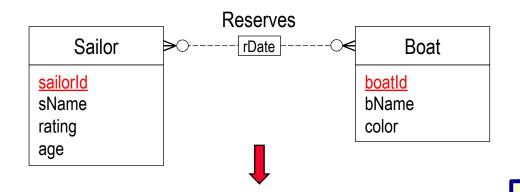
DSAA 5012 Advanced Database Management for Data Science

LECTURE 5 EXERCISES RELATIONAL ALGEBRA


EXAMPLE RELATIONAL SCHEMA

Sailor(sailorld, sName, rating, age)

Boat(boatId, bName, color)

Reserves(<u>sailorld</u>, <u>boatld</u>, <u>rDate</u>)

What is the E-R schema for this relational schema?

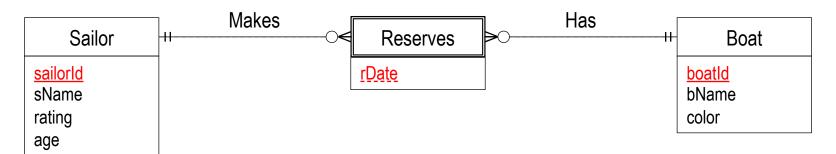
What about this schema?

Reserves(<u>sailorId</u>, <u>boatId</u>, rDate)

A sailor can reserve a given boat at most once!

What do we get if we reduce Reserves?

rDate is not part of the key in the reduction!


EXAMPLE RELATIONAL SCHEMA

Sailor(sailorld, sName, rating, age)

Boat(boatId, bName, color)

What about this schema?

Reserves(<u>sailorId</u>, <u>boatId</u>, <u>rDate</u>)

What kind of entity is Reserves? ⇒ Weak entity.

On which entity is Reserves dependent?

Both Sailor and Boat!

Is rDate a discriminator for Reserves? ⇒ Yes

What should be the cardinality constraints for Makes? \Rightarrow 1:N

What should be the participation constraints for Makes? ⇒ Sailor - partial; Reserves - total

What should be the cardinality constraints for Has? \Rightarrow 1:N

What should be the participation constraints for Has? \Rightarrow Boat - partial; Reserves - total

EXAMPLE RELATIONAL SCHEMA AND DATABASE

Sailor(sailorld, sName, rating, age)

Boat(boatld, bName, color)

Reserves(<u>sailorId</u>, <u>boatId</u>, <u>rDate</u>)

Attribute names in italics are foreign key attributes.

Sailor

<u>sailorld</u>	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

Reserves

<u>sailorId</u>	<u>boatId</u>	<u>rDate</u>
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

Boat

<u>boatld</u>	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

11 tuples

Find the <u>ids</u> of sailors who have reserved boat 103.

Sailor

<u>sailorld</u>	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

Reserves

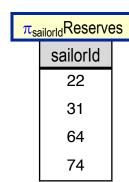
<u>sailorld</u>	<u>boatld</u>	<u>rDate</u>
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

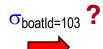
Boat

<u>boatld</u>	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

11 tuples




Find the <u>ids</u> of sailors who have reserved boat 103.

22, 31, 74

1. Is this a solution?

 $\sigma_{\text{boatId}=103}(\pi_{\text{sailorId}}\text{Reserves})$

2. Is this a solution?

$$\pi_{\text{sailorId}}(\sigma_{\text{boatId}=103}\text{Reserves})$$

$\sigma_{\text{boatId}=103}$ Reserves			
sailorld	boatld	rDate	
22	103	08/10/17	
31	103	06/11/17	
74	103	08/09/17	

sailorld	
22	
31	
74	

Find the <u>names</u> of sailors who have reserved boat 103.

Sailor

		<u> </u>	
<u>sailorld</u>	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

Reserves

<u>sailorId</u>	<u>boatId</u>	<u>rDate</u>
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

Boat

<u>boatld</u>	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

11 tuples

Find the <u>names</u> of sailors who have reserved boat 103.

