COMP 3311 DATABASE MANAGEMENT SYSTEMS

LECTURE 3 EXERCISES ENTITY-RELATIONSHIP (E-R) MODEL AND DATA BASE DESIGN

EXERCISE Iz UNIVERSITY APPLICATION

We want to record information about students, departments, courses and course teaching teams.

- For each student we store the student id, name and majors.
- For each department we store a unique code and name.
- For each course we store a unique course id, name, department and prerequisites.
- For each offering of a course we store the section, semester and year.
- Each student must enroll in one to five course offerings.
- Each course offering can enroll zero to sixty students.
- For each course offering that a student takes we store the grade.
- Each course offering's teaching team has one or more staff, who is either an instructor or a TA.
- For each staff assigned to a course offering's teaching team we store the hkid, name, department and office number.
- For each instructor we store their academic title (e.g., professor).

For the university application E-R diagram, identify keys and discriminators of entities, weak entities and their identifying relationship(s) and show relationship cardinality and participation constraints.

EXERCISE II UNIVERSITY APPLICATION-E-R DIAGRAM

Student	Department	Course	Offering	Staff	Instructor	TA
studentld name \{major\}	code name	courseld name	section semester year	hkid name officeNumber	title	
			1		L3: PXPRCTSIS	

EXERCISE I: UNIVERSITY APPLICATIONKEYS OF ENTITY TYPES

- For each student we store the student id, name and majors.
- For each department we store a unique code and name.
- For each course we store a unique course id, name, department and prerequisites.
- For each offering of a course we store the section, semester and year.
- Each student must enroll in one to five course offerings.
- Each course offering can enroll zero to sixty students.
- For each course offering that a student takes we store the grade.
- Each course offering's teaching team has one or more staff, who is either an instructor or a TA.
- For each staff assigned to a course offering's teaching team we store the hkid, name, department and office number.
- For each instructor we store their academic title (e.g., professor).

Student
studentld name \{major\}

Staff
nkid name officeNumber

EXERCISE II UNIVERSITY APPLICATION－ KEYS OF ENTITY TMPES

－For each offering of a course we store the section，semester and year．

What kind of entity is Offering？
\Rightarrow Weak entity dependent on Course．
Is there a discriminator for Offering？
\Rightarrow Yes－section，semester，year．

EXERCISE I: UNIVERSITY APPLICATIONENTITY GENERALIZATION COVERAGE

- Each course offering's teaching team has one or more staff, who is either an instructor or a TA.

What should be the completeness constraint?
\Rightarrow total
What should be the disjointness constraint?
\Rightarrow disjoint

EXERCISE I: UNIVERSITY APPLICATIONRELATIONSHIP CARDINALITY \& PARTICIPATION

- For each course we store a unique course id, name, department and prerequisites.

What should be the cardinality constraint (max-card) for Department?
\Rightarrow many (A department can offer many courses-domain knowledge.)
What should be the participation constraint (min-card) for Department?
\Rightarrow unknown (Could be partial or total; need to verify with client. Leave unspecified.)
What should be the cardinality constraint (max-card) for Course?
\Rightarrow unknown (Could be 1 or N ; need to verify with client. Leave unspecified.)
What should be the participation constraint (min-card) for Course?
\Rightarrow total (Every course must be offered by some department-domain knowledge.)

EXERCISE I: UNIVERSITY APPLICATIONRELATIONSHIP CARDINALITY \& PARTICIPATION

- For each course we store a unique course id, name, department and prerequisites.

What should be the cardinality constraints?
\Rightarrow Course (prerequisite) many (A course can be a prerequisite for several courses.) Course (course) many (A course can have several prerequisites.)
What should be the participation constraints?
\Rightarrow Course (prerequisite) partial (A course does not have to be a prerequisite.) Course (course) partial (A course can have no prerequisites.)

EXERCISE II UNIVERSITY APPLICATIONRELATIONSHIP CARDINALITY \& PARTICIPATION

- For each offering of a course we store the section, semester and year.

What should be the cardinality constraint (max-card) for Offering?
$\Rightarrow 1$ (Every offering is for at most one course-domain knowledge.)
What should be the participation constraint (min-card) for Offering?
\Rightarrow total (Every offering must be for some course-domain knowledge.)
What about for Course?
\Rightarrow (?,many) min-card most likely 0 , but need to verify with client. Leave unspecified.

