
Ursa: Hybrid Block Storage for
Cloud-Scale Virtual Disks

Huiba Li∗
Alibaba

Beijing, China

Yiming Zhang∗†
NiceX Lab, PDL, NUDT
Changsha, Hunan, China
zhangyiming@nudt.edu.cn

Dongsheng Li
NUDT

Changsha, Hunan, China

Zhiming Zhang
mos.meituan.com
Beijing, China

Shengyun Liu
NUDT

Changsha, Hunan, China

Peng Huang
Johns Hopkins University
Baltimore, Maryland, USA

Zheng Qin
NUDT

Changsha, Hunan, China

Kai Chen
HKUST

Hong Kong, China

Yongqiang Xiong
Microsoft

Beijing, China

Abstract
This paper presents Ursa, a hybrid block store that provides
virtual disks for various applications to run efficiently on
cloud VMs. Trace analysis shows that the I/O patterns served
by block storage have limited locality to exploit. Therefore,
instead of using SSDs as a cache layer,Ursa proposes an SSD-
HDD-hybrid storage structure that directly stores primary
replicas on SSDs and replicates backup replicas on HDDs,
using journals to bridge the performance gap between SSDs
and HDDs.Ursa integrates the hybrid structure with designs
for high reliability, scalability, and availability. Experiments
show that Ursa in its hybrid mode achieves almost the same
performance as in its SSD-only mode (storing all replicas
on SSDs), and outperforms other block stores (Ceph and
Sheepdog) even in their SSD-only mode while achieving
much higher CPU efficiency (performance per core). We also
discuss some practical issues in our deployment.

CCS Concepts • Computer systems organization →
Cloud computing; Reliability; Availability; Secondary
storage organization.

∗Co-primary authors.
†The work was done when Yiming Zhang was a visiting researcher at
MSRA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’19, March 25–28, 2019, Dresden, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6281-8/19/03. . . $15.00
https://doi.org/10.1145/3302424.3303967

Keywords SSD-HDD-hybrid, cloud storage, virtual disks
ACM Reference Format:
Huiba Li, Yiming Zhang, Dongsheng Li, Zhiming Zhang, Shengyun
Liu, Peng Huang, Zheng Qin, Kai Chen, and Yongqiang Xiong.
2019. Ursa: Hybrid Block Storage for Cloud-Scale Virtual Disks.
In Fourteenth EuroSys Conference 2019 (EuroSys ’19), March 25–28,
2019, Dresden, Germany. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3302424.3303967

1 Introduction
In recent years, we see a trend of traditional desktop [19] and
server [74] applications migrating to the cloud. These appli-
cations run inside VMs seamlessly with virtual disks that are
backed by remote block storage, such as Amazon EBS (Elastic
Block Service) [3], Microsoft Azure Storage [5], OpenStack
Cinder [18], Alibaba Storage [13], and Tencent QCloud [20].
However, the I/O patterns and consistency requirements of
these traditional applications are different from cloud-native
applications that adopt specific programming models and
paradigms such as MapReduce [47] and RDD [100]. The
discrepancies make it difficult for the migrated applications
to enjoy the high performance of cloud storage. Although
recent advances have largely improved the throughput of
virtual disks, e.g., Blizzard exploits disk parallelism [74], it is
still challenging to satisfy the requirements of cloud virtual
disks in high performance at low cost.
The traces from both existing work [77] and our produc-

tion block store demonstrate two characteristics (detailed in
§2) of the workloads from migrated applications. First, small
I/O is dominant in these applications, with occasional large
sequential I/O. Second, both reads and writes have limited
locality perceived by the block storage.
Since small I/O is dominant in the migrated applications,

the performance of block storage is largely determined by the
performance of small reads/writes, making SSDs (solid state
drives) preferable to HDDs (hard disk drives) in building
block storage. However, the much higher price and energy

https://doi.org/10.1145/3302424.3303967
https://doi.org/10.1145/3302424.3303967
https://doi.org/10.1145/3302424.3303967


EuroSys ’19, March 25–28, 2019, Dresden, Germany Huiba Li and Yiming Zhang, et al.