Dustin, Lubber, Horatio

1. Is this a solution?

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId} \land \text{boatId}=103}(\text{Reserves X Sailor}))$

2. Is this a solution?

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId} \land \text{boatId}=103}(\text{Reserves X Sailor}))$

Dustin, Lubber, Horatio

Reserves

sailorld	boatld	rDate
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

Sailor

sailorld	sName	rating	age			
22	Dustin	7	45			
29	Brutus	1	33			
31	Lubber	8	55			
32	Andy	8	25			
58	Rusty	10	35			
64	Horatio	7	35			
71	Zorba	10	16			
74	Horatio	9	35			
85	Art	3	25			
95	Bob	3	63			
99	Chris	10	30			

11 tuples

11 tuples

How many tuples in the result? $11 \times 11 = 121$ tuples!

X

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId} \land \text{boatId}=103}(\text{Reserves X Sailor}))$

Dustin, Lubber, Horatio

		Reserve	s X Sailor			
Reserves.sailorld	boatld	rDate	Sailor.sailorld	sName	rating	age
22	101	10/10/17	22	Dustin	7	45
22	101	10/10/17	29	Brutus	1	33
22	101	10/10/17	31	Lubber	8	55
22	101	10/10/17	32	Andy	8	25
22	101	10/10/17	58	Rusty	10	35
22	101	10/10/17	64	Horatio	7	35
22	101	10/10/17	71	Zorba	10	16
22	101	10/10/17	74	Horatio	9	35
22	101	10/10/17	85	Art	3	25
22	101	10/10/17	95	Bob	3	63
22	101	10/10/17	99	Chris	10	30
22	102	10/10/17	22	Dustin	7	45
22	102	10/10/17	29	Brutus	1	33
:	:	:	:	:	:	:

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId} \land \text{boatId}=103}(\text{Reserves X Sailor}))$

Dustin, Lubber, Horatio

σ _{Reserves.sailorId=Sailor.sailorId ∧ boatId=103} (Reserves X Sailor)						
					age	
22	103	08/10/17	22	Dustin	7	45
31	103	06/11/17	31	Lubber	8	55
74	103	08/09/17	74	Horatio	9	35

Apply π_{sName} to above result:

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

Dustin, Lubber, Horatio

X

$\sigma_{\text{boatId}=103}$ Reserves					
sailorld	ilorld boatld rDate				
22	103	08/10/17			
31	103	06/11/17			
74	103	08/09/17			

Sailor

sailorld	name	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

How many tuples in the result? $3 \times 11 = 33$ tuples!

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

Dustin, Lubber, Horatio

($\sigma_{boatld=103}$ Reserves) X Sailor						
Reserves.sailorld	boatld	rDate	Sailor.sailorld	sName	rating	age
22	103	08/10/17	22	Dustin	7	45
22	103	08/10/17	29	Brutus	1	33
22	103	08/10/17	31	Lubber	8	55
22	103	08/10/17	32	Andy	8	25
22	103	08/10/17	58	Rusty	10	35
22	103	08/10/17	64	Horatio	7	35
22	103	08/10/17	71	Zorba	10	16
22	103	08/10/17	74	Horatio	9	35
22	103	08/10/17	85	Art	3	25
22	103	08/10/17	95	Bob	3	63
22	103	08/10/17	99	Chris	10	30
31	103	06/11/17	22	Dustin	7	45
31	103	06/11/17	29	Brutus	1	33
31	103	06/11/17	31	Lubber	8	55
:	:	:	:	:	:	:

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

Dustin, Lubber, Horatio

$\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor})$						
Reserves.sailorld boatld rDate Sailor.sailorld sName rating ag					age	
22	103	08/10/17	22	Dustin	7	45
31	103	06/11/17	31	Lubber	8	55
74	103	08/09/17	74	Horatio	9	35

Apply π_{sName} to above result:

sName Dustin Lubber Horatio

Find the <u>names</u> of sailors who have reserved boat 103.

