DSAA 5012 Advanced Database Management for Data Science

LECTURE 5 RELATIONAL ALGEBRA

REVIEW: E-R SCHEMA REDUCTION

Sailor(sailorld, sName, rating, age)
Boat(boatld, bName, color)
What is the E-R schema for this relational schema?
Reserves(sailorld, boatld, rDate)

rDate is not part of the key in the reduction!

REVIEW: E-R SCHEMA REDUCTION

Sailor(sailorld, sName, rating, age)
Boat(boatld, bName, color)

What about this schema?

Reserves(sailorld, boatld, rDate)

What kind of entity is Reserves? \Rightarrow Weak entity.
On which entity is Reserves dependent? \Rightarrow Both Sailor and Boat!
Is rDate a discriminator for Reserves? \Rightarrow Yes
What should be the cardinality constraints for Makes? $\Rightarrow 1: \mathrm{N}$
What should be the participation constraints for Makes? \Rightarrow Sailor - partial; Reserves - total
What should be the cardinality constraints for Has? $\Rightarrow 1: \mathrm{N}$
What should be the participation constraints for Has? \Rightarrow Boat - partial; Reserves - total

RELATIONAL ALGEBRA: OUTLINE

Relational Algebra
Basic Operations

- Selection
- Projection
- Union
- Set difference
- Cartesian product

Additional Operations

- Intersection
- Join
- Assignment
- Rename

EXAMPLE RELATIONAL SCHEMA AND DATABASE

Sailor(sailorld, sName, rating, age)
Boat(boatld, bName, color)
Reserves(sailorld, boatld, rDate)

> Attribute names in italics are foreign key attributes.

Sailor			
sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

Reserves		
sailorld	boatld	rDate
22	101	$10 / 10 / 17$
22	102	$10 / 10 / 17$
22	103	$08 / 10 / 17$
22	104	$07 / 10 / 17$
31	102	$10 / 11 / 17$
31	103	$06 / 11 / 17$
31	104	$12 / 11 / 17$
64	101	$05 / 09 / 17$
64	102	$08 / 09 / 17$
74	103	$08 / 09 / 17$
99	104	$08 / 08 / 17$

[^0]
RELATIONAL QUERY LANGUAGES

- Two mathematical query languages form the basis for "real" relational query languages (e.g., SQL) and for implementation.

Relational
Procedural (step-by-step).
Algebra Need to describe how to compute a query result.
Relational Non-procedural (declarative).
Calculus Only need to describe what query result is wanted, not how to compute it.

Relational algebra is very useful for representing and optimizing query execution plans.

> Understanding relational algebra is the key to understanding SQL and how it is processed!

RELATIONAL ALGEBRA

- The relational algebra is an algebra whose
- operands are either relations or variables that represent relations.
- operations perform common, basic manipulations of relations.

A relational algebra expression is evaluated from the inside-out.

Closure Property

- Relational algebra is closed with respect to the relational model.

Each operation manipulates one or more relations and returns a relation as its result.

Due to the closure property, operations can be composed!

RELATIONAL ALGEBRA: OUTLINE

\checkmark Relational Algebra
\Rightarrow Basic Operations

- Selection
- Projection
- Union
- Set difference
- Cartesian product

Additional Operations

- Intersection
- Join
- Assignment
- Rename

RELATIONAL ALGEBRA: BASIC OPERATIONS

Operation	Symbol Action	
Selection	σ	Selects rows in a table that satisfy a predicate
Projection	π	Removes unwanted columns from a table
Union	\cup	Finds rows that belong to either table 1 or table 2
Set difference	-	Finds rows that are in table 1, but are not in table 2
Cartesian product	\times	Allows the rows in two tables to be combined

Additional operations (not essential, but very useful):
Intersection \cap Finds tuples that appear in both table 1 and in table 2
Join \quad Cartesian product followed by a selection
Assignment \leftarrow Assigns a result to a temporary variable
Rename $\quad p$ Allows a table and/or its columns to be renamed

SELECTION: $\sigma_{C}(\mathbf{R})$

- Selects tuples (rows) that satisfy a selection condition C.
- The schema of the result is identical to the schema of the (only) input relation.
- A condition C has the form: term op term where
- term is an attribute name or a constant
- op is a comparison operator such as $=, \neq,<, \leq,>, \geq$.
- Conditions can be composed or negated using Boolean operators.
$\mathrm{C}_{1} \wedge \mathrm{C}_{2}$ where C_{1} and C_{2} are conditions and \wedge means AND
$C_{1} \vee C_{2}$ where C_{1} and C_{2} are conditions and \vee means $O R$
$\neg \mathrm{C} \quad$ where \neg means NOT

SELECTION: EXAMPLE

Query: Find tuples where the company is Boeing.