cost of SSDs [83] make it too expensive for a large fraction
of customers to store all block replicas on SSDs. The lim-
ited locality suggests that solutions using SSDs as a cache
layer [66] are ineffective in accelerating I/O of the migrated
applications because of both the high cache miss ratio and
the huge SSD-HDD performance gap. As discussed in [101],
even a 1% cache miss ratio might degrade the average I/O
performance by a factor of 10, considering that high-end
SSDs are three orders of magnitude faster than HDDs in
both latency and IOPS. Further, using SSDs as a cache layer
helps little in improving tail latency, which is particularly
important for cloud storage for guaranteeing SLA [50]. An
additional cache layer also makes block storage highly prone
to consistency problems [82], such as the severe outage in
Facebook’s service due to cache misconfiguration [23].
Based on these observations, we propose an SSD-HDD-

hybrid storage structure (§3.2) that stores primary repli-
cas on SSDs and replicates backup replicas on HDDs, so
as to achieve I/O performance similar to SSDs but at cost
comparable to HDDs. To address the challenge of the huge
performance gap between primary SSDs and backup HDDs
for random small writes, we design journals that bridge the
SSD/HDD performance gap by transforming the dominant
random small backup writes into sequential journal appends,
which are then asynchronously replayed and merged to
backup HDDs. For efficiency, occasional large sequential
writes are directly performed on backup HDDs (bypassing
journals). We adopt this hybrid structure to design Ursa,
a high-performance and low-cost block store that provides
efficient virtual disks for cloud VMs. This paper makes the
following contributions.

First, it presents the design of an SSD-HDD-hybrid block
storage system. To address the complexity of locating backup
data due to the combination of journal appending (for small
backup writes) and replica copying (for large backup writes),
we design an efficient LSMT (log-structured merge-tree) [84]
based index structure for journals (§3.3); this structure sup-
ports fast journal queries for (i) quick invalidation of stale
journal appends and (ii) fast reads of journal data during
failure recovery.

Second, we systematically exploit multi-level parallelisms
in Ursa (§3.4), mainly including (i) on-disk parallel I/O, (ii)
inter-disk striping, out-of-order execution, and out-of-order
completion, and (iii) in-network pipelining, so as to improve
Ursa’s IOPS and throughput performance.

Third, we design Ursa’s Replication Protocol (§4.1) to sat-
isfy the strong consistency (linearizability) [58] requirement
for migrated desktop and server applications [74]. We also
design rich-featured client (§5.1) and efficient mechanisms
for online component upgrade (§5.2).

Experiments show that Ursa in its hybrid mode provides
almost the same performance as in its SSD-only mode (stor-
ing all replicas on SSDs), and outperforms state-of-the-art
open-source block stores (Ceph [98] and Sheepdog [17]) even

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

I/O Block Size (Byte)
512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Figure 1. CDF of I/O block sizes. Note that HDDs support
512-byte sectors in physical or emulated modes [7].

in their SSD-only mode while achieving much higher CPU
efficiency (IOPS and throughput per core). Real-world de-
ployment shows that Ursa has similar or better performance
compared to commercial SSD-only block storage services
(Amazon AWS [3] and Tencent QCloud [20]) while using
much fewer SSDs.

2 Motivation
To understand the I/O patterns of traditional desktop and
server applications served by block storage, we analyze the
traces [77] of Microsoft’s block storage service gathered
below the filesystem cache and capturing all the block-level
reads and writes performed over one week by different
applications on different volumes. We first calculate the
cumulative distribution of all I/O block sizes. The result
shown in Fig. 1 indicates thatmore than 70% of I/O sizes are at
most 8KB, and almost all I/O sizes do not exceed 64KB.1 This
implies that small I/O sizes are dominant for block storage
when serving desktop/server applications.

Because HDDs are extremely slow for random small I/O,
SSDs are gaining increasing popularity for building high-
performance storage systems [27, 28, 48, 49, 69]. Traditional
SATA SSDs outperform HDDs by more than two orders of
magnitude in IOPS and I/O latency, as well as by several times
in throughput for random small I/O workloads, while even
faster PCI-Express (PCIe) SSDs have already been widely
used for high-end storage. Besides, SSDs also have much
lower failure rate than HDDs (owing to the lack of mechan-
ical movement) [24] and have similar median lifespans (of
about 5 years) as HDDs [22, 78].

The main drawback of SSDs is the much higher price and
energy usage per bit compared to HDDs [83], making it
too expensive for many customers to adopt SSD-only block
storage with n-way replication2 (storing all the n replicas on

1There do exist some block reads/writes with sizes larger than 64KB, but
the ratio is very small.
2In n-way replication, the block storage system stores n replicas for
each data chunk. Chunks are fixed-size (normally 64MB) data blocks for
organizing the data of virtual disks.