Dustin, Lubber, Horatio

1. Is this a solution? ✓

 $\pi_{\text{SName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId} \land \text{boatId}=103}(\text{Reserves X Sailor}))$

Initial result: 121 tuples

2. Is this a solution? ✓

 $\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))$

Initial result: 33 tuples

To be continued ...

Find the <u>names</u> of sailors who have reserved boat 103.

EXERCISE 2: SOLUTION 3

 $\pi_{\text{sName}}((\sigma_{\text{boatId}=103} \text{Reserves}) \text{ JOIN Sailor})$

Dustin, Lubber, Horatio

$\sigma_{ ext{boatld}=103}$ Reserves					
sailorld	rDate				
22	103	08/10/17			
31	103	06/11/17			
74	103	08/09/17			

JOIN

C_{2}	il	℩	r
Oa	Ш	IU	ı

sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

11 tuples

How many tuples in the result? 3 tuples!

Find the <u>names</u> of sailors who have reserved boat 103.

EXERCISE 2: SOLUTION 3

 $\pi_{\text{sName}}((\sigma_{\text{boatId}=103} \text{Reserves}) \text{ JOIN Sailor})$

Dustin, Lubber, Horatio

(ര _{boatId=103} Reserves) JOIN Sailor						
Reserves.sailorld boatld rDate Sailor.sailorld sName rating ag					age	
22	103	08/10/17	22	Dustin	7	45
31	103	06/11/17	31	Lubber	8	55
74	103	08/09/17	74	Horatio	9	35

Apply π_{sName} to above result:

sName
Dustin
Lubber
Horatio

EXERCISE 2: SUMMARY

Find the names of sailors who have reserved boat 103.

All three queries get the correct answer, BUT ...

1. Is this a solution? ✓

$$\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}} \land \text{boatId}=103(\text{Reserves} \times \text{Sailor}))$$

Initial result: 121 tuples

2. Is this a solution? ✓

```
\pi_{\text{sName}}(\sigma_{\text{Reserves.sailorId}=\text{Sailor.sailorId}}((\sigma_{\text{boatId}=103}\text{Reserves}) \times \text{Sailor}))
```

Initial result: 33 tuples

3. Is this a solution? ✓

$$\pi_{\text{sName}}((\sigma_{\text{boatId}=103} \text{Reserves}) \text{ JOIN Sailor})$$

Initial result: 3 tuples

Query Optimization

Relational DBMSs do such optimizations based on relational algebra.

Find the names of sailors who have reserved a red boat.

Sailor

<u>sailorld</u>	sName	rating	age			
22	Dustin	7	45			
29	Brutus	1	33			
31	Lubber	8	55			
32	Andy	8	25			
58	Rusty	10	35			
64	Horatio	7	35			
71	Zorba	10	16			
74	Horatio	9	35			
85	Art	3	25			
95	Bob	3	63			
99	Chris	10	30			

11 tuples

Reserves

<u>sailorId</u>	<u>boatId</u>	<u>rDate</u>
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

Boat

<u>boatld</u>	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	Cyan

5 tuples

11 tuples

Find the names of sailors who have reserved a red boat.

Dustin, Lubber, Horatio, Chris

Is this a solution?

 $\pi_{\text{sName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

σ _{color='red'} Boat				
boatld bName color				
102	Interlake	red		
104	Marine	red		

JOIN

How many tuples in the result? 6 tuples!

How many columns in the result? 5 columns!

Reserves

sailorld	boatld	rDate	
22	101	10/10/17	
22	102	10/10/17	
22	103	08/10/17	
22	104	07/10/17	
31	102	10/11/17	
31	103	06/11/17	
31	104	12/11/17	
64	101	05/09/17	
64	102	08/09/17	
74	103	08/09/17	
99	104	08/08/17	

Find the names of sailors who have reserved a red boat.