Plane	
company	model
Airbus	A310
Airbus	A320
Airbus	A330
Airbus	A340
Boeing	B747
Boeing	B777

Query: Find tuples where the company is Boeing, or the model is A330.

PROJECTION: $\pi_{\mathrm{L}}(\mathrm{R})$

- Keeps only the attributes (columns) in a projection list L.

The schema of the result contains the same attributes as in the projection list L , with the same names that they had in the (only) input relation.

- The projection operator eliminates duplicate tuples. Why?

Query: Find the companies that make planes.

COMPOSITION OF OPERATIONS

- Since relational algebra operations are closed, the result of one relational algebra operation can be the input for another relational algebra operation (i.e., operations can be composed).

Tere The result of a relational algebra operation must be a relation.
Query: Find only those models made by Boeing.

Is this a correct solution?
$\sigma_{\text {company }=\text { 'Boeing' }}\left(\pi_{\text {model }}\right.$ (Plane))

SET OPERATIONS

- The set operations are:
u union
- set difference
\cap intersection (not basic; can be expressed using only setdifference, i.e., $r \cap s=r-(r-s)$)
- These operations take two input relations, which must be unioncompatible, which means that
- the relations have the same number of attributes.
- corresponding attributes have the same type.
- The output is a single relation (without duplicates).

UNION: U

Query: Find tuples that appear in Plane $_{1}$, Plane $_{2}$ or both.

SET DIFFERENCE: -

Query: Find tuples that appear in Plane $_{1}$, but not in Plane $_{2}$.

Plane $_{1}$			Plane $_{2}$		三	company	model
company	model		company	model			
Airbus	A310		Comac	C929		Airbus	A310
Airbus	A320	-	Comac	C939		Airbus	A320
Airbus	A330		Boeing	B747		Airbus	A330
A Airbus	A340		Boeing	B777		Airbus	A340
Boeing	B747	Removed from the result since they appear in both relations.					
Boeing	B777						

Plane $_{2}$	
company	model
Comac	C929
Comac	C939
Boeing	B747
Boeing	B777

CARTESIAN PRODUCT: \times

- Cartesian product combines each row of one table with every row of another table.
- CanFly \times Plane $\Rightarrow \mathbf{7 2}$ tuples!!!
(9×8)
CanFly

empNo	model
1001	B747
1001	B777
1001	A310
1002	A320
1002	A340
1002	B777
1002	C929
1003	A310
1003	C939

Plane				
company		model	Airbus	A310
:---	:---			
Airbus	A320			
Airbus	A330			
Airbus	A340			
Boeing	B747			
Boeing	B777			
Comac	C929			
Comac	C939			

empNo	model	company	model
1001	B747	Airbus	A310
1001	B747	Airbus	A320
1001	B747	Airbus	A330
1001	B747	Airbus	A340
1001	B747	Boeing	B747
1001	B747	Boeing	B777
1001	B747	Comac	C929
1001	B747	Comac	C939
1001	B777	Airbus	A310
1001	B777	Airbus	A320
1001	B777	Airbus	A330
1001	B777	Airbus	A340
1001	B777	Boeing	B747
1001	B777	Boeing	B777
1001	B777	Comac	C929
1001	B777	Comac	C939
1001	A310	Airbus	A310
1001	A310	Airbus	A320
\vdots	\vdots	\vdots	\vdots

RELATIONAL ALGEBRA EXERCISES 1, 2

EXERCISE 1

Find the ids of sailors who have reserved boat 103.

Sailor			
sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

Reserves		
sailorld	boatld	rDate
22	101	$10 / 10 / 17$
22	102	$10 / 10 / 17$
22	103	$08 / 10 / 17$
22	104	$07 / 10 / 17$
31	102	$10 / 11 / 17$
31	103	$06 / 11 / 17$
31	104	$12 / 11 / 17$
64	101	$05 / 09 / 17$
64	102	$08 / 09 / 17$
74	103	$08 / 09 / 17$
99	104	$08 / 08 / 17$

Boat		
boatld	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

EXERCISE 1

Find the ids of sailors who have reserved boat 103.

$$
22,31,74
$$

1. Is this a solution?

2. Is this a solution?

$\sigma_{\text {boatld }=103}$ Reserves			$\pi_{\text {sailorld }}$	sailorld
sailorld	boatld	rDate		
22	103	08/10/17		22
31	103	06/11/17	\Rightarrow	31
74	103	08/09/17		74

EXERCISE 2

Find the names of sailors who have reserved boat 103.

