (58, Rusty, 10, 35), (71, Zorba, 10, 16), (99, Chris, 10, 30)

max(rating)

10

sailorId sName rating age

58 Rusty 10 35

71 Zorba 10 16

99 Chris 10 30

Sailors with the maximum rating.

the

maximum

rating.

All sailors. Sailor(sailorId, sName, rating, age)

39COMP 3311 L7: EXERCISES20 February 2021©

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

select *

from Sailor

where rating >=all (select rating

from Sailor);

EXERCISE 3 (cont’d)

Find the records (tuples) of the sailors with the highest rating.

☞ (58, Rusty, 10, 35), (71, Zorba, 10, 16), (99, Chris, 10, 30)

rating

7

1

8

8

10

7

10

9

3

3

10

sailorId sName rating age

58 Rusty 10 35

71 Zorba 10 16

99 Chris 10 30

Sailors with the highest rating.

All ratings.

All sailors.

Use set

membership

Sailor(sailorId, sName, rating, age)

40COMP 3311 L7: EXERCISES20 February 2021©

?
No sailors

are selected!

Why?

select *

from Sailor

where rating>all (select rating

from Sailor);

EXERCISE 3 (cont’d)

What is the result if we replace “>=all” with “>all”?

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

rating

7

1

8

8

10

7

10

9

3

3

10

All ratings.

All sailors.

No ratings are > the

maximum rating!

Sailor(sailorId, sName, rating, age)

☞ Recall “>all” is equivalent to greater than the maximum.

41COMP 3311 L7: EXERCISES20 February 2021©

?
All sailors are

selected!

Why?

select *

from Sailor

where rating>=some (select rating

from Sailor);

EXERCISE 3 (cont’d)

What is the result if we replace “>=all” with “>=some”?

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

rating

7

1

8

8

10

7

10

9

3

3

10

All ratings.

All sailors.

All ratings are >=

the minimum rating!

Sailor(sailorId, sName, rating, age)

☞ Recall “>some” is equivalent to greater than the minimum.

42COMP 3311 L7: EXERCISES20 February 2021©

EXERCISE 4

Sailor

sailorId sName rating age

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55

32 Andy 8 25

58 Rusty 10 35

64 Horatio 7 35

71 Zorba 10 16

74 Horatio 9 35

85 Art 3 25

95 Bob 3 63

99 Chris 10 30

11 tuples

Reserves

sailorId boatId rDate

22 101 10/10/17

22 102 10/10/17

22 103 08/10/17

22 104 07/10/17

31 102 10/11/17

31 103 06/11/17

31 104 12/11/17

64 101 05/09/17

64 102 08/09/17

74 103 08/09/17

99 104 08/08/17

11 tuples

Boat

boatId bName color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

105 Serenity Cyan

5 tuples

Find the names of sailors who have reserved a red boat.
Use only set

membership

DO NOT

use JOIN

43COMP 3311 L7: EXERCISES20 February 2021©

EXERCISE 4

select sName

from Sailor

where sailorId in (select distinct sailorId

from Reserves

where boatId in (select boatId

from Boat

where color='red'));

Find the names of sailors who have reserved a red boat.
Use only set

membership
☞ Dustin, Lubber, Horatio, Chris

DO NOT

use JOIN

boatId

102

104

Ids of red

boats.

sailorId

22

31

64

99

Unique ids of sailors

who have reserved

a red boat.

sName

Dustin

Lubber

Horatio

Chris

Names of

sailors who

have reserved

a red boat. Sailor(sailorId, sName, rating, age)

Boat(boatId, bName, color)

Reserves(sailorId, boatId, rDate)

44COMP 3311 L7: EXERCISES20 February 2021©

EXERCISE 4 (cont’d)

select sName

from Sailor

where sailorId not in (select distinct sailorId

from Reserves

where boatId in (select boatId

from Boat

where color='red'));

What if we replace the first in with not in?

sailorId

22

31

64

99

Unique ids of sailors

who have reserved

a red boat.

sName

Brutus

Andy

Rusty

Zorba

Horatio

Art

Bob

Names of

sailors who

have not

reserved a red

boat (including

reserved no

boat).

boatId

102

104

Ids of red

boats.

Stated in

words, what

does this result

represent?