EXERCISE 3: SOLUTION 1

 $\pi_{\text{sName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Dustin, Lubber, Horatio, Chris

(ocolor='red'Boat) JOIN Reserves					
bName	color	sailorld	boatld	rDate	
Interlake	red	22	102	10/10/17	
Marine	red	22	104	07/10/17	
Interlake	red	31	102	10/11/17	
Marine	red	31	104	12/11/17	
Interlake	red	64	102	08/09/17	
Marine	red	99	104	08/08/17	

JOIN

How many tuples in the result? 6 tuples!

How many columns in the result? 8 columns!

Sailor

sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

DSAA 5012 L5: EXERCISES

=

Find the names of sailors who have reserved a red boat.

EXERCISE 3: SOLUTION 1

 $\pi_{\text{sName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Dustin, Lubber, Horatio, Chris

(ocolor='red'Boat) JOIN Reserves JOIN Sailor							
bName	color	sailorld	boatld	rDate	sName	rating	age
Interlake	red	22	102	10/10/17	Dustin	7	45
Marine	red	22	104	07/10/17	Dustin	7	45
Interlake	red	31	102	10/11/17	Lubber	8	55
Marine	red	31	104	12/11/17	Lubber	8	55
Interlake	red	64	102	08/09/17	Horatio	7	35
Marine	red	99	104	08/08/17	Chris	10	30

Apply π_{sName} to above result:

sName
Dustin
Lubber
Horatio
Chris

Find the names of sailors who have reserved a red boat.

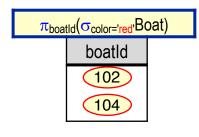
Dustin, Lubber, Horatio, Chris

 $\pi_{\text{sName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN } \text{Reserves } \text{JOIN } \text{Sailor})$

Can you give a more efficient solution in terms of result size?

 $\pi_{\text{sName}}((\pi_{\text{boatId}}(\sigma_{\text{color='red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

σ _{color='red'} Boat				
boatld	bName	color		
102	Interlake	red		
104	Marine	red		


After selecting red boats, first project onto boatld before doing the join since the name and color of the boat is not needed for the query. Thus, only the boatld is "carried" when evaluating the rest of the query.

Find the names of sailors who have reserved a red boat.

EXERCISE 3: SOLUTION 2

 $\pi_{\text{sName}}((\pi_{\text{boatld}}(\sigma_{\text{color='red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

Dustin, Lubber, Horatio, Chris

JOIN

Reserves

	1		
sailorld	boatld	rDate	
22	101	10/10/17	
22	102	10/10/17	
22	103	08/10/17	
22	104	07/10/17	
31	102	10/11/17	
31	103	06/11/17	=
31	104	12/11/17	
64	101	05/09/17	
64	102	08/09/17	
74	103	08/09/17	
99	104	08/08/17	

How many tuples in the result? 6 tuples!

How many columns in the result? 3 columns!

Find the names of sailors who have reserved a red boat.

EXERCISE 3: SOLUTION 2

 $\pi_{\text{sName}}((\pi_{\text{boatld}}(\sigma_{\text{color='red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

Dustin, Lubber, Horatio, Chris

 $(\pi_{boatld}(\sigma_{color='red'}Boat))$ JOIN Reserves

sailorld	boatld	rDate
22	102	10/10/17
22	104	07/10/17
31	102	10/11/17
31	104	12/11/17
64	102	08/09/17
99	104	08/08/17

JOIN

Sailor

sailorld	sName	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63
99	Chris	10	30

How many tuples in the result? 6 tuples!

How many columns in the result? 6 columns!

Find the names of sailors who have reserved a red boat.