Ursa: Hybrid Block Storage for Cloud-Scale Virtual Disks EuroSys ’19, March 25–28, 2019, Dresden, Germany

C
ac

he
 R

ea
d 

H
it 

(u
nl

im
ite

d 
ca

ch
e 

si
ze

)

0%

25%

50%

75%

100%

traces with low cache hit rate

m
ds

_0

m
ds

_1

pr
n_

1

pr
oj

_1

pr
oj

_2

pr
oj

_4

rs
rc

h_
2

sr
c2

_1

sr
c2

_2

st
g_

0

st
g_

1

us
r_

1

us
r_

2

w
de

v_
2

w
de

v_
3

w
eb

_0

w
eb

_1

Figure 2. Cache hit ratio for reads in block storage.

SSDs). A possible solution is to use RAM-/SSD-based cache
between clients and the primary storage [66] to mitigate
the performance inefficiency of HDDs. However, cache has
proven to have little effect in absorbing writes [30, 77]. Our
analysis of the effect of cache of block storage in absorbing
reads reaches similar conclusions. We replay the per volume
traces [77] against a simulated cache in the write-back mode.
We simplify the simulation by assuming an unlimited cache
size (to avoid overflows) as well as an infinite write-back
speed (to keep cached blocks always clean). The cache hit
ratio in practice is lower than in our simulation, because
HDDs have limited cache size and relatively-low write-back
speed.
Fig. 2 depicts the 17 traces that have low cache hit ratios

(less than 75%) of reads. Nearly half of the total 36 traces [77]
have low cache hit ratios because large amounts of data
blocks are read only once. The cache hit ratios would be
even lower in realistic scenario with a limited cache size
because eviction policies could potentially evict some hot
data.
Considering the 2∼3 orders of magnitude performance

gap between SSDs and HDDs, even a small miss ratio would
dramatically degrade the I/O performance. Further, an addi-
tional cache layer would significantly complicate consistency
issues [23, 82]. In addition, the uncertainty of cache hit ratio
prevents cloud vendors from providing clear SLAs (service-
level agreements) to their customers, which are critical for
business.
Therefore, in this paper we design an SSD-HDD-hybrid

block storage structure, which directly stores primary repli-
cas on SSDs and copies backup replicas on HDDs. All client
reads are (normally) served by the primary replicas on SSDs,
so there are no cache misses at all. A direct challenge for
the hybrid structure is the huge performance gap in random
small writes between primary SSDs and backup HDDs: if
every write had to be copied to the corresponding backup
HDDs before returning, then the SSD-HDD-hybrid structure

VM
VMM (QEMU)

VM
VMM

Primary chunk 
server

Backup chunk server
SSD journal

HDD journal

Ursa Block Storage 

Read/write data
Meta data/control message

Journal replay

Legend:

Client

Shortcuts for very small writes

NBD

Master

Figure 3. Ursa architecture. Clients are a portal providing
the block interface to VMMs (virtual machine monitors).

would have little effect, because thewrite performancewould
always be bounded by the backup HDDs.
To address this problem, we propose to use journals to

transform random backup writes to journal appends, which
are asynchronously replayed and merged to the backup
HDDs. The journals amortize the backup load and make
it sustainable for backup HDDs. Although the long-term
average performance of randomwrites is still bounded by the
speed of journal replay (to the backup HDDs), in practice the
client-perceived performance of random small writes could
be as high as the journal’s sequential write performance.

3 Design
3.1 Architecture Overview
As shown in Fig. 3, an Ursa block store consists of (i) chunk
servers storing primary/backup data chunks, (ii) clients serv-
ing as portals providing block interface for VMs to read/write
data, and (iii) a master managing the cluster.
Chunk server. A data chunk has one primary replica and
multiple backup replicas for durability, which are stored
on different machines. Each machine installs multiple SSDs
and HDDs, and runs both primary (chunk) servers storing
primary replicas on SSDs and backup (chunk) servers storing
backup replicas on HDDs.
Client. VMMs access the block storage using clients as a
portal via the NBD (network block device) protocol [15].
Clients interact with the master for metadata queries and
management requests (such as virtual disk creation, opening,
and deletion). The interactions between clients and chunk
servers are designed to be stateless, because otherwise it
would be complex and error-prone to maintain consensus
about their states in large-scale storage systems.
Master. Ursa adopts a global master in the same vein as
GFS [54] to simplify management. We minimize the master’s
involvement in normal I/O paths to prevent it from becoming
a bottleneck. The master provides coordination services,
including virtual disk creation/opening/deletion, metadata
query, status monitoring, failure recovery, etc.



