DSAA 5012 Advanced Data Management for Data Science

LECTURE 10 EXERCISES RELATIONAL DATABASE DESIGN: NORMALIZATION

EXERCISE 1

Given: $\quad R(A, B, C, D, E)$

$$
F=\{A \rightarrow B C\}
$$

Decomposition: $R_{1}(A, B, C)$ and $R_{2}(A, D, E)$
a) Is the decomposition lossless? Why?
(iff $\mathrm{R}_{1} \cap \mathrm{R}_{2} \rightarrow \mathrm{R}_{1}$ or $\mathrm{R}_{1} \cap \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}$)
Yes The common attribute A is a key for R_{1}.
b) Is the decomposition dependency preserving? Why? (iff $\left.\left(\cup F_{i}\right)^{+}=F^{+}\right)$

Yes $A \rightarrow B C$ is preserved in R_{1}.
c) Is the decomposition $R_{1}(A, B, C)$ and $R_{2}(C, D, E)$ lossless? Why?

No C is not a key for any table.

EXERCISE 2

Given: $\quad \mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}) \quad F=\{\mathrm{A} \rightarrow \mathrm{BC}, \mathrm{CD} \rightarrow \mathrm{E}, \mathrm{B} \rightarrow \mathrm{D}, \mathrm{E} \rightarrow \mathrm{A}\}$
Decomposition: $R_{1}(A, B, C)$ and $R_{2}(A, D, E)$
a) Is the decomposition lossless? (iff $\mathrm{R}_{1} \cap \mathrm{R}_{2} \rightarrow \mathrm{R}_{1}$ or $\mathrm{R}_{1} \cap \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}$)

Yes The common attribute A is a key for R_{1}.
b) Is the decomposition dependency preserving?

$$
\left(i f f\left(\cup F_{i}\right)^{+}=F^{+}\right)
$$

No We lose $C D \rightarrow E$ and $B \rightarrow D$.

EXERCISE 3

a) Given: $\quad R(A, B, C, D) \quad F=\{A B \rightarrow C D, B \rightarrow C\}$

Is R in 2NF? Why?
Key: AB $A B^{+}=\{A, B, C, D\}$ $B^{+}=\{B, C\}$

2NF

R is in 2NF if and only if For each FD: $X \rightarrow \mathrm{~A}$ in F^{+}:
$A \in X($ trivial $F D)$ or
X is not a proper subset of a candidate key for R or A is a prime attribute for R.

No For $B \rightarrow C, B$ is a proper subset of the key $A B$ and C is non-prime. So, R is not in 2NF.
b) Given: $\quad \mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}) \quad F=\{\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{C} \rightarrow \mathrm{D}\}$

Is R in 2NF? Why?
Key: $A B \quad A B^{+}=\{A, B, C, D\} \quad C^{+}=\{C, D\}$
Yes For $\mathrm{C} \rightarrow \mathrm{D}, \mathrm{C}$ is not a proper subset of the key, so R is in 2 NF .

EXERCISE 4

Identify the candidate key(s) and the current highest normal form for each of the following relation schemas given their corresponding FDs.
a) $R(A, B, C, D, E)$
$F=\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{C} \rightarrow \mathrm{D}\}=F^{+}$
$\mathrm{A}^{+}=\{\mathrm{A}, \mathrm{B}\}$

$$
\mathrm{C}^{+}=\{\mathrm{C}, \mathrm{D}\}
$$

Candidate keys: ACE
\Rightarrow For $A \rightarrow B$ and $C \rightarrow D$
i. A and C are proper subsets of the candidate key ACE (both FDs fail $1^{\text {st }} 2 \mathrm{NF}$ test).
ii. both B and D are not prime attributes of R (both FDs fail $2^{\text {nd }} 2 \mathrm{NF}$ test).
Both FDs violate 2NF.

2NF

R is in 2NF if and only if
For each FD: $X \rightarrow \mathrm{~A}$ in F^{+}:
$A \in X$ (trivial $F D$) or
X is not a proper subset of a candidate key for R or
A is a prime attribute for R.

3NF

R is in 3NF if and only if For each FD: $X \rightarrow \mathrm{~A}$ in F^{+}: $A \in X$ (trivial $F D$) or
X is a superkey for R or
A is a prime attribute for R.

