DSAA 5012 Advanced Data Management for Data Science

LECTURE 10 EXERCISES RELATIONAL DATABASE DESIGN: NORMALIZATION

L10: EXERCISES

DSAA 5012

Given: R(A, B, C, D, E) $F = \{A \rightarrow BC\}$ Decomposition: $R_1(A, B, C)$ and $R_2(A, D, E)$

a) Is the decomposition lossless? Why? (*iff* $R_1 \cap R_2 \rightarrow R_1$ or $R_1 \cap R_2 \rightarrow R_2$)

Yes The common attribute A is a key for R_1 .

- b) Is the decomposition dependency preserving? Why? (*iff* $(\cup F_i)^+ = F^+$) Yes A \rightarrow BC is preserved in R₁.
- c) Is the decomposition $R_1(A, B, C)$ and $R_2(C, D, E)$ lossless? Why?
 - **No** C is not a key for any table.

- Given: R(A, B, C, D, E) $F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$ Decomposition: R₁(A, B, C) and R₂(A, D, E)
- a) Is the decomposition lossless? (*iff* $R_1 \cap R_2 \rightarrow R_1$ or $R_1 \cap R_2 \rightarrow R_2$)
 - **Yes** The common attribute A is a key for R_1 .
- b) Is the decomposition dependency preserving?

 $(iff (\cup F_i)^+ = F^+)$

No We lose $CD \rightarrow E$ and $B \rightarrow D$.

2NF

R is in 2NF *if and only if*

For each FD: $X \rightarrow A$ in F^+ :

X is not a proper subset of

A is a prime attribute for R.

a candidate key for R or

 $A \in X$ (trivial FD) or

- a) Given: R(A, B, C, D) $F = \{AB \rightarrow CD, B \rightarrow C\}$ Is R in 2NF? Why?
 - Key: AB $AB^+=\{A, B, C, D\}$ $B^+=\{B, C\}$
 - No For $B \rightarrow C$, B <u>is</u> a proper subset of the key AB <u>and</u> C is non-prime. So, R is not in 2NF.
- b) Given: R(A, B, C, D) $F = \{AB \rightarrow CD, C \rightarrow D\}$ Is R in 2NF? Why?
 - Key: AB $AB^+=\{A, B, C, D\}$ $C^+=\{C, D\}$
 - **Yes** For $C \rightarrow D$, C <u>is not</u> a proper subset of the key, so R is in 2NF.

Identify the candidate key(s) and the <u>current highest normal form</u> for each of the following relation schemas given their corresponding FDs.

a) R(A, B, C, D, E)

$$F = \{A \rightarrow B, C \rightarrow D\} = F^+$$

 $A^{+}=\{A, B\}$ $C^{+}=\{C, D\}$

Candidate keys: ACE

 \implies For A \rightarrow B and C \rightarrow D

- i. A and C <u>are</u> proper subsets of the candidate key ACE (both FDs fail 1st 2NF test).
- ii. both B and D <u>are not</u> prime attributes of R (both FDs fail 2nd 2NF test).

Both FDs violate 2NF.

Normal form: 1NF

2NF R is in 2NF *if and only if* For each FD: $X \rightarrow A$ in F^+ : A $\in X$ (*trivial FD*) **or** X is not a proper subset of a candidate key for R **or** A is a prime attribute for R.

<u>3NF</u>

R is in 3NF *if and only if* For each FD: $X \rightarrow A$ in F^+ : $A \in X$ (*trivial FD*) **or** X is a superkey for R **or** A is a prime attribute for R.

EXERCISE 4 (cont'd)

Identify the candidate key(s) and the <u>current highest normal form</u> for each of the following relation schemas given their corresponding FDs.

- b) R(A, B, C) $F = \{AB \rightarrow C, C \rightarrow B\} = F^+$
 - $AB^{+}=\{A, B, C\}$ $C^{+}=\{C, B\}$

Candidate keys: AB, AC

- ⇒ For AB→C, C <u>is</u> a prime attribute of R (FD passes 2nd 2NF and 3NF tests).
- ⇒ For C→B,
 B <u>is</u> a prime attribute of R
 (FD passes 2nd 2NF and 3NF tests).
 - Both FDs satisfy 3NF.