EXERCISE 3: SOLUTION 2

 $\pi_{\text{sName}}((\pi_{\text{boatld}}(\sigma_{\text{color='red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

Dustin, Lubber, Horatio, Chris

(ocolor='red"Boat) JOIN Reserves JOIN Sailor					
sailorld	boatld	rDate	sName	rating	age
22	102	10/10/17	Dustin	7	45
22	104	07/10/17	Dustin	7	45
31	102	10/11/17	Lubber	8	55
31	104	12/11/17	Lubber	8	55
64	102	08/09/17	Horatio	7	35
99	104	08/08/17	Chris	10	30

Apply π_{sName} to above result:

DSAA 5012 L5: EXERCISES

EXERCISE 3: SUMMARY

Solution 1

 $\pi_{\text{sName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

(6 tuples, 5 columns) + (6 tuples, 8 columns)

Solution 2

 $\pi_{\text{sName}}((\pi_{\text{boatId}}(\sigma_{\text{color='red'}}\text{Boat})) \text{ JOIN Reserves JOIN Sailor})$

(6 tuples, 3 columns) + (6 tuples, 6 columns)

Solution 2 is more efficient in terms of tuple size.

Query Optimization

Relational DBMSs do such optimizations based on relational algebra.

EXERCISES 4, 5, 6

Sailor(sailorld, sName, rating, age)

Boat(boatId, bName, color)

Reserves(<u>sailorId</u>, <u>boatId</u>, <u>rDate</u>)

Exercise 4: Find the names of sailors who have reserved <u>either</u> a red <u>or</u> a green boat.

Exercise 5: Find the names of sailors who have reserved both a red and a green boat.

Exercise 6: Find the ids of sailors who have made at least two reservations on the same date. [Hint: You need to join Reserves with itself.]

DO NOT try to optimize the queries.

Just try to get a solution.

Find the names of sailors who have reserved either a red or a green boat.

Dustin (22), Lubber (31), Horatio (64), Horatio (74), Chris (99)

 $\pi_{\text{sName}}(\pi_{\text{boatId}}(\sigma_{\text{color='red'} \vee \text{color='green'}} \text{Boat})) \text{ JOIN Reserves JOIN Sailor)}$

Identify all red or green boats ($\sigma_{color='red' \lor color='green'}$ Boat), then find sailors who have reserved one of these boats (... JOIN Reserves JOIN Sailor).

 π_{boatld} is a nice optimization but is not strictly needed to answer the query.

Is this a solution?

Find the names of sailors who have reserved both a red and a green boat.

Dustin (22), Lubber (31)

π_{sName}((σ_{color='red' ∧ color='green'}Boat) JOIN Reserves JOIN Sailor)

Boat

<u>boatld</u>	bName	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
105	Serenity	cyan

No! Why?

Nothing is selected! Why?

The condition color='red' \(\scales \) color='green' can \underline{never} be satisfied!

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 2

Is this a solution?

 $\pi_{\text{sName}}((\sigma_{\text{color='red'} \lor \text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Dustin (22), Lubber (31)

	(σ _{color='red' ∨ color='green'} Boat) JOIN Reserves JOIN Sailor									
bName	color	sailorld	boatld	rDate	sName	rating	age	V	Vhat's t	he
Interlake	red	22	102	10/10/17	Dustin	7	45	ŗ	oroblem	1?
Marine	red	22	104	07/10/17	Dustin	7	45		sName	1
Interlake	red	31	102	10/11/17	Lubber	8	55		Dustin	1
Marine	red	31	104	12/11/17	Lubber	8	55	π_{sName}	Lubber	
Interlake	red	64	102	08/09/17	Horatio	7	35		Horatio	X
Marine	red	99	104	08/08/17	Chris	10	30		Chris	
Clipper	green	22	103	08/10/17	Dustin	7	45		Onno	J
Clipper	green	31	103	06/11/17	Lubber	8	55			
Clipper	green	74	103	08/09/17	Horatio	7	35			

The condition color='red' \times color='green' includes sailors who have reserved only a red or only a green boat, as well as both a red and a green boat!