Sailor			
sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

Reserves		
sailorld	$\underline{\text { boatld }}$	rDate
22	101	$10 / 10 / 17$
22	102	$10 / 10 / 17$
22	103	$08 / 10 / 17$
22	104	$07 / 10 / 17$
31	102	$10 / 11 / 17$
31	103	$06 / 11 / 17$
31	104	$12 / 11 / 17$
64	101	$05 / 09 / 17$
64	102	$08 / 09 / 17$
74	103	$08 / 09 / 17$
99	104	$08 / 08 / 17$

Boat		
boatld	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

EXERCISE 2

Find the names of sailors who have reserved boat 103.
Dustin, Lubber, Horatio

1. Is this a solution?

$$
\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld } \wedge} \text { boatld }=103\right. \text { (Reserves X Sailor)) }
$$

2. Is this a solution?

$$
\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld }}\left(\left(\sigma_{\text {boatld=103 }} \text { Reserves }\right) X \text { Sailor }\right)\right)
$$

EXERCISE 2: SOLUTION 1

$$
\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld } \wedge \text { boatld=103 }}(\text { Reserves } X \text { Sailor })\right)
$$

Dustin, Lubber, Horatio

Reserves		
sailorld	boatld	rDate
22	101	$10 / 10 / 17$
22	102	$10 / 10 / 17$
22	103	$08 / 10 / 17$
22	104	$07 / 10 / 17$
31	102	$10 / 11 / 17$
31	103	$06 / 11 / 17$
31	104	$12 / 11 / 17$
64	101	$05 / 09 / 17$
64	102	$08 / 09 / 17$
74	103	$08 / 09 / 17$
99	104	$08 / 08 / 17$

11 tuples

Sailor			
sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

How many tuples in the result? $11 \times 11=121$ tuples!

EXERCISE 2: SOLUTION 1

$$
\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld }} \wedge \text { boatld=103 }(\text { Reserves } X \text { Sailor })\right)
$$

Dustin, Lubber, Horatio

Reserves X Sailor								
Reserves.sailorld	boatld	rDate	Sailor.sailorld	sName	rating	age		
22	101	$10 / 10 / 17$	22	Dustin	7	45		
22	101	$10 / 10 / 17$	29	Brutus	1	33		
22	101	$10 / 10 / 17$	31	Lubber	8	55		
22	101	$10 / 10 / 17$	32	Andy	8	25		
22	101	$10 / 10 / 17$	58	Rusty	10	35		
22	101	$10 / 10 / 17$	64	Horatio	7	35		
22	101	$10 / 10 / 17$	71	Zorba	10	16		
22	101	$10 / 10 / 17$	74	Horatio	9	35		
22	101	$10 / 10 / 17$	85	Art	3	25		
22	101	$10 / 10 / 17$	95	Bob	3	63		
22	101	$10 / 10 / 17$	99	Chris	10	30		
22	102	$10 / 10 / 17$	22	Dustin	7	45		
22	102	$10 / 10 / 17$	29	Brutus	1	33		
\vdots								

Find the names of sailors who have reserved boat 103.

EXERCISE 2: SOLUTION 1

$$
\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld } \wedge \text { boatld }=103 \text { (Reserves } X \text { Sailor })) ~}^{\text {(Ren }}\right.
$$

Dustin, Lubber, Horatio

$\sigma_{\text {Reserves.sailorld=Sailor.sailorld } \wedge \text { boatd=103 }}$ (Reserves X Sailor)						
Reserves.sailorld	boatld	rDate	Sailor.sailorld	sName	rating	age
22	103	$08 / 10 / 17$	22	Dustin	7	45
31	103	$06 / 11 / 17$	31	Lubber	8	55
74	103	$08 / 09 / 17$	74	Horatio	9	35

Apply $\pi_{\text {sName }}$ to above result:

sName
Dustin
Lubber
Horatio

EXERCISE 2: SOLUTION 2

$$
\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld }}\left(\left(\sigma_{\text {boatld=103Reserves }}\right) \text { X Sailor) }\right)\right.
$$

Dustin, Lubber, Horatio

$\sigma_{\text {boatld }=103}$ Reserves			X	Sailor			
sailorld	boatld	rDate		sailorld	name	rating	age
22	103	08/10/17		22	Dustin	7	45
31	103	06/11/17		29	Brutus	1	33
74	103	08/09/17		31	Lubber	8	55
				32	Andy	8	25
				58	Rusty	10	35
				64	Horatio	7	35
				71	Zorba	10	16
				74	Horatio	9	35
				85	Art	3	25
				95	Bob	3	63
				99	Chris	10	30
					11 tup		

How many tuples in the result? $3 \times 11=33$ tuples!

