DSAA 5012 Advanced Data Management for Data Science

LECTURE 7 EXERCISES STRUCTURED QUERY LANGUAGE (SQL)

example relational schema And database

Sailor(sailorld, sName, rating, age)
Boat(boatld, bName, color)
Reserves(sailorld, boatld, rDate)

> Attribute names in italics are foreign key attributes.

Sailor			
sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

Reserves		
sailorld	boatld	rDate
22	101	$10 / 10 / 17$
22	102	$10 / 10 / 17$
22	103	$08 / 10 / 17$
22	104	$07 / 10 / 17$
31	102	$10 / 11 / 17$
31	103	$06 / 11 / 17$
31	104	$12 / 11 / 17$
64	101	$05 / 09 / 17$
64	102	$08 / 09 / 17$
74	103	$08 / 09 / 17$
99	104	$08 / 08 / 17$

Boat		
boatld	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

EXERCISE 1

Find the boat name and the number of reservations for each red boat.

Sailor			
sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

Reserves		
sailorld	boatld	rDate
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

Boat		
boatld	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

EXERCISE 1

Find the boat name and the number of reservations for each red boat.
(Interlake, 3), (Marine, 3)

Is this a correct solution?

select bName, count(*) as reservationCount
from Boatinatural join Reserves
where color='red'
group by'boatld;

IIlegal!!!
Why?

All non-aggregate attributes in the select clause must appear in the group by clause (i.e., bName must appear in the group by clause).

EXERCISE 1 (contd)

Find the boat name and the number of reservations for each red boat.
(Interlake, 3), (Marine, 3)

EXERCISE 1 (contd)

Find the boat name and the number of reservations for each red boat.

(Interlake, 3), (Marine, 3)

EXERCISE 1 (contd)

Suppose we change the query to this.

What is the result?

Find the boat name and the number of reservations for each boat.

EXERCISE 1 (contd)

Find the boat name and the number of reservations for each boat.

EXERCISE 2

Find the sailor id and number of reservations made for each sailor.

Sailor			
sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

Reserves		
sailorld	$\underline{\text { boatld }}$	rDate
22	101	$10 / 10 / 17$
22	102	$10 / 10 / 17$
22	103	$08 / 10 / 17$
22	104	$07 / 10 / 17$
31	102	$10 / 11 / 17$
31	103	$06 / 11 / 17$
31	104	$12 / 11 / 17$
64	101	$05 / 09 / 17$
64	102	$08 / 09 / 17$
74	103	$08 / 09 / 17$
99	104	$08 / 08 / 17$
11 tuples		
$\underline{J J J \mid}$		

Boat		
boatld	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

EXERCISE 2

Find the sailor id and number of reservations made for each sailor.

$$
\begin{gathered}
(22,4),(29,0),(31,3),(32,0),(58,0),(64,2), \\
(71,0),(74,1),(85,0),(95,0),(99,1)
\end{gathered}
$$

select sailorld, count(sailorld) as reservationCount from Reserves group by sailorld;		sailorld	reservationCount
		${ }^{22}$	4
	How to include all sailors?	${ }^{31}$	2
		74	1

How about joining Sailor and Reserves?

select sailorld, count(sailorld) as reservationCount from Sailor natural join Reserves group by sailorld;		sailorld	reservationCount
		22	4
		31	
	What's the problem?	64	
		74 99	1

EXERCISE 2 (conter)

Find the sailor id and number of reservations made for each sailor.

$$
\begin{gathered}
(22,4),(29,0),(31,3),(32,0),(58,0),(64,2), \\
(71,0),(74,1),(85,0),(95,0),(99,1)
\end{gathered}
$$

sailorld	sName	rating	age	boatld	rDate
22	Dustin	7	45	101	10/10/17
22	Dustin	7	45	102	10/10/17
22	Dustin	7	45	103	08/10/17
22	Dustin	7	45	104	07/10/17
31	Lubber	8	55	102	10/11/17
31	Lubber	8	55	103	06/11/17
31	Lubber	8	55	104	12/11/17
64	Horatio	7	35	101	05/09/17
64	Horatio	7	35	102	08/09/17
74	Horatio	9	35	103	08/09/17
99	Chris	10	30	104	08/08/17
29	Brutus	1	33	-	-
32	Andy	8	25	-	-
58	Rusty	10	35	-	-
71	Zorba	10	16	-	-
85	Art	3	25	-	-
95	Bob	3	63	-	-

Some Sailor tuples have no match in the Reserves relation.
How to deal with this problem?