Must identify sailors who have reserved red boats, sailors who have reserved green boats, then find the intersection.

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 3

Is this a solution?

(intersect join result)

 $\pi_{\text{sName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN } \text{Reserves } \text{JOIN } \text{Sailor})$

(ocolor='green'Boat) JOIN Reserves JOIN Sailor)

Dustin (22), Lubber (31)

	(o _{color='red'} Boat) JOIN Reserves JOIN Sailor							
bName	color	sailorld	boatld	rDate	sName	rating	age	
Interlake	red	22	102	10/10/17	Dustin	7	45	
Marine	red	22	104	07/10/17	Dustin	7	45	
Interlake	red	31	102	10/11/17	Lubber	8	55	
Marine	red	31	104	12/11/17	Lubber	8	55	
Interlake	red	64	102	08/09/17	Horatio	7	35	
Marine	red	99	104	08/08/17	Chris	10	30	

 \cap

	(ocolor='green'Boat) JOIN Reserves JOIN Sailor						
bName	color	sailorId	boatld	rDate	sName	rating	age
Clipper	green	22	103	08/10/17	Dustin	7	45
Clipper	green	31	103	06/11/17	Lubber	8	55
Clipper	green	74	103	08/09/17	Horatio	7	35

The result is empty!

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 4

Is this a solution? $\pi_{\text{SName}}((\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

(intersect on sName) $\pi_{\text{sName}}((\sigma_{\text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

Dustin (22), Lubber (31)

(ocolor='red'Boat) JOIN Reserves JOIN Sailor								
bName	color	sailorld	boatld	rDate	sName	rating	age	
Interlake	red	22	102	10/10/17	Dustin	7	45	
Marine	red	22	104	07/10/17	Dustin	7	45	
Interlake	red	31	102	10/11/17	Lubber	8	55	
Marine	red	31	104	12/11/17	Lubber	8	55	
Interlake	red	64	102	08/09/17	Horatio	7	35	
Marine	red	99	104	08/08/17	Chris	10	30	

 π_{sName}

sName Dustin Lubber Horatio Chris

Since sName is not unique, there may be incorrect tuples in the intersection (i.e., Horatio is not unique).

 π_{sName} \cap

sName Dustin Lubber

Horatio

	(σ _{color='green'} Boat) JOIN Reserves JOIN Sailor							
bName	color	sailorld	boatld	rDate	sName	rating	age	
Clipper	green	22	103	08/10/17	Dustin	7	45	
Clipper	green	31	103	06/11/17	Lubber	8	55	
Clipper	green	74	103	08/09/17	Horatio	7	35	

sName Dustin Lubber Horatio

DSAA 5012

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 5

Is this a solution?

(intersect on sailorld, sName)

bName

Clipper

Clipper

Clipper

color

green

green

green

sailorld

22

31

74

 $\pi_{\text{sName}}(\pi_{\text{sailorId, sName}}(\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor})$

 $\pi_{\text{sailorId, sName}}((\sigma_{\text{color='green'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor)})$

Dustin (22), Lubber (31)

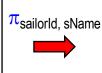
	(ocolor='red'Boat) JOIN Reserves JOIN Sailor							
bName	color	sailorld	boatld	rDate	sName	rating	age	
Interlake	red	22	102	10/10/17	Dustin	7	45	
Marine	red	22	104	07/10/17	Dustin	7	45	
Interlake	red	31	102	10/11/17	Lubber	8	55	
Marine	red	31	104	12/11/17	Lubber	8	55	
Interlake	red	64	102	08/09/17	Horatio	7	35	
Marine	red	99	104	08/08/17	Chris	10	30	