EXERCISE I: UNIVERSITY APPLICATIONRELATIONSHIP CARDINALITY \& PARTICIPATION

- Each student must enroll in one to five course offerings.
- Each course offering can enroll zero to sixty students.

Is Offering dependent on Student?
\Rightarrow No.

```
Is a student required to enroll in an offering as soon as the student's record is created?
```


No!

(domain knowledge)

What should be the cardinality constraint (max-card) for Student?
$\Rightarrow 5$ (A student can enroll in at most 5 course offerings.)
What should be the participation constraint (min-card) for Student?
\Rightarrow total (A student must enroll in at least 1 course offering.)
What about for Offering?
$\Rightarrow(0,60)$
Does the participation constraint for Student make sense?

EXERCISE II UNIVERSITY APPLICATIONRELATIONSHIP CARDINALITY \& PARTICIPATION

- Each course offering's teaching team has one or more staff, who is either an instructor or a TA

Is Offering dependent on Staff?
\Rightarrow No.

```
Is an offering
    required to
    have a staff
assigned to it?
```

Need to verify with client!

What should be the cardinality constraint (max-card) for Offering?
\Rightarrow many (An offering can have several staff assigned to it.)
What should be the participation constraint (min-card) for Offering?
\Rightarrow total (An offering has at least one staff assigned to it.)
What about for Staff?
\Longrightarrow (?,many) min-card most likely 0 , but need to verify with client. Leave unspecified.
Does the participation constraint for Offering make sense?

EXERCISE II UNIVERSITY APPLICATIONRELATIONSHIP CARDINALITY \& PARTICIPATION

- For each staff assigned to a course offering's teaching team we store the hkid, name, department and office number.

What should be the cardinality constraint (max-card) for Staff?
$\Rightarrow 1$ (For each staff ... we store the ... department)
What should be the participation constraint (min-card) for Staff?
\Rightarrow total (Every staff must be appointed in some department-domain knowledge.)
What should be the cardinality constraint (max-card) for Department?
\Rightarrow many (A department can appoint several staff-domain knowledge.)
What should be the participation constraint (min-card) for Department?
\Rightarrow unknown (Could be partial or total; need to verify with client. Leave unspecified.)

EXERCISE I: UNIVERSITY APPLICATION-E-R DIAGRAM

EXERCISE 2: BUS COMPANY

We want to keep track of bus routes and schedules for a bus company.

- Each bus route has a unique route number, a departure station and a destination station.
- For each bus route, there is a schedule, which records the departure times of buses.
- For each departure time of each route, a driver and a bus can be assigned; however, information about the driver or the bus may sometimes be missing.
- A driver has a unique employee id, a name and a phone number.
- A bus is identified by its license number and has a maximum seating capacity.

For the bus company application E-R diagram, identify keys and discriminators of entities, weak entities and their identifying relationship(s) and show relationship cardinality and participation constraints.

EXERCISE 2: BUS COMPANY-E-R DIAGRAM

Route
routeNo

Schedule
departureTime

Driver
empld name phoneNo

Bus
licenseNo maxSeating

Station
name

EXERCISE 2: BUS COMPANY一KEYS OF ENTITIES

- Each bus route has a unique route number, a departure station and a destination station.
- For each bus route, there is a schedule, which records the departure times of buses.
- A driver has a unique employee id, a name and a phone number.
- A bus is identified by its license number and has a maximum seating capacity.

EXERCISE 2: BUS COMPANYRELATIONSHIP CARDINALITY \& PARTICIPATION

- Each bus route has a unique route number, a departure station and a destination station.
- For each bus route, there is a schedule, which records the departure times of buses.

What type of entity is Schedule? \Rightarrow Weak entity dependent on Route.
Is there a discriminator for Schedule? \Rightarrow Yes - departureTime.
What should be the cardinality constraint (max-card) for Schedule? $\Rightarrow 1$
What should be the participation constraint (min-card) for Schedule? \Rightarrow total
What about for Route? \Rightarrow cardinality many; participation unknown.
Does every route have to have a schedule? Verify with client.

EXERCISE 2: BUS COMPANYRELATIONSHIP CARDINALITY \& PARTICIPATION

- For each departure time of each route, a driver and a bus can be assigned; however, information about the driver or the bus may sometimes be missing.

Does every driver/bus have to be assigned to/used by a schedule? Verify with client.

- Each bus route has a unique route number, a departure station and a destination station.

EXERCISE 2: BUS COMPANY-E-R DIAGRAM