Normal form: 1NF

EXERCISE 4 (conted)

Identify the candidate key(s) and the current highest normal form for each of the following relation schemas given their corresponding FDs.
b) $R(A, B, C)$

$$
F=\{\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{~B}\}=F^{+}
$$

$A B^{+}=\{A, B, C\}$
$\mathrm{C}^{+}=\{\mathrm{C}, \mathrm{B}\}$
Candidate keys: AB, AC
\Rightarrow For $A B \rightarrow C$, C is a prime attribute of R (FD passes $2^{\text {nd }} 2 \mathrm{NF}$ and 3 NF tests).
\Rightarrow For $\mathrm{C} \rightarrow \mathrm{B}$,
B is a prime attribute of R
(FD passes $2^{\text {nd }} 2 \mathrm{NF}$ and 3 NF tests).
Both FDs satisfy 3NF.
Normal form: 3NF

EXERCISE 4 (conted)

Identify the candidate key(s) and the current highest normal form for each of the following relation schemas given their corresponding FDs.
c) $R(A, B, C, F)$
$\mathrm{AB}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{F}\}$
$F=\{\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{F}\}=F^{+}$
$C^{+}=\{C, F\}$
Candidate keys: AB
\Rightarrow For $A B \rightarrow C$
i. AB is not a proper subset of a candidate key (FD passes $1^{\text {st }} 2 \mathrm{NF}$ test);
ii. $A B$ is a superkey for R (FD passes $1^{\text {st }} 3 N F$ test).
\Rightarrow For $\mathrm{C} \rightarrow \mathrm{F}$
i. C is not a proper subset of a candidate key (FD passes 1st 2 NF test);
ii. C is not a superkey of R ($F D$ fails $1{ }^{\text {st }} 3 \mathrm{NF}$ test);
iii. F is not a prime attribute ($F D$ fails $2^{\text {nd }} 3 \mathrm{NF}$ test).

Both FDs satisfy 2NF.
Normal form: 2NF

EXERCISES

Exercise 5: Decompose R(A, B, C, D, E, F, G) into 3NF relations for the FD set $F=\{\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{C} \rightarrow \mathrm{EF}, \mathrm{G} \rightarrow \mathrm{A}, \mathrm{G} \rightarrow \mathrm{F}, \mathrm{CE} \rightarrow \mathrm{F}\}$.

Exercise 6: Decompose $R(A, B, C, D)$ into $3 N F$ and $B C N F$ relations for each of the following FD sets.
a) $F=\{B \rightarrow C, D \rightarrow A)$
b) $F=\{\mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{A}\}$

Exercise 7: Given: Sale(customer, store, product, price) and the constraints: A customer buys from only one store.
There is a unique price for each product in a store, but the same product can have a different price in different stores.
a) What are the FDs implied by the above description?
b) What are the candidate keys?
c) Explain why Sale is not in 3NF.
d) Decompose Sale into 3NF relation schemas.
e) Is the decomposition dependency preserving? Why?

EXERCISE 5

Decompose R(A, B, C, D, E, F, G) into 3NF relations for the FD set $F=\{\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{C} \rightarrow \mathrm{EF}, \mathrm{G} \rightarrow \mathrm{A}, \mathrm{G} \rightarrow \mathrm{F}, \mathrm{CE} \rightarrow \mathrm{F}\}$.

Attribute closures
$\mathrm{AB}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\} \quad \mathrm{C}^{+}=\{\mathrm{C}, \mathrm{E}, \mathrm{F}\} \quad \mathrm{G}^{+}=\{\mathrm{G}, \mathrm{A}, \mathrm{F}\} \quad \mathrm{CE}^{+}=\{\mathrm{C}, \mathrm{E}, \mathrm{F}\}$
Candidate key: $\mathrm{BG} \quad$ From $\mathrm{G} \rightarrow \mathrm{A}$ we can infer $\mathrm{BG} \rightarrow \mathrm{AB}$ using IR2.

$$
\mathrm{BG}^{+}=\{\mathrm{B}, \mathrm{G}, \mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}\} \quad \text { All FDs violate 3NF! }
$$

Canonical cover: $F_{C}=\{\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{C} \rightarrow \mathrm{EF}, \mathrm{G} \rightarrow \mathrm{AF}\}$
3NF decomposition: $R_{1}(A, B, C, D) \quad R_{3}(\underline{G}, A, F)$
$R_{2}(\underline{C}, E, F) \quad R_{4}(\underline{B}, G) \Rightarrow$ due to the candidate key