Normal form: 3NF

2NF R is in 2NF *if and only if* For each FD: $X \rightarrow A$ in F^+ : A $\in X$ (*trivial FD*) **or** X is not a proper subset of a candidate key for R **or** A is a prime attribute for R.

<u>3NF</u>

R is in 3NF if and only ifFor each FD: $X \rightarrow A$ in F^+ : $A \in X$ (trivial FD) orX is a superkey for R orA is a prime attribute for R.

EXERCISE 4 (cont'd)

Identify the candidate key(s) and the <u>current highest normal form</u> for each of the following relation schemas given their corresponding FDs.

c) R(A, B, C, F)

- $F = {\mathsf{AB} \rightarrow \mathsf{C}, \ \mathsf{C} \rightarrow \mathsf{F}} = F^+$
- $AB^{+}=\{A, B, C, F\}$ $C^{+}=\{C, F\}$

Candidate keys: AB

- \Rightarrow For AB \rightarrow C
 - AB <u>is not</u> a proper subset of a candidate key (FD passes 1st 2NF test);
 - ii. AB is a superkey for R (FD passes 1st 3NF test).
- \Rightarrow For C \rightarrow F
 - C <u>is not</u> a proper subset of a candidate key (FD passes 1st 2NF test);
 - ii. C is not a superkey of R (FD fails 1st 3NF test);
 - iii. F <u>is not</u> a prime attribute (FD fails 2nd 3NF test).
 - Both FDs satisfy 2NF.

Normal form: 2NF

<u>2NF</u>

R is in 2NF *if and only if* For each FD: X→A in F^+ : A ∈ X (*trivial FD*) **or** X is not a proper subset of a candidate key for R **or** A is a prime attribute for R.

<u>3NF</u>

R is in 3NF *if and only if* For each FD: X→A in *F*⁺: A ∈ X (*trivial FD*) **or** X is a superkey for R **or** A is a prime attribute for R

- **Exercise 5:** Decompose R(A, B, C, D, E, F, G) into 3NF relations for the FD set $F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}$.
- **Exercise 6:** Decompose R(A, B, C, D) into 3NF and BCNF relations for each of the following FD sets. a) $F = \{B \rightarrow C, D \rightarrow A\}$ b) $F = \{ABC \rightarrow D, D \rightarrow A\}$
- Exercise 7: Given: Sale(customer, store, product, price) and the constraints: A customer buys from only one store. There is a unique price for each product in a store, but the same product can have a different price in different stores.
 a) What are the FDs implied by the above description?
 b) What are the candidate keys?
 c) Explain why Sale is not in 3NF.
 d) Decompose Sale into 3NF relation schemas.
 - e) Is the decomposition dependency preserving? Why?

Decompose R(A, B, C, D, E, F, G) into 3NF relations for the FD set $F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}.$

Attribute closures

 $AB^+ = \{A, B, C, D, E, F\}$ $C^+ = \{C, E, F\}$ $G^+ = \{G, A, F\}$ $CE^+ = \{C, E, F\}$

Candidate key:BGFrom $G \rightarrow A$ we can infer $BG \rightarrow AB$ using IR2. $BG^+ = \{B, G, A, C, D, E, F\}$ All FDs violate 3NF!