EuroSys ’19, March 25–28, 2019, Dresden, Germany Huiba Li and Yiming Zhang, et al.

3.2 SSD-HDD-Hybrid Storage Structure
Ursa follows the primary-backup paradigm [83], with clients
normally sending read/write requests to the primary servers
(Fig. 3). We achieve SSD-level I/O performance at HDD-like
cost by collaboratively storing the primary replicas on SSDs
and the backup replicas on HDDs. For a read request, the
primary server directly reads the data from SSD. For a write
request, the primary server writes the data on SSD, replicates
it onto the backup servers (which return after writing to their
on-disk journals), and finally returns to the client.

In this hybrid structure, primary SSDs and backup HDDs
have a huge performance gap in handling the random small
writes that dominate the workloads of block storage. There-
fore, Ursa uses a journal for each backup HDD, which trans-
forms small backup writes to sequential appends and asyn-
chronously replays the appends to the backup HDD.
Although journal appends are well-supported by both

SSDs and HDDs, Ursa prefers to store the journals on SSDs,
so that the journals can be continuously replayed without
affecting other simultaneous reads/writes on the same SSDs,
by leveraging SSDs’ highly efficient support for parallel I/O.
Ursa uses an in-memory index (§3.3) for each data chunk
to map from the chunk offsets in backup writes onto the
journal offsets.

SSD journals enable the short-term, client-perceived backup
performance to be as high as the sequential write perfor-
mance. In addition, for long-term backup performance, it
is also more efficient to use journals as a bridge between
primary SSDs and backup HDDs than to directly perform
backup writes on backup HDDs, although both of them are
bounded by the random small write performance of backup
HDDs. This is because (i) a large proportion of writes is
overwrites in the workloads of block storage [40, 77], and
overwrites between two successive replays can be merged to
reduce the actual number of writes; and (ii) we could perform
combination and scheduling [75] in journal replay to reduce
the movement of magnetic heads of backup HDDs.

The journals are co-locatedwith their corresponding backup
HDDs, because local journal replay is much simpler andmore
efficient than inter-machine journal replay. Empirically,Ursa
bounds the maximum size of an SSD that can be used for
journals to 1/10 of the SSD’s capacity: we find that this is
enough for most burst of writes to the corresponding backup
HDDs.
On-demand journal expansion. To handle the uncom-
mon scenario where an SSD exhausts its quota for storing
journals, Ursa supports dynamically expanding the journals
to the least-loaded SSDs co-located on the same machine.
The expansion could be simply done by mapping overflowed
backup writes to the new SSDs in the in-memory index (§3.3).
Further, in the rare case that all SSDs in a machine exhaust
their quotas, Ursa also supports expanding the journals
to HDDs in the same machine. Theoretically, the size of

HDD journals could be as large as needed. But unlike log-
structured file systems [85], journal replay is necessary no
matter how large the journals could be, not only for space
efficiency but also for fast recovery.
The design of HDD journals is similar to that of SSD

journals, except that HDD journals are replayed only when
HDDs are idle since, because of disk seeks, HDDs inherently
have no parallelism for random writes. Consequently, al-
though large HDD journals solve the overflow problem of
SSD journals, they provide lower long-term average backup
performance than SSD journals. In practice, we observe that
HDD journals were seldom used for replication and never
used for recovery in Ursa’s over two-year deployment [14].
This is because striping distributes the backup writes of a
client to many machines (§3.4), and it is unlikely for many
clients to simultaneously performwrites very aggressively to
a specific machine for a long period of time. Further, clients
that are too aggressive are rate-limited by the master before
SSDs on one machine exhaust their journal quotas.
Journal bypassing. In addition to small writes, themigrated
desktop/server applications also have workloads of large
sequential writes, for which backup HDDs could provide
comparable I/O performance with primary SSDs [40]. Ursa
uses a threshold Tj to decide whether to use journals for
backup writes, so as to improve the space efficiency of jour-
nals when handling large sequential writes. Only writes no
larger than Tj are handled by journals, and writes exceeding
the threshold bypass journals and are directly replicated to
the backup HDDs. Obsolete overlapped journal appends of
previous small writes (which have not yet been replayed)
are invalidated by updating the index (§3.3). Larger thresh-
olds will lead to heavier use of journals but higher overall
backup performance, and vice versa. As shown in Fig. 1, most
reads/writes are no larger than 64 KB, so we set the journal
bypassing threshold Tj to be 64 KB.
Client-directed replication.Themigrated applications also
have workloads of tiny writes. To further reduce the latency
of tiny writes without affecting the throughput, if a write
is no larger than a tiny write threshold Tc , Ursa has the
client simultaneously initiate the write both to the primary
server and to the backup servers, instead of relying on the
primary server to initiate the replication. Currently, most of
our machines have two 10GbE NICs, and we wish to limit the
maximum bandwidth a client consumes to half the available
bandwidth of a machine. Given our specification for peak
performance of 40K IOPS and a replication factor of three,
the maximum Tc is 20Gb/2/40K/3 ≈ 10.4KB; so we set the
tiny write threshold Tc to 8 KB.