Find the sailor id and number of reservations made for each sailor.
$(22,4),(29,0),(31,3),(32,0),(58,0),(64,2)$,
$(71,0),(74,1),(85,0),(95,0),(99,1)$
select sailorld, count(boatld) as reservationCount from Sailor natural left outer join Reserves group by sailorld;

Recall: left outer join keeps all copies of the common attributes; natural left outer join keeps only one copy of the common attributes.

Is this a correct solution?
No! Why?

> | select sailorld, count(sailorld) as reservationCount |
| :--- |
| from Sailor natural left outer join Reserves |
| group by sailorld; |

Counting is done on the sailor ids and all of them appear at least once in the result.

EXERCISE 3

Find the records (tuples) of the sailors with the highest rating.

Sailor			
sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

Reserves		
sailorld	boatld	rDate
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17
	$\stackrel{11 \text { tupl }}{(\underline{J})}$	

Boat		
boatld	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

EXERCISE 3

Find the records (tuples) of the sailors with the highest rating.
(58, Rusty, 10, 35), (71, Zorba, 10, 16), (99, Chris, 10, 30)

Is this a correct
solution?
No! Why?

select * from Sailor where rating=max(rating);

There is no max(rating) value to compare in the where clause.
The max rating value must be obtained by a select statement!

A query that returns multiple tuples cannot contain an aggregate function.
There are multiple tuples in the result, but only one max value!

EXERCISE 3 (contd)

Find the records (tuples) of the sailors with the highest rating.
(58, Rusty, 10, 35), (71, Zorba, 10, 16), (99, Chris, 10, 30)

Find the records (tuples) of the sailors with the highest rating.
(58, Rusty, 10, 35), (71, Zorba, 10, 16), (99, Chris, 10, 30)

EXERCISE 3 (conted)

What is the result if we replace ">=all" with ">all"?

EXERCISE 3 (contd)

What is the result if we replace " $>=a l l$ " with " $>=$ some"?
Recall ">some" is equivalent to greater than the minimum.

EXERCISE 4

DO NOT use JOIN

Find the names of sailors who have reserved a red boat.
Use only set membership

sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

Reserves		
sailorld	$\underline{\text { boatld }}$	rDate
22	101	$10 / 10 / 17$
22	102	$10 / 10 / 17$
22	103	$08 / 10 / 17$
22	104	$07 / 10 / 17$
31	102	$10 / 11 / 17$
31	103	$06 / 11 / 17$
31	104	$12 / 11 / 17$
64	101	$05 / 09 / 17$
64	102	$08 / 09 / 17$
74	103	$08 / 09 / 17$
99	104	$08 / 08 / 17$

11 tuples

EXERCISE 4

DO NOT use JOIN

Find the names of sailors who have reserved a red boat.
Use only set membership
Dustin, Lubber, Horatio, Chris

EXERCISE 4 (contd)

What if we replace the first in with not in?

EXERCISE 4 (contd)

What if we replace the second in with not in?

EXERCISE 4 (contd)

What if we replace both in's with not in?

STRUCTURED QUERY LANGUAGE (SQL) EXERCISE 4 to be continued ...

EXERCISE 4

Find the names of sailors who have reserved a red boat. Use exists
Dustin, Lubber, Horatio, Chris

sailorld	sName
22	Dustin
29	Brutus
31	Lubber
32	Andy
58	Rusty
64	Horatio
71	Zorba
74	Horatio
85	Art
95	Bob
99	Chris

```
select sName
from Sailor S
where exists (select *
                                    from Reserves natural join Boat
                                    where Reserves.sailorld=S.sailorld
                                    and color='red');
```

Reserves natural join Boat where color='red'				
boatld	sailorld	rDate	bName	color
102	22	$10 / 10 / 17$	Interlake	red
102	64	$08 / 09 / 17$	Interlake	red
102	31	$10 / 11 / 17$	Interlake	red
104	22	$07 / 10 / 17$	Marine	red
104	99	$08 / 08 / 17$	Marine	red
104	31	$12 / 11 / 17$	Marine	red

EXERCISE 4

Find the names of sailors who have reserved a red boat.
Use with clause
Des Dustin, Lubber, Horatio, Chris

EXERCISES 5, 6, 7

Sailor(sailorld, sName, rating, age)
Boat(boatld, bName, color)
Reserves(sailorld, boatld, rDate)

Exercise 5: Find the ratings and the average age of the ratings where a rating's average age is equal to the minimum average age of all ratings.

