EXERCISE 1

Given: \(R(A, B, C, D, E) \) \quad F = \{A \rightarrow BC\}

Decomposition: \(R_1(A, B, C) \) and \(R_2(A, D, E) \)

a) Is the decomposition lossless? Why? \quad (iff \(R_1 \cap R_2 \rightarrow R_1 \) or \(R_1 \cap R_2 \rightarrow R_2 \))

Yes \quad The common attribute A is a key for \(R_1 \).

b) Is the decomposition dependency preserving? Why? \quad (iff \((\bigcup F_i)^+ = F^+ \))

Yes \quad A\rightarrow BC is preserved in \(R_1 \).

c) Is the decomposition \(R_1(A, B, C) \) and \(R_2(C, D, E) \) lossless? Why?

No \quad C is not a key for any table.
EXERCISE 2

Given: \(R(A, B, C, D, E) \) \(F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\} \)

Decomposition: \(R_1(A, B, C) \) and \(R_2(A, D, E) \)

a) Is the decomposition lossless? \((iff \ R_1 \cap R_2 \rightarrow R_1 \ or \ R_1 \cap R_2 \rightarrow R_2) \)

 Yes The common attribute A is a key for \(R_1 \).

b) Is the decomposition dependency preserving? \((iff \ (\cup F_i)^+ = F^+) \)

 No We lose \(CD \rightarrow E \) and \(B \rightarrow D \).
EXERCISE 3

a) Given: \(R(A, B, C, D) \quad F = \{AB \rightarrow CD, B \rightarrow C\} \)

Is \(R \) in 2NF? Why?

Key: \(AB \quad AB^+ = \{A, B, C, D\} \quad B^+ = \{B, C\} \)

No For \(B \rightarrow C \), \(B \) is a proper subset of the key \(AB \) and \(C \) is non-prime. So, \(R \) is not in 2NF.

b) Given: \(R(A, B, C, D) \quad F = \{AB \rightarrow CD, C \rightarrow D\} \)

Is \(R \) in 2NF? Why?

Key: \(AB \quad AB^+ = \{A, B, C, D\} \quad C^+ = \{C, D\} \)

Yes For \(C \rightarrow D \), \(C \) is not a proper subset of the key, so \(R \) is in 2NF.
EXERCISE 4

Identify the candidate key(s) and the current highest normal form for each of the following relation schemas given their corresponding FDs.

a) \(R(A, B, C, D, E) \)

\[F = \{A \rightarrow B, C \rightarrow D\} = F^+ \]

\(A^+ = \{A, B\} \quad C^+ = \{C, D\} \)

Candidate keys: ACE

⇒ For \(A \rightarrow B \) and \(C \rightarrow D \)
 i. A and C are proper subsets of the candidate key ACE (both FDs fail 1st 2NF test).
 ii. both B and D are not prime attributes of R (both FDs fail 2nd 2NF test).

☞ Both FDs violate 2NF.

Normal form: 1NF
EXERCISE 4 (cont’d)

Identify the candidate key(s) and the current highest normal form for each of the following relation schemas given their corresponding FDs.

b) $R(A, B, C)$

$F = \{AB \rightarrow C, C \rightarrow B\} = F^+$

$AB^+ = \{A, B, C\}$
$C^+ = \{C, B\}$

Candidate keys: AB, AC

⇒ For $AB \rightarrow C$,
 C is a prime attribute of R
 (FD passes 2nd 2NF and 3NF tests).

⇒ For $C \rightarrow B$,
 B is a prime attribute of R
 (FD passes 2nd 2NF and 3NF tests).

☞ Both FDs satisfy 3NF.

Normal form: 3NF
Identify the candidate key(s) and the current highest normal form for each of the following relation schemas given their corresponding FDs.

c) \(R(A, B, C, F) \)

\[F = \{AB \rightarrow C, C \rightarrow F\} = F^+ \]

\[AB^+ = \{A, B, C, F\} \quad \text{C}^+ = \{C, F\} \]

Candidate keys: \(AB \)

\(\Rightarrow \) For \(AB \rightarrow C \)

i. \(AB \) is **not** a proper subset of a candidate key (FD passes 1st 2NF test);

ii. \(AB \) is a superkey for \(R \) (FD passes 1st 3NF test).

\(\Rightarrow \) For \(C \rightarrow F \)

i. \(C \) is **not** a proper subset of a candidate key (FD passes 1st 2NF test);

ii. \(C \) is not a superkey of \(R \) (FD fails 1st 3NF test);

iii. \(F \) is **not** a prime attribute (FD fails 2nd 3NF test).

\(\Rightarrow \) Both FDs satisfy 2NF.

Normal form: 2NF
Exercise 5: Decompose $R(A, B, C, D, E, F, G)$ into 3NF relations for the FD set $F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$.