Sailor(sailorId, sName, rating, age)

Boat(boatId, bName, color)

Reserves(sailorId, boatId, rDate)

45COMP 3311 L7: EXERCISES20 February 2021©

EXERCISE 4 (cont’d)

select sName

from Sailor

where sailorId in (select distinct sailorId

from Reserves

where boatId not in (select boatId

from Boat

where color='red'));

What if we replace the second in with not in?

boatId

102

104

Ids of red

boats.

sailorId

22

31

64

74

Ids of sailors who

have reserved a boat

other than a red boat.

sName

Dustin

Lubber

Horatio

Horatio

Names of

sailors who

have reserved

a boat other

than a red

boat (excludes

sailors who

have not

reserved any

boat).

Stated in words,

what does this

result represent?
Sailor(sailorId, sName, rating, age)

Boat(boatId, bName, color)

Reserves(sailorId, boatId, rDate)

46COMP 3311 L7: EXERCISES20 February 2021©

EXERCISE 4 (cont’d)

select sName

from Sailor

where sailorId not in (select distinct sailorId

from Reserves

where boatId not in (select boatId

from Boat

where color='red'));

What if we replace both in’s with not in?

boatId

102

104

Ids of red

boats.

sailorId

22

31

64

74

Ids of sailors who

have reserved a boat

other than a red boat.

sName

Brutus

Andy

Rusty

Zorba

Art

Bob

Chris

Names of

sailors who

have reserved

only a red boat

(i.e., Chris) or

have reserved

no boat.

Stated in

words, what

does this result

represent?

Sailor(sailorId, sName, rating, age)

Boat(boatId, bName, color)

Reserves(sailorId, boatId, rDate)

47COMP 3311 L7: EXERCISES20 February 2021©

STRUCTURED QUERY LANGUAGE
(SQL)

EXERCISE 4
to be continued …

48DSAA 5012 L7: SQL20 February 2021©

EMPTY RELATION TEST

⚫ The exists operator returns true if the subquery is not empty (i.e.,

the subquery returns at least one tuple).

Query: Find all clients who have both a loan and an account.

3.8.3

select clientId

from Depositor D

where exists (select *

from Borrower B

where D.clientId=B.clientId);

Scoping rules for correlation names (aliases) in subqueries.

➢ A correlation name defined in a subquery can be used only in the

subquery itself or in any subquery contained in the subquery (e.g., D

can be used in the nested select; B cannot be used in the outer select).

➢ Locally defined correlation names override globally defined names.

Clients who

have both a

loan and an

account are in

the join result.

If the join

result is

not empty,

return the

client id.

Borrower(clientId, loanNo) Depositor(clientId, accountNo)

50DSAA 5012 L7: SQL20 February 2021©

DUPLICATE TUPLES TEST: UNIQUE

⚫ The unique operator tests for the non existence (i.e., absence) of

duplicate tuples in a subquery.

☞ Returns true if the subquery contains no duplicate tuples.

Query: Find all clients who have only one

account at the Star House branch.

3.8.4

select D1.clientId

from Depositor D1

where unique (select D2.clientId

from Account, Depositor D2

where D1.clientId=D2.clientId

and D2.accountNo=Account.accountNo

and Account.branchName='Star House');

For each depositor

D1, check …

Clients at Star House with

the same name as D1.

Find depositors with

the same name as D1.

Not

implemented

in Oracle.

See later slide for

an alternate way to

answer this query.

Depositor(clientId, accountNo)Account(accountNo, balance, branchName)

52DSAA 5012 L7: SQL20 February 2021©

⚫ The group by and having clauses can test for the non existence

(absence) and existence (presence) of duplicate tuples.

Query: Find all clients who

have only one account

at the Star House

branch.

Query: Find all clients who

have at least two

accounts at the

Star House branch.

select clientId

from Depositor D, Account A

where D.accountNo=A.accountNo

and branchName='Star House'

group by clientId

having count(*)>1;

How would you

answer this query?

DUPLICATE TUPLES TEST: REVISITED

select clientId

from Depositor D, Account A

where D.accountNo=A.accountNo

and branchName='Star House'

group by clientId

having count(*)=1;

Depositor(clientId, accountNo)Account(accountNo, balance, branchName)

53DSAA 5012 L7: SQL20 February 2021©

⚫ The from clause can contain a subquery expression.