EXERCISE 6

Decompose $R(A, B, C, D)$ into $3 N F$ and $B C N F$ relations for each of the following FD sets.
a) $F=\{B \rightarrow C, D \rightarrow A)$

Attribute closures: $\mathrm{B}^{+}=\{B, C\} \quad \mathrm{D}^{+}=\{\mathrm{D}, \mathrm{A}\}$
Candidate keys: BD
Canonical cover: $F_{C}=\{\mathrm{B} \rightarrow \mathrm{C}, \mathrm{D} \rightarrow \mathrm{A}\}$
3NF Decomposition
BCNF Decomposition
R_{1} ($\underline{\text { B }}, \mathrm{C}$)
$\mathrm{R}_{2}(\underline{\mathrm{D}}, \mathrm{A})$
$\mathrm{R}_{3}(\underline{B}, \mathrm{D}) \Rightarrow$ due to the candidate key
R_{1} (B, C)
$\mathrm{R}_{2}(\underline{\mathrm{D}}, \mathrm{A})$
$\mathrm{R}_{3}(\underline{B}, \mathrm{D})$

EXERCISE 6 (conted)

Decompose $R(A, B, C, D)$ into $3 N F$ and $B C N F$ relations for each of the following FD sets.
b) $F=\{\mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{A}\}$

Attribute closures: $\mathrm{ABC}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\} \quad \mathrm{D}^{+}=\{\mathrm{D}, \mathrm{A}\}$
Candidate keys: $A B C, B C D \quad$ Using IR2: $B C D \rightarrow A B C$
Canonical cover: $F_{C}=\{\mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{A}\}$

3NF Decomposition
Already in 3NF
R(A, B, C, D)
Dependency preserving?
Yes

BCNF Decomposition
Only $\mathrm{D} \rightarrow \mathrm{A}$ violates BCNF $R_{1}(\underline{B}, C, D) \quad R_{2}(\underline{D}, A)$
Dependency preserving?
No The FD ABC \rightarrow D is lost.

Is this BCNF decomposition OK? $R_{1}(A, B, C)$ and $R_{2}(\underline{D}, A)$ No Why?

The FD ABC \rightarrow D is lost, and we need to join R_{1} and R_{2} on A, but A is not a key of R_{2}.
\Longrightarrow Not a lossless decomposition!

EXERCISE 7

Given: Sale(customer, store, product, price) and the constraints:
A customer buys from only one store.
There is a unique price for each product in a store, but the same product can have a different price in different stores.
a) What are the FDs implied by the above description?
customer \rightarrow store \quad store, product \rightarrow price
b) What are the candidate keys?
\{customer, product\}
Since customer, product \rightarrow store, product (IR2)
and customer, product \rightarrow price (IR3)
Also \{customer, product\}+ $=$ \{customer, product, store, price\}

Given: Sale(customer, store, product, price) A customer buys from only one store.

3NF
R is in 3NF if and only if For each FD: $X \rightarrow \mathrm{~A}$ in F^{+}:
$A \in X$ (trivial $F D$) or
X is a superkey for R or
A is a prime attribute for R.

There is a unique price for each product in a store, but the same product can have a different price in different stores.
c) Explain why Sale is not in 3NF.
candidate key: \{customer, product\} Both FDs violate 3NF. $\quad F=\{$ customer \rightarrow store; store, product \rightarrow price $\}$
The LHS of the FDs are not superkeys; the RHS are not prime attributes of Sale.
d) Decompose Sale into 3NF relation schemas.
R_{1} (customer, store) $\quad R_{2}$ (store, product, price)
e) Is the decomposition dependency preserving? Why?

Yes Each FD is preserved in a relation schema, BUT ... (next page).

EXERCISE 7 (conted)

The decomposition R_{1} (customer, store), R_{2} (store, product, price) is lossy because the common attribute store is not a key of any table.

customer	product	store	price
c 1	p 1	s 1	pr 1
c 1	p 2	s 1	$\mathrm{pr2}$
c 2			
c 2	p 1	s 1	pr 1

R_{1}	
customer	store
c 1	s 1
c 2	s 1

R_{2}		
store	product	price
s 1	p 1	pr 1
s 1	p 2	pr 2

The two decomposed relations do not generate the original one if joined (on the common store attribute). The join result contains 4 records instead of 3 as in the original relation.
What is the problem? None of the fragments contains the candidate key (customer, product).
Solution? Include an additional table R_{3} (customer, product)

R_{3}	
customer	product
c 1	p 1
c 1	p 2
c 2	p 1