Canonical cover: $F_C = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow AF\}$

3NF decomposition: $R_1(\underline{A, B}, C, D)$ $R_3(\underline{G}, A, F)$ $R_2(\underline{C}, E, F)$ $R_4(\underline{B, G}) \Rightarrow$ due to the candidate key

Decompose R(A, B, C, D) into 3NF and BCNF relations for each of the following FD sets.

a) $F = \{B \rightarrow C, D \rightarrow A\}$

Attribute closures: $B^+ = \{B, C\}$ $D^+ = \{D, A\}$

- Candidate keys: BD
- Canonical cover: $F_C = \{B \rightarrow C, D \rightarrow A\}$

3NF Decomposition	BCNF Decomposition
R ₁ (<u>B</u> , C)	R ₁ (<u>B</u> , C)
R ₂ (<u>D</u> , A)	R ₂ (<u>D</u> , A)
$R_3(\underline{B, D}) \Longrightarrow$ due to the candidate key	R ₃ (<u>B, D</u>)

EXERCISE 6 (cont'd)

Decompose R(A, B, C, D) into 3NF and BCNF relations for each of the following FD sets.

b)
$$F = \{ABC \rightarrow D, D \rightarrow A\}$$

Attribute closures: $ABC^+ = \{A, B, C, D\}$ $D^+ = \{D, A\}$

Candidate keys: ABC, BCD Using IR2: BCD→ABC

Canonical cover: $F_C = \{ABC \rightarrow D, D \rightarrow A\}$

<u>3NF Decomposition</u>

Already in 3NF

R(<u>A, B, C</u>, D)

Dependency preserving?

Yes

Is this BCNF decomposition OK? $R_1(\underline{A, B, C})$ and $R_2(\underline{D}, A)$ No Why? **BCNF Decomposition**

Only D→A violates BCNF

 $\mathsf{R}_1(\underline{\mathsf{B},\,\mathsf{C},\,\mathsf{D}}) \qquad \mathsf{R}_2(\underline{\mathsf{D}},\,\mathsf{A})$

Dependency preserving?

No The FD ABC \rightarrow D is lost.

The FD ABC \rightarrow D is lost, <u>and</u> we need to join R₁ and R₂ on A, but A is not a key of R₂. \Rightarrow Not a lossless decomposition!

Given: Sale(customer, store, product, price) and the constraints:A customer buys from only one store.There is a unique price for each product in a store, but the same

product can have a different price in different stores.

a) What are the FDs implied by the above description?

customer \rightarrow store

store, product \rightarrow price

b) What are the candidate keys?

{customer, product}

Since customer, product \rightarrow store, product (IR2)

and customer, product \rightarrow price (**IR3**)

Also {customer, product}⁺ = {customer, product, store, price}

EXERCISE 7 (cont'd)

Given: Sale(customer, store, product, price)

A customer buys from only one store.

3NF R is in 3NF *if and only if* For each FD: $X \rightarrow A$ in F^+ : $A \in X$ (*trivial FD*) **or** X is a superkey for R **or** A is a prime attribute for R.

There is a unique price for each product in a store, but the same product can have a different price in different stores.

c)	Explain why Sale is not in 3NF.	candidate key: {customer, product}
	Both FDs violate 3NF.	$F = \{ \text{customer} \rightarrow \text{store}; \text{ store}, \text{ product} \rightarrow \text{price} \}$
	The LHS of the FDs are not supe	rkeys: the RHS are not prime attributes of Sale.

d) Decompose Sale into 3NF relation schemas.

 $R_1(\underline{customer}, store)$ $R_2(\underline{store, product}, price)$

e) Is the decomposition dependency preserving? Why?

Yes Each FD is preserved in a relation schema, BUT ... (next page).

DSAA 5012

L10: EXERCISES

EXERCISE 7 (cont'd)

The decomposition $R_1(customer, store)$, $R_2(store, product, price)$ is lossy because the common attribute store is not a key of any table.

	Sale				R ₁			R_2	
<u>customer</u>	product	store	price		customer	store	<u>store</u>	product	price
c1	p1	s1	pr1	decompose	c1	s1	s1	p1	pr1
c1	p2	s1	pr2		c2	s1	s1	p2	pr2
c2	p1	s1	pr1						

The two decomposed relations do not generate the original one if joined (on the common store attribute). The join result contains 4 records instead of 3 as in the original relation.

What is the problem? None of the fragments contains the candidate key (customer, product).

Solution? Include an additional table R₃(customer, product) containing the candidate key in the decomposition.

R ₃				
customer	product			
c1	p1			
c1	p2			
c2	p1			