Exercise 6: Decompose $R(A, B, C, D)$ into 3NF and BCNF relations for each of the following FD sets.
 a) $F = \{B \rightarrow C, D \rightarrow A\}$
 b) $F = \{ABC \rightarrow D, D \rightarrow A\}$

Exercise 7: Given: $Sale(\text{customer, store, product, price})$ and the constraints:
 A customer buys from only one store.
 There is a unique price for each product in a store, but the same product can have a different price in different stores.
 a) What are the FDs implied by the above description?
 b) What are the candidate keys?
 c) Explain why $Sale$ is not in 3NF.
 d) Decompose $Sale$ into 3NF relation schemas.
 e) Is the decomposition dependency preserving? Why?
EXERCISE 5

Decompose $R(A, B, C, D, E, F, G)$ into 3NF relations for the FD set $F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$.

Attribute closures

$AB^+ = \{A, B, C, D, E, F\}$
$C^+ = \{C, E, F\}$
$G^+ = \{G, A, F\}$
$CE^+ = \{C, E, F\}$

Candidate key: BG
From $G \rightarrow A$ we can infer $BG \rightarrow AB$ using IR2.
$BG^+ = \{B, G, A, C, D, E, F\}$
All FDs violate 3NF!

Canonical cover: $F_C = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow AF\}$

3NF decomposition:
$R_1(A, B, C, D)$
$R_2(C, E, F)$
$R_3(G, A, F)$
$R_4(B, G)$
\Rightarrow due to the candidate key
EXERCISE 6

Decompose $R(\text{A, B, C, D})$ into 3NF and BCNF relations for each of the following FD sets.

a) $F = \{\text{B} \rightarrow \text{C}, \text{D} \rightarrow \text{A}\}$

Attribute closures: $B^+ = \{\text{B, C}\}$ $D^+ = \{\text{D, A}\}$

Candidate keys: BD

Canonical cover: $F_C = \{\text{B} \rightarrow \text{C}, \text{D} \rightarrow \text{A}\}$

3NF Decomposition

$R_1(\text{B, C})$

$R_2(\text{D, A})$

$R_3(\text{B, D}) \implies$ due to the candidate key

BCNF Decomposition

$R_1(\text{B, C})$

$R_2(\text{D, A})$

$R_3(\text{B, D})$
Decompose $R(A, B, C, D)$ into 3NF and BCNF relations for each of the following FD sets.

b) $F = \{ABC \rightarrow D, D \rightarrow A\}$

Attribute closures: $ABC^+ = \{A, B, C, D\}$ \(D^+ = \{D, A\}\)

Candidate keys: ABC, BCD \textbf{Using IR2:} $BCD \rightarrow ABC$

Canonical cover: $F_C = \{ABC \rightarrow D, D \rightarrow A\}$

3NF Decomposition

- Already in 3NF
- $R(A, B, C, D)$

Dependency preserving? \hspace{1cm} Yes

Is this BCNF decomposition OK? \hspace{1cm} $R_1(A, B, C)$ and $R_2(D, A)$ \textbf{No} Why?

BCNF Decomposition

- Only $D \rightarrow A$ violates BCNF
- $R_1(B, C, D)$ \(R_2(D, A)\)

Dependency preserving? \hspace{1cm} No The FD $ABC \rightarrow D$ is lost.

The FD $ABC \rightarrow D$ is lost, and we need to join R_1 and R_2 on A, but A is not a key of R_2.

\rightarrow \textbf{Not a lossless decomposition!}
EXERCISE 7

Given: Sale(customer, store, product, price) and the constraints:
 A customer buys from only one store.
 There is a unique price for each product in a store, but the same product can have a different price in different stores.

a) What are the FDs implied by the above description?
 customer → store
 store, product → price

b) What are the candidate keys?
 {customer, product}

Since customer, product → store, product (IR2)
and customer, product → price (IR3)

Also \{customer, product\}^+ = \{customer, product, store, price\}
EXERCISE 7 (cont’d)

Given: Sale(customer, store, product, price)
A customer buys from only one store.
There is a unique price for each product in a store, but the same product can have a different price in different stores.

c) Explain why Sale is not in 3NF.
Both FDs violate 3NF.

\[F = \{ \text{customer} \rightarrow \text{store}; \ \text{store, product} \rightarrow \text{price} \} \]

The LHS of the FDs are not superkeys; the RHS are not prime attributes of Sale.

d) Decompose Sale into 3NF relation schemas.
\[R_1(\text{customer, store}) \quad R_2(\text{store, product, price}) \]

e) Is the decomposition dependency preserving? Why?
Yes Each FD is preserved in a relation schema, BUT ... (next page).
The decomposition $R_1(\text{customer, store}), R_2(\text{store, product}, \text{price})$ is **lossy** because the common attribute store is not a key of any table.

The two decomposed relations do not generate the original one if joined (on the common store attribute). The join result contains 4 records instead of 3 as in the original relation.

What is the problem? None of the fragments contains the candidate key $(\text{customer, product})$.

Solution? Include an additional table $R_3(\text{customer, product})$ containing the candidate key in the decomposition.