EXERCISE 2: SOLUTION 2

$\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld }}\left(\left(\sigma_{\text {boatld }}=103\right.\right.\right.$ Reserves) X Sailor) $)$
Dise Dustin, Lubber, Horatio

($\sigma_{\text {boatd=103R } R e s e r v e s) ~ X ~ S a i l o r ~}^{c \mid}$							
Reserves.sailorld	boatld	rDate	Sailor.sailorld	sName	rating	age	
22	103	$08 / 10 / 17$	22	Dustin	7	45	
22	103	$08 / 10 / 17$	29	Brutus	1	33	
22	103	$08 / 10 / 17$	31	Lubber	8	55	
22	103	$08 / 10 / 17$	32	Andy	8	25	
22	103	$08 / 10 / 17$	58	Rusty	10	35	
22	103	$08 / 10 / 17$	64	Horatio	7	35	
22	103	$08 / 10 / 17$	71	Zorba	10	16	
22	103	$08 / 10 / 17$	74	Horatio	9	35	
22	103	$08 / 10 / 17$	85	Art	3	25	
22	103	$08 / 10 / 17$	95	Bob	3	63	
22	103	$08 / 10 / 17$	99	Chris	10	30	
31	103	$06 / 11 / 17$	22	Dustin	7	45	
31	103	$06 / 11 / 17$	29	Brutus	1	33	
31	103	$06 / 11 / 17$	31	Lubber	8	55	
\vdots							

Find the names of sailors who have reserved boat 103.

EXERCISE 2: SOLUTION 2

$\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld }}\left(\left(\sigma_{\text {boatld=103 }}\right.\right.\right.$ Reserves) X Sailor))
Dustin, Lubber, Horatio

$\sigma_{\text {Reserves.sailorld=Sailor.sailorld }}\left(\left(\sigma_{\text {boatld=103 }}\right.\right.$ Reserves) X Sailor $)$						
Reserves.sailorld	boatld	rDate	Sailor.sailorld	sName	rating	age
22	103	$08 / 10 / 17$	22	Dustin	7	45
31	103	$06 / 11 / 17$	31	Lubber	8	55
74	103	$08 / 09 / 17$	74	Horatio	9	35

Apply $\pi_{\text {sName }}$ to above result:

EXERCISE 2

Find the names of sailors who have reserved boat 103.
Dustin, Lubber, Horatio

1. Is this a solution? \checkmark
$\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld } \wedge \text { boatld }=103 \text { (Reserves } X \text { Sailor)) }) ~}^{\text {(Ren }}\right.$
Initial result:
121 tuples
2. Is this a solution? $\sqrt{ }$
$\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld }}\left(\left(\sigma_{\text {boatdd }}\right.\right.\right.$ 103Reserves $) X$ Sailor) $)$

To be continued ...

RELATIONAL ALGEBRA: OUTLINE

\checkmark Relational Algebra
\checkmark Basic Operations

- Selection
- Projection
- Union
- Set difference
- Rename
- Cartesian product
\Rightarrow Additional Operations
- Intersection
- Join
- Assignment

INTERSECTION: \cap

Query: Find tuples that appear in both Plane $_{1}$ and Plane $_{2}$.

Plane $_{1}$	
company	model
Airbus	A310
Airbus	A320
Airbus	A330
Airbus	A340
Boeing	B747
Boeing	B777

company	model
Comac	C929
Comac	C939
Boeing	B747
Boeing	B777

$=$| company | model |
| :--- | :--- |
| Boeing | B747 |
| Boeing | B777 |

Plane $_{2}$	
company	model
Comac	C929
Comac	C939
Boeing	B747
Boeing	B777

JOIN: \pitchfork

- Generating all possible tuple combinations of two relations is usually not meaningful.
Example: For the relations CanFly and Plane, combining each CanFly and Plane tuple having a matching model value is more meaningful than CanFly \times Plane.
- Join is a Cartesian product followed by a selection:

$$
\mathrm{R}_{1} \bowtie_{c} \mathrm{R}_{2}=\sigma_{c}\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right) \quad \text { or } \quad \mathrm{R}_{1} \mathrm{JOIN}_{c} \mathrm{R}_{2}=\sigma_{c}\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right)
$$

CanFly

empNo	model
1001	B747
1001	B777
1001	A310
1002	A320
1002	A340
1002	B777
1002	C929
1003	A310
1003	C939

- Types of joins:
natural join Combines two relations on the equality of the attribute values with the same names.
θ-join Allows arbitrary conditions in the selection.
equijoin All conditions are equality.
Both equijoin and natural join project the result on
Plane

company	model
Airbus	A310
Airbus	A320
Airbus	A330
Airbus	A340
Boeing	B747
Boeing	B777
Comac	C929
Comac	C939