☞ The result of an SQL query is a relation.

Query: Find the name(s) of branches whose average balance

is greater than the average account balance.

Why?

SUBQUERIES IN THE FROM CLAUSE

3.8.5

select branchName

from (select branchName, avg(balance) as avgBalance

from Account

group by branchName) result

where avgBalance>(select avg(balance)

from Account);

The result relation

contains the branch

name and average

balance of each branch.

☞ The relation result is called a derived (temporary) relation.

result

branchName
avg

Balance

Star House 65000.00

Langham Place 7500.00

Pacific Place 83333.33

The average balance

of all accounts.

Account(accountNo, balance, branchName)

54DSAA 5012 L7: SQL20 February 2021©

SUBQUERIES IN THE FROM CLAUSE (cont’d)

Query: Find the name and average balance of branches with

the maximum average account balance.

select branchName, avgBalance

from (select branchName, avg(balance) as avgBalance

from Account

group by branchName) result

where avgBalance=(select max(avgBalance)

from result);

Oracle Note

This query is not allowed in Oracle due to Oracle’s scoping rules.

(The scope of the result relation is restricted to the outer select clause.)

See the next slide.

The maximum average

balance in the result relation.

result

branchName
avg

Balance

Star House 65000.00

Langham Place 7500.00

Pacific Place 83333.33

The result relation

contains the branch

name and average

balance of each branch.

Account(accountNo, balance, branchName)

55DSAA 5012 L7: SQL20 February 2021©

WITH CLAUSE

⚫ Allows a derived (temporary) relation to be defined that is

available only to the query in which the with clause occurs.

Query: Find the name and average balance of branches with

the maximum average account balance.

3.8.6

with result (branchName, avgBalance) as

(select branchName, avg(balance)

from Account

group by branchName)

select branchName, avgBalance

from result

where avgBalance=(select max(avgBalance)

from result);

Oracle Note
This query is allowed in Oracle.

result

branchName
avg

Balance

Star House 65000.00

Langham Place 7500.00

Pacific Place 83333.33

The result relation

contains the branch

name and average

balance of each branch.

The maximum average

balance in the result relation.

Account(accountNo, balance, branchName)

56DSAA 5012 L7: SQL20 February 2021©

EXERCISE 4

select sName

from Sailor S

where exists (select *

from Reserves natural join Boat

where Reserves.sailorId=S.sailorId

and color='red');

Find the names of sailors who have reserved a red boat. Use exists

☞ Dustin, Lubber, Horatio, Chris

Reserves natural join Boat where color='red'

boatId sailorId rDate bName color

102 22 10/10/17 Interlake red

102 64 08/09/17 Interlake red

102 31 10/11/17 Interlake red

104 22 07/10/17 Marine red

104 99 08/08/17 Marine red

104 31 12/11/17 Marine red

Sailor(sailorId, sName, rating, age)

Boat(boatId, bName, color)

Reserves(sailorId, boatId, rDate)

sailorId sName

22 Dustin

29 Brutus

31 Lubber

32 Andy

58 Rusty

64 Horatio

71 Zorba

74 Horatio

85 Art

95 Bob

99 Chris

57DSAA 5012 L7: SQL20 February 2021©

EXERCISE 4

with RedBoatReservations (sailorId) as

(select sailorId

from Reserves natural join Boat

where color='red')

select distinct sName

from Sailor natural join RedBoatReservations;

Find the names of sailors who have reserved a red boat.
Use with

clause

☞ Dustin, Lubber, Horatio, Chris

RedBoatReservations

sailorId

22

64

31

22

99

31

Sailor(sailorId, sName, rating, age)

Boat(boatId, bName, color)

Reserves(sailorId, boatId, rDate)

sailorId sName

22 Dustin

29 Brutus

31 Lubber

32 Andy

58 Rusty

64 Horatio

71 Zorba

74 Horatio

85 Art

95 Bob

99 Chris

58DSAA 5012 L7: SQL20 February 2021©

STRUCTURED QUERY
LANGUAGE (SQL)
EXERCISES 5, 6, 7

Upload your completed exercise

worksheet to Canvas by 11 p.m.

of Feb 24th