3.3 Journal Index
The combination of journal appending and replica copying in
the SSD-HDD-hybrid structure complicates the processing
of data replication (for bypassing journals in large writes)



Ursa: Hybrid Block Storage for Cloud-Scale Virtual Disks EuroSys ’19, March 25–28, 2019, Dresden, Germany

query q
a b c

a'b' c'

Chunk Offset Space
Journal Offset Space

m

Figure 4. Index range query

and recovery (for locating the newest data). To address this
problem, Ursa designs a per-chunk in-memory index struc-
ture, which maps the chunk offset space to the journal offset
space in order to support (i) quick invalidation of stale journal
appends and (ii) fast recovery of chunk failures.

Journal index is usually implemented with log-structured
merge-tree (LSMT) [31, 84, 87] in previous studies. LSMT
is a general approach for maintaining mappings from keys
(chunk offsets) to values (journal offsets). However, the origi-
nal LSMT-based index (as used in PebblesDB [87] and TRIAD
[31]) cannot efficiently supportUrsa’s stringent performance
requirements on invalidation and recovery. There are two
reasons for this. First, the key space of the index is a contin-
uous integer interval (from 0 to CHUNK_SIZE−1) and most
queries and updates are for a range of keys. Second, index
queries and updates are on the critical path for journal read-
s/writes, so Ursa’s I/O performance is largely determined
by the index efficiency.

In order to adapt LSMT to Ursa’s characteristics, we make
the following optimizations by which Ursa outperforms
state-of-the-art LSMT-based designs (like PebblesDB [87])
significantly both in range queries and in range insertions
(§6.2).
Composite keys.We combine continuous keys into a single
composite key {offset,length} if their mapped journal
offsets are also continuous. A composite key indicates a
range mapping from a half-closed, half-open offset interval
[offset, offset+length) in the chunk offset space to the
journal offset space, recorded by a KV ({offset,length}
→ j_offset). We define the LESS relationship between two
composite keys x and y as follows: x is LESS than y iff x ’s
offset+length is not greater than y’s offset. There are no
intersecting composite keys, and thus LESS is a total order
relationship among the composite keys.
Index operations. The total order relationship allows fast
range queries and updates over the composite keys. Suppose
that there is a range query q (which could be viewed as a
composite key) over the chunk offset space, as shown in
Fig. 4. We can find the minimal composite key m that is
not LESS than q in O(logn) time, where n is the number of
keys in the per-chunk index. Then we start fromm to check
whether a series of composite keys intersect with q, and get
the intersected regions a, b and c . For a read request, the

mapped regions of the intersections, a′, b ′ and c ′, are the
regions to be read from the journal; and for a write request,
the intersections are to be erased from the index prior to
inserting the new composite key q, so as to keep the total
order relationship among the composite keys.
Index storage. We pack the KVs ({offset, length} →

j_offset) into 8-byte structs by carefully setting the bit
lengths of the fields. Ursa adopts a two-level structure to
store the KVs. The first level is a red-black tree, which is
highly efficient in insertion but inefficient in storage, because
every tree node has an extra overhead of three pointers
and one bit flag. The second level is a sorted array, whose
insertion speed is slower than the red-black tree, but which
is more efficient in both storage and query.

When adding a new KV, Ursa first quickly inserts it into
the red-black tree, which will be asynchronously merged
into the array by a low-priority background worker thread.
Since KVs in the array might be obsolete because of previous
insertions to the red-black tree, queries are solved first in the
red-black tree and then in the array for missed ranges, as in
the sub range between a and b and the sub range between
b and c in Fig. 4 (assuming the KVs in Fig. 4 are stored in
the red-black tree). The first-level red-black tree acts as a
small-size write cache of the second-level array. For the array,
8 GB memory can keep one billion records, corresponding
to at least 16 TB of journal data assuming an average write
size of 16 KB, which is far more than enough for our needs.
Besides, a large write will immediately free a large number
of composite keys within the range of the write, further
reducing the memory footprint of the index.