JOIN: NATURAL JOIN

CanFly \bowtie_{n} Plane \Leftrightarrow CanFly \bowtie Plane
CanFly JOIN ${ }_{n}$ Plane \Leftrightarrow CanFly JOIN Plane
CanFly JOIN ${ }_{\text {model }}$ Plane
CanFly JOIN CanFly.modelePlane.model Plane
$\mathrm{n} \Rightarrow$ look for attributes with common names in the two relations.
CanFly

empNo	model
1001	B747
1001	B777
1001	A310
1002	A320
1002	A340
1002	B777
1002	C929
1003	A310
1003	C939

empNo	model	company
1001	B747	Boeing
1001	B777	Boeing
1001	A310	Airbus
1002	A320	Airbus
1002	A340	Airbus
1002	B777	Boeing
1002	C929	Comac
1003	A310	Airbus
1003	C939	Comac

Cartesian product $\Rightarrow 72$ tuples; join $\Rightarrow 9$ tuples.

JOIN: θ-JOIN

- If we join this table with itself (self-join) using the condition:
$c=$ Flight1.destination=Flight2.origin \wedge Flight1.arrivalTime<Flight2.deptartureTime

What should we get?

Flight1

flight\#	origin	destination	departure Time	arrival Time
334	HKG	PVG	$12: 00$	$14: 14$
335	PVG	HKG	$15: 00$	$17: 14$
336	HKG	PVG	$18: 00$	$20: 14$
337	PVG	HKG	$20: 30$	$23: 53$
394	PEK	PVG	$19: 00$	$21: 30$
395	PVG	PEK	$21: 00$	$23: 43$

Flight2

flight\#	origin	destination	departure Time	arrival Time
334	HKG	PVG	$12: 00$	$14: 14$
335	PVG	HKG	$15: 00$	$17: 14$
336	HKG	PVG	$18: 00$	$20: 14$
337	PVG	HKG	$20: 30$	$23: 53$
394	PEK	PVG	$19: 00$	$21: 30$
395	PVG	PEK	$21: 00$	$23: 43$

JOIN: θ-JOIN (conta)

Flight1 $\bowtie_{\text {Flight1. destination=Flight2.origin } \wedge \text { Flight1.arrivalTime<Flight2.departureTime }}$ Flight2

Flight1. Flight\#	Flight1. Origin	Flight1. Destination	Flight1. Departure Time	Flight1. Arrival Time	Flight2. Flight\#	Flight2. Origin	Flight2. Destination	Flight2. Departure Time	Flight2. Arrival Time
334	HKG	PVG	$12: 00$	$14: 14$	335	PVG	HKG	$15: 00$	$17: 14$
335	PVG	HKG	$15: 00$	$17: 14$	336	HKG	PVG	$18: 00$	$20: 14$
336	HKG	PVG	$18: 00$	$20: 14$	337	PVG	HKG	$20: 30$	$23: 53$
334	HKG	PVG	$12: 00$	$14: 14$	337	PVG	HKG	$20: 30$	$23: 53$
336	HKG	PVG	$18: 00$	$20: 14$	395	PVG	PEK	$21: 00$	$23: 43$
334	HKG	PVG	$12: 00$	$14: 14$	395	PVG	PEK	$21: 00$	$23: 43$

What happens if we add the condition: ... ^ Flight1.origin<>Flight2.destination?

RELATIONAL ALGEBRA EXERCISES 2 (conted), 3

Find the names of sailors who have reserved boat 103.

EXERCISE 2: SOLUTION 3

$\pi_{\text {sName }}\left(\left(\sigma_{\text {boatdd=103 }}\right.\right.$ Reserves) JOIN Sailor)
Dustin, Lubber, Horatio

$\sigma_{\text {boatld=103 Reserves }}$		
sailorld	boatld	rDate
22	103	$08 / 10 / 17$
31	103	$06 / 11 / 17$
74	103	$08 / 09 / 17$

JOIN	Sailor			
	sailorld	sName	rating	age
	(22)	Dustin	7	45
	29	Brutus	1	33
	31	Lubber	8	55
	32	Andy	8	25
	58	Rusty	10	35
	64	Horatio	7	35
	71	Zorba	10	16
	74	Horatio	9	35
	85	Art	3	25
	95	Bob	3	63
	99	Chris	10	30

How many tuples in the result? 3 tuples!

Find the names of sailors who have reserved boat 103.

EXERCISE 2: SOLUTION 3

$\pi_{\text {sName }}$ (($\sigma_{\text {boatld=103 }}$ Reserves) JOIN Sailor)
Dise Dustin, Lubber, Horatio

($\sigma_{\text {boatd }}$ =103Reserves) JOIN Sailor							
Reserves.sailorld	boatld	rDate	Sailor.sailorld	sName	rating	age	
22	103	$08 / 10 / 17$	22	Dustin	7	45	
31	103	$06 / 11 / 17$	31	Lubber	8	55	
74	103	$08 / 09 / 17$	74	Horatio	9	35	

Apply $\pi_{\text {sName }}$ to above result:

EXERCISE 2: SUMMARY

Find the names of sailors who have reserved boat 103.
All three queries get the correct answer, BUT ...