(ocolor='green'Boat) JOIN Reserves JOIN Sailor

rDate

08/10/17

06/11/17


08/09/17

boatld

103

103

103

sailorld	sName
22	Dustin
31	Lubber
64	Horatio
99	Chris

sName
Dustin
Lubber

π_{sail}

35

lorld, sName	

sailorld	sName
22	Dustin
31	Lubber
74	Horatio

sName

Dustin

Lubber

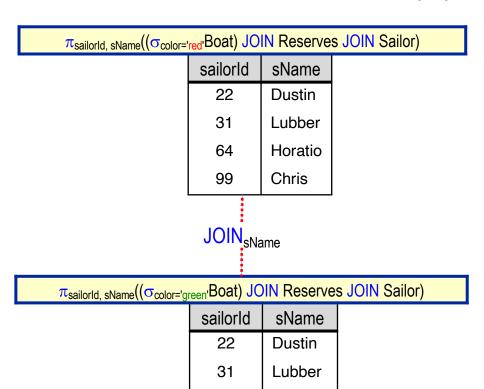
Horatio

rating

7

8

7

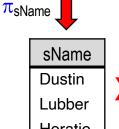

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 6

Is this a solution? (join on sName)

$$\begin{split} \pi_{\text{sName}}(\pi_{\text{sailorId, sName}}((\sigma_{\text{color='red'}}\text{Boat}) & \text{JOIN Reserves JOIN Sailor}) \\ & \text{JOIN}_{\text{sName}} \\ \pi_{\text{sailorId, sName}}((\sigma_{\text{color='green'}}\text{Boat}) & \text{JOIN Reserves JOIN Sailor})) \end{split}$$

Dustin (22), Lubber (31)



74

Horatio

Since sName is not unique, there may be incorrect tuples in the join (i.e., there are two different sailors with the same name, Horatio).

	R1.sailorld	sName	R2.sailorld
	22	Dustin	22
=	31	Lubber	31
	64	Horatio	74

Horatio

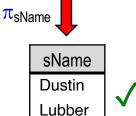
L5: EXERCISES

Find the names of sailors who have reserved both a red and a green boat.

EXERCISE 5: SOLUTION 7

Is this a solution? (join on sailorld) $\pi_{\text{SName}}(\pi_{\text{sailorId, sName}}(\sigma_{\text{color='red'}}\text{Boat}) \text{ JOIN Reserves JOIN Sailor)}$ **JOIN**sailorld π_{sailorld, sName}((σ_{color='green'}Boat) JOIN Reserves JOIN Sailor))


Dustin (22), Lubber (31)


π_{sailorId, sName}((σ_{color='red'}Boat) JOIN Reserves JOIN Sailor)

sailorld	sName
22	Dustin
31	Lubber
64	Horatio
99	Chris

 $\pi_{\text{sailorId, sName}}((\sigma_{\text{color='green'}}Boat) \text{ JOIN Reserves JOIN Sailor)}$

sailorld	sName	
22	Dustin	
31	Lubber	
74	Horatio	

DSAA 5012

Find the ids of sailors who have made at least two reservations on the same date.

22

We need to use rename: p_{R1} (Reserves), p_{R2} (Reserves)

 $\pi_{\text{R1.sailorId}}(\sigma_{\text{R1.sailorId}=\text{R2.sailorId}} \land \text{R1.rDate} = \text{R2.rDate} \land \text{R1.boatId} \Rightarrow \text{R2.boatId}(\rho_{\text{R1}}(\text{Reserves}) \times \rho_{\text{R2}}(\text{Reserves})))$

Or equivalently:

 $\pi_{R1.sailorId}(\rho_{R1}(Reserves) JOIN_{R1.sailorId=R2.sailorId \land R1.rDate=R2.rDate \land R1.boatId \lt\gt R2.boatId} \rho_{R2}(Reserves))$

 $\pi_{R1.sailorId}(\sigma_{R1.sailorId=R2.sailorId} \land R1.rDate=R2.rDate \land R1.boatId <>R2.boatId}(R1 X R2))$