Exercise 6: Find the boat name and number of reservations made for each boat. Do not use any subqueries. Do not create any derived tables.

Exercise 7: Find the age of the youngest adult sailor (i.e., age ≥ 18) for each rating for which there are at least 2 adult sailors (i.e., 2 sailors whose age is ≥ 18) with the same rating. Do not create any derived tables.

EXERCISE 5

Find the ratings and the average age of the ratings where a rating's average age is equal to the minimum average age of all ratings.
$(10,27)$

> Cannot use "where avg(age)=" since avg(age) is not an attribute of Sailor!

Cannot use
"min(...". Illegal SQL!

EXERCISE 5 (contd)

Find the ratings and the average age of the ratings where a rating's average age is equal to the minimum average age of all ratings.

स(ᄌ) $(10,27)$

EXERCISE 5 (contd)

Find the ratings and the average age of the ratings where a rating's average age is equal to the minimum average age of all ratings.
$(10,27)$

Can we replace <=all with >=some?
No! Why?
Will include
all ratings.

EXERCISE 5 (contd)

Find the ratings and the average age of the ratings where a rating's average age is equal to the minimum average age of all ratings.

장 $(10,27)$

select rating, avgAge
from (select rating, avg(age) as avgAge
from Sailor
group by rating) temp
where avgAge=(select min(avgAge)
from temp);

- This query is correct SQL but will not execute in Oracle.
> Returns the error "table or view does not exist".

Oracle restricts the scope of the alias temp to the outer select.

EXERCISE 5 (conted)

Find the ratings and the average age of the ratings where a rating's average age is equal to the minimum average age of all ratings.
(10, 27)

Find the boat name and number of reservations for each boat.
(Clipper, 3), (Interlake, 2), (Interlake, 3), (Marine, 3), (Serenity, 0)

```
select bName, count(bName) as reservationCount from Boat natural left outer join Reserves group by bName;
```

The count for Serenity is incorrect; should be 0. Interlake should have two separate counts.

What's the problem?

How about group on boatld, bName; count boatld?

> select bName, count(boatld) as reservationCount from Boat natural left outer join Reserves group by boatld, bName;

The count for Serenity is still incorrect!

bName	reservation Count
Clipper	3
Interlake	2
Interlake	3
Marine	3
Serenity	1

What's the problem?

Find the boat name and number of reservations for each boat.
1 (Clipper, 3), (Interlake, 2), (Interlake, 3), (Marine, 3), (Serenity, 0)

> select bName, count(boatld) as reservationCount from Boat natural left outer join Reserves group by boatld, bName;

Boat natural left outer join Reserves				
boatld	bName	color	sailorld	rDate
101	Interlake	blue	64	$05 / 09 / 17$
101	Interlake	blue	22	$10 / 10 / 17$
102	Interlake	red	22	$10 / 10 / 17$
102	Interlake	red	64	$08 / 09 / 17$
102	Interlake	red	31	$10 / 11 / 17$
103	Clipper	green	22	$08 / 10 / 17$
103	Clipper	green	31	$06 / 11 / 17$
103	Clipper	green	74	$08 / 09 / 17$
104	Marine	red	22	$07 / 10 / 17$
104	Marine	red	99	$08 / 08 / 17$
104	Marine	red	31	$12 / 11 / 17$
105	Serenity	cyan	(null)	(null)

四
We need to count sailorld or rDate!

Find the boat name and number of reservations for each boat.
(Clipper, 3), (Interlake, 2), (Interlake, 3), (Marine, 3), (Serenity, 0)

EXERCISE 7

Do not create any derived tables.

Find the age of the youngest adult sailor (i.e., age ≥ 18) for each rating for which there are at least 2 adult sailors with the same rating.

Find the age of the youngest adult sailor (i.e., age ≥ 18) for each rating for which there are at least 2 adult sailors with the same rating.