1. Is this a solution? $\sqrt{ }$

$$
\pi_{\text {sName }}\left(\sigma_{\text {Reserves.sailorld=Sailor.sailorld } \wedge} \text { boatld }=103\right. \text { (Reserves X Sailor)) }
$$

Initial result:
121 tuples
2. Is this a solution? \checkmark

```
\mp@subsup{\pi}{\mathrm{ sName( }}{}(\mp@subsup{\sigma}{\mathrm{ Reserves.sailorld=Sailor.sailorld}}{}((\mp@subsup{\sigma}{\mathrm{ boatld=103 Reserves)}}{\mathrm{ )}}\mathbf{X Sailor))}
```

3. Is this a solution? $\sqrt{ }$
```
\mp@subsup{\pi}{\mathrm{ sName (}}{}((\mp@subsup{\sigma}{\mathrm{ boatld=103 }}{}R\mathrm{ Reserves) JOIN Sailor)}
```

Initial result: 3 tuples

Query Optimization

Relational DBMSs do such optimizations based on relational algebra.

EXERCISE 3

Find the names of sailors who have reserved a red boat.

Sailor			
sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

Reserves		
sailorld	$\underline{\text { boatld }}$	rDate
22	101	$10 / 10 / 17$
22	102	$10 / 10 / 17$
22	103	$08 / 10 / 17$
22	104	$07 / 10 / 17$
31	102	$10 / 11 / 17$
31	103	$06 / 11 / 17$
31	104	$12 / 11 / 17$
64	101	$05 / 09 / 17$
64	102	$08 / 09 / 17$
74	103	$08 / 09 / 17$
99	104	$08 / 08 / 17$

Boat		
boatld	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

EXERCISE 3: SOLUTION 1

Find the names of sailors who have reserved a red boat.
Dustin, Lubber, Horatio, Chris
Is this a solution?
$\pi_{\text {sName }}\left(\left(\sigma_{\text {color='red }}\right.\right.$ Boat) JOIN Reserves JOIN Sailor)

$\sigma_{\text {color-reded }}$ Boat		
boatld	bName	color
102	Interlake	red
104	Marine	red

How many tuples in the result?
6 tuples!
How many columns in the result? 5 columns!

Reserves		
sailorld	boatld	rDate
22	101	$10 / 10 / 17$
22	102	$10 / 10 / 17$
22	103	$08 / 10 / 17$
22	104	$07 / 10 / 17$
31	102	$10 / 11 / 17$
31	103	$06 / 11 / 17$
31	104	$12 / 11 / 17$
64	101	$05 / 09 / 17$
64	102	$08 / 09 / 17$
74	103	$08 / 09 / 17$
99	104	$08 / 08 / 17$

Find the names of sailors who have reserved a red boat.

EXERCISE 3: SOLUTION 1

$\pi_{\text {sName }}\left(\left(\sigma_{\text {color='red }}\right.\right.$ Boat) JOIN Reserves JOIN Sailor)
Dustin, Lubber, Horatio, Chris

$\left(\sigma_{\text {color='red' }}\right.$ 'Boat) JOIN Reserves				
bName	color	sailorld	boatld	rDate
Interlake	red	22	102	$10 / 10 / 17$
Marine	red	22	104	$07 / 10 / 17$
Interlake	red	31	102	$10 / 11 / 17$
Marine	red	31	104	$12 / 11 / 17$
Interlake	red	64	102	$08 / 09 / 17$
Marine	red	99	104	$08 / 08 / 17$

How many tuples in the result?
6 tuples!
How many columns in the result? 8 columns!

Find the names of sailors who have reserved a red boat.

EXERCISE 3: SOLUTION 1

$\pi_{\text {sName }}\left(\left(\sigma_{\text {color='red }}\right.\right.$ Boat) JOIN Reserves JOIN Sailor)
Dustin, Lubber, Horatio, Chris

($\sigma_{\text {color='red' }}$ Boat) JOIN Reserves JOIN Sailor								
bName	color	sailorld	boatld	rDate	sName	rating	age	
Interlake	red	22	102	$10 / 10 / 17$	Dustin	7	45	
Marine	red	22	104	$07 / 10 / 17$	Dustin	7	45	
Interlake	red	31	102	$10 / 11 / 17$	Lubber	8	55	
Marine	red	31	104	$12 / 11 / 17$	Lubber	8	55	
Interlake	red	64	102	$08 / 09 / 17$	Horatio	7	35	
Marine	red	99	104	$08 / 08 / 17$	Chris	10	30	