X

R1

sailorld	boatld	rDate
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

sailorld	boatld	rDate
22	101	10/10/17
22	102	10/10/17
22	103	08/10/17
22	104	07/10/17
31	102	10/11/17
31	103	06/11/17
31	104	12/11/17
64	101	05/09/17
64	102	08/09/17
74	103	08/09/17
99	104	08/08/17

=

R2

 $\pi_{R1.sailorId}(\sigma_{R1.sailorId=R2.sailorId} \land R1.rDate=R2.rDate \land R1.boatId <>R2.boatId}(R1 X R2))$

○R1.sailorId=R2.sailorId ∧ R1.rDate=R2.rDate ∧ R1.boatId<>R2.boatId					
R1.sailorld	R1.boatld	R1.rDate	R2.sailorld	R2.boatld	R2.rDate
22	101	10/10/17	22	101	10/10/17
22	101	10/10/17	22	102	10/10/17
22	101	10/10/17	22	103	08/10/17
22	101	10/10/17	22	104	07/10/17
22	101	10/10/17	31	102	10/11/17
22	101	10/10/17	31	103	06/11/17
22	101	10/10/17	31	104	12/11/17
22	101	10/10/17	64	101	05/09/17
22	101	10/10/17	64	102	08/09/17
22	101	10/10/17	74	103	08/09/17
22	101	10/10/17	99	104	08/08/17
22	102	10/10/17	22	101	10/10/17
22	102	10/10/17	22	102	10/10/17
22	102	10/10/17	22	103	08/10/17
22	102	10/10/17	22	104	07/10/17
:	:	:	:	:	:

 $\pi_{R1.sailorld} = 22$

DSAA 5012 L5: EXERCISE

What do we get if we omit R1.rDate=R2.rDate?

○R1.sailorld=R2.sailorld ∧ R1.boatld<>R2.boatld					
R1.sailorId	R1.boatld	R1.rDate	R2.sailorld	R2.boatId	R2.rDate
22	101	10/10/17	22	102	10/10/17
22	101	10/10/17	22	103	08/10/17
22	101	10/10/17	22	104	07/10/17
22	102	10/10/17	22	101	10/10/17
22	102	10/10/17	22	103	08/10/17
22	102	10/10/17	22	104	07/10/17
22	103	08/10/17	22	101	10/10/17
22	103	08/10/17	22	102	10/10/17
22	103	08/10/17	22	104	07/10/17
22	104	07/10/17	22	101	10/10/17
22	104	07/10/17	22	102	10/10/17
22	104	07/10/17	22	103	08/10/17
31	102	10/11/17	31	103	06/11/17
31	102	10/11/17	31	104	12/11/17
31	103	06/11/17	31	102	10/11/17
31	103	06/11/17	31	104	12/11/17
:	:	:	÷	÷	:

Sailors who have made more than one reservation.

 $\pi_{R1.sailorld} =$

What do we get if we omit R1.boatld<>R2.boatld?

♥R1.sailorId=R2.sailorId ∧ R1.rDate=R2.rDate					
R1.sailorId	R1.boatld	R1.rDate	R2.sailorId	R2.boatId	R2.rDate
22	101	10/10/17	22	101	10/10/17
22	101	10/10/17	22	102	10/10/17
22	102	10/10/17	22	101	10/10/17
22	102	10/10/17	22	102	10/10/17
22	103	08/10/17	22	103	08/10/17
22	104	07/10/17	22	104	07/10/17
31	102	10/11/17	31	102	10/11/17
31	103	06/11/17	31	103	06/11/17
31	104	12/11/17	31	104	12/11/17
64	101	05/09/17	64	101	05/09/17
64	102	08/09/17	64	102	08/09/17
74	103	08/09/17	74	103	08/09/17
99	104	08/08/17	99	104	08/08/17

Sailors who have made at least one reservation.

 $\pi_{R1.sailorld} = \begin{bmatrix} sailorld \\ 22 \\ 31 \\ 64 \\ 74 \\ 99 \end{bmatrix}$