Apply $\pi_{\text {sName }}$ to above result:

EXERCISE 3: SOLUTION 2

Find the names of sailors who have reserved a red boat.
Dustin, Lubber, Horatio, Chris

$$
\pi_{\text {sName }}\left(\left(\sigma_{\text {color='red'B }}\right.\right. \text { Boat) JOIN Reserves JOIN Sailor) }
$$

Can you give a more efficient solution in terms of result size?

$$
\pi_{\text {sName }}\left(\left(\pi_{\text {boatdd }}\left(\sigma_{\text {color='red' }} \text { Boat }\right)\right) \text { JOIN Reserves JOIN Sailor }\right)
$$

$\sigma_{\text {color-reded }}$ Boat		
boatld	bName	color
102	Interlake	red
104	Marine	red

After selecting red boats, first project onto boatld before doing the join since the name and color of the boat is not needed for the query. Thus, only the boatld is "carried" when evaluating the rest of the query.

EXERCISE 3: SOLUTION 2

$$
\pi_{\text {sName }}\left(\left(\pi_{\text {boatld }}\left(\sigma_{\text {color='red' }} \text { Boat }\right)\right)\right. \text { JOIN Reserves JOIN Sailor) }
$$

Dustin, Lubber, Horatio, Chris

$\pi_{\text {boatld }}\left(\sigma_{\text {color }}\right.$ 'red ${ }^{\text {d }}$ B	JOIN	Reserves		
boatld		sailorld	boatld	rDate
102		22	101	10/10/17
104		22	102	10/10/17
		22	103	08/10/17
		22	104	07/10/17
		31	102	10/11/17
		31	103	06/11/17
		31	104	12/11/17
		64	101	05/09/17
		64	102	08/09/17
		74	103	08/09/17
		99	104	08/08/17

How many tuples in the result? 6 tuples!
How many columns in the result? 3 columns!

Find the names of sailors who have reserved a red boat.

EXERCISE 3: SOLUTION 2

$$
\frac{\pi_{\text {sName }}\left(\left(\pi_{\text {boatld }}\left(\sigma_{\text {color='red' }} B o a t\right)\right) \text { JOIN Reserves JOIN Sailor }\right)}{\text { Dustin, Lubber, Horatio, Chris }}
$$

$\left(\pi_{\text {boatld }}\left(\sigma_{\text {color-reded }}\right.\right.$ Boat) $)$ JOIN Reserves				Sailor			
sailorld	boatld	rDate		sailorld	sName	rating	age
(22)	102	10/10/17		(22)	Dustin	7	45
22	104	07/10/17		29	Brutus	1	33
31	102	10/11/17		31	Lubber	8	55
31	104	12/11/17	JOIN	32	Andy	8	25
31	104	08/09/17		58	Rusty	10	35
64	102	08/09/17		64	Horatio	7	35
99	104	08/08/17		71	Zorba	10	16
				74	Horatio	9	35
				85	Art	3	25
				95	Bob	3	63
				99	Chris	10	30

How many tuples in the result? 6 tuples!
How many columns in the result? 6 columns!

EXERCISE 3: SOLUTION 2

$\pi_{\text {sName }}\left(\left(\pi_{\text {boatld }}\left(\sigma_{\text {color='red' }}\right.\right.\right.$ Boat $\left.)\right)$ JOIN Reserves JOIN Sailor)
Dustin, Lubber, Horatio, Chris

$\left(\sigma_{\text {color-reded }}\right.$ Boat) JOIN Reserves JOIN Sailor					
sailorld	boatld	rDate	sName	rating	age
22	102	$10 / 10 / 17$	Dustin	7	45
22	104	$07 / 10 / 17$	Dustin	7	45
31	102	$10 / 11 / 17$	Lubber	8	55
31	104	$12 / 11 / 17$	Lubber	8	55
64	102	$08 / 09 / 17$	Horatio	7	35
99	104	$08 / 08 / 17$	Chris	10	30

Apply $\pi_{\text {sName }}$ to above result:

sName
Dustin
Lubber
Horatio
Chris

EXERCISE 3: SUMMARY

Solution 1

$$
\frac{\pi_{\text {sName }}\left(\left(\sigma_{\text {color='redd }} \text { Boat) JOIN Reserves JOIN Sailor }\right)\right.}{(6 \text { tuples, } 5 \text { columns })+(6 \text { tuples, } 8 \text { columns })}
$$

Solution 2

```
\mp@subsup{\pi}{\mathrm{ sNamel}}{}((\mp@subsup{\pi}{\mathrm{ boatd }}{}(\mp@subsup{\sigma}{\mathrm{ color='red'Boat }}{}))\mathrm{ JOIN Reserves JOIN Sailor)}
(6 tuples, 3 columns) + (6 tuples, 6 columns)
```

Solution 2 is more efficient in terms of tuple size.

Query Optimization

Relational DBMSs do such optimizations based on relational algebra.

OUTER JOIN

- An extension of the natural join operation that avoids loss of information.
- Computes the natural join and then adds tuples from one relation that do not have matching tuples in the other relation to the result of the join.
- Uses null values to fill in missing information.
- Recall that null signifies that the value is unknown or does not exist.

All comparisons involving null are false.

OUTER JOIN (conéd)

- Natural join returns only the tuples that match on the join attributes (the "good tuples").
- The fact that
- loan L-260 has no borrower is not explicit in the result.
- customer Ted Hayes holds a non-existent loan L-155 with no amount and no branch is also not explicit.

LEFT OUTERJOIN: $\triangle \searrow$

Adds to the natural join all tuples in the left relation (Loan) that did not match with any tuple in the right relation (Borrower) and fills in null for the missing information.

Loan			Borrower					
loan Number	amount	branch Name	client Name	loan Number	loan Number	amount	branch Name	client Name
L-170	30000	Central	Pat Lee	L-170	L-170	30000	Central	Pat Lee
L-260	170000	Tsimshatsui	Mary Kwan	L-230	L-230	40000	Central	Mary Kwan
L-230	40000	Central	Ted Hayes	L-155	L-260	170000	Tsimshatsui	null

The result now shows that loan L-260 has no borrower.

RIGHT OUTER JOIN: \ltimes

Adds to the natural join all tuples in the right relation (Borrower) that did not match with any tuple in the left relation (Loan) and fills in null for the missing information.

Loan			$>$	Borrower						
loan Number	amount	branch Name		client Name	loan Number		loan Number	amount	branch Name	client Name
L-170	30000	Central		Pat Lee	L-170		L-170	30000	Central	Pat Lee
L-260	170000	Tsimshatsui		Mary Kwan	L-230	-	L-230	40000	Central	Mary Kwan
L-230	40000	Central		Ted Hayes	L-155	--	L-155	null	null	Ted Hayes-

The result now shows that loan L-155 has no amount and no branch.

FULL OUTER JOIN: \beth (®

Adds to the natural join all tuples in both relations that did not match with any tuples in the other relation and fills in null for missing information.

Loan			Borrower					
$\begin{gathered} \hline \text { loan } \\ \text { Number } \end{gathered}$	amount	branch Name	client Name	loan Number	Ioan Number	amount	branch Name	client Name
L-170	30000	Central	Pat Lee	L-170	L-170	30000	Central	Pat Lee
L-260	170000	Tsimshatsui -	Mary Kwan	L-230	L-230	40000	Central	Mary Kwan
L-230	40000	Central	Ted Hayes	[-155--	L-2-200-	1700000	Tsimshàtsui	nülil
					L-155	null	null	Ted Hayes

The result now shows both that

- Ioan L-260 has no borrower.
- loan L-155 has no amount and no branch.

ASSIGNMENT: \leftarrow

- Works like assignment in programming languages.
- The relation variable assigned to can be used in subsequent expressions.
- Allows a query to be written as a sequential program consisting of a series of assignments followed by an expression whose value is the result of the query.
- Useful for expressing complex queries.

RENAMING: ρ

- Assigns a name to, or renames the attributes in, a relationalalgebra expression.

$\rho_{x}(E)$ assigns name x to the result of E

$\left.\rho_{x(A 1, A 2}, \ldots, A n\right) \quad$ assigns name x to the result of E and renames the attributes of E as $A_{1}, A_{2}, \ldots, A_{n}$

Renaming is necessary when taking the Cartesian product of a table with itself.

RELATIONAL ALGEBRA: SUMMARY

- Defines a set of algebraic operations that operate on relations and output relations as their result.
- The operations can be combined to express queries.
- The operations can be divided into:
- basic operations.
- additional operations that either
$>$ can be expressed in terms of the basic operations or
$>$ add further expressive power to the relational algebra.

COMP 3311: SYLLABUS

\checkmark Introduction
\checkmark Entity-Relationship (E-R) Model and Database Design
\checkmark Relational Algebra

- Structured Query Language (SQL)

Relational Database Design
Storage and File Structure
Indexing
Query Processing
Query Optimization
Transactions
Concurrency Control
Recovery System
NoSQL Databases

RELATIONAL ALGEBRA EXERCISES 4, 5, 6

Upload your completed exercise worksheet to Canvas by 11 p.m. of Feb 17th

[^0]: 11 tuples