3.4 Multi-Level Parallelism
Ursa extends Blizzard’s exploitation of disk parallelism [74]
to systematically exploit three levels of parallelism, namely,
(i) on-disk concurrent I/O, (ii) inter-disk concurrent chunk
reads/writes, and (iii) in-network pipelining.
Disk parallelism. Ursa differentiates between SSDs and
HDDs in exploiting disk-level parallelism. To fully exploit
SSD’s parallelism, an SSD runs multiple chunk server pro-
cesses, each of which has one thread issuing parallel I/O
requests via libaio [10]. Internally, Ursa converts events
of libaio into coroutines [72] and hides libaio behind a
synchronous interface similar to read()/write(). In con-
trast, a backup HDD runs only one single-threaded process
without using libaio, because disk seeks inherently prevent
parallelism on HDDs.
Inter-disk parallelism. At the inter-disk level, Ursa ex-
ploits three kinds of parallelism, including striping [74], out-
of-order execution, and out-of-order completion. First, Ursa
splits a virtual disk into fixed-size chunks and organizes
two or more chunks into a striping group, so that large
reads and writes can be parallelized to multiple chunks. The
service manager is responsible for the data placement policy,



EuroSys ’19, March 25–28, 2019, Dresden, Germany Huiba Li and Yiming Zhang, et al.

Client

Replica2

Replica1

Replica3

ɠ WRITE(data, view, version)

ɣ RESPOND

ɤ RESPOND

ɣ RESPOND

ɢ LCW

ɡ LCW

ɢ LCW

ɥ if (all_success(resp) || 
      (timed_out(resp) && 
       majority_success(resp))) 
      version++;

ɡ REPLICATE(
       data, view, version)

ɡ REPLICATE(
       data, view, version)

Figure 5. Writing with independently maintained chunk
version numbers. LCW: local chunk write.

ensuring that all the chunks in a striping group do not reside
on the same disk or machine. Second, Ursa handles I/O
requests in parallel and allows out-of-order execution of
requests as long as they access different data chunks. Random
accesses tend to significantly benefit from such execution.
Third, Ursa supports sending responses back to the client
in an out-of-order manner. For instance, it is possible for a
chunk server to receive I/O requests in the order of r1, r2,
and return responses in the reverse order.
Network parallelism.Network congestion andOS schedul-
ing can cause end-to-end network delay [99].Ursa processes
I/O requests in a pipeline for each connection, so that net-
work delay is masked by the requests flying over the wire
and waiting in the pipeline and thus has little impact on the
overall IOPS and throughput.
Note that cloud virtual disks, like all other block devices

including HDDs and SSDs, process I/O requests in paral-
lel [44, 91]. It is the responsibility of guest file systems and/or
applications to correctly recover from crashes while enjoying
block devices’ parallelism. For example, Linux Ext4 [38]
and XFS [94] file systems use journaling to handle the “out-
of-order” issue, and OptFS [43] introduces two primitives,
osync() and dsync(), to respectively ensure (i) ordering be-
tween writes but only eventual durability, and (ii) immediate
durability as well as ordering.

4 Consistency
This section introducesUrsa’s replication protocol for strong
consistency guarantees.

4.1 Overview
Ursa provides per-chunk linearizability [58] by totally or-
dering write requests across chunk servers (replicas). Specif-
ically, per-chunk linearizability guarantees that if a write
request to a chunk is committed at time t1, then any following
read request to that chunk issued at time t2 > t1 will see the
committed (or newer) data.

In general,Ursa replication protocol is akin to a Replicated
State Machine (RSM) such as Paxos [62] or Raft [81]. For each
data chunk, a version number is maintained across chunk
servers and is updated after a write request succeeds. Besides,
chunk servers and the master also maintain a persistent view
number [80], which is updated when a new chunk server is
allocated during failure recovery.

Upon opening a virtual disk, the client gets the view num-
ber and the locations of all chunks of that virtual disk from
the master, and then asks all replicas of each chunk for their
version numbers. Once the version number is confirmed, the
client chooses one of the replicas as the primary (preferably
the one on SSD), and sends read and write requests to the
primary, as shown in Fig. 5. Read requests in Ursa are served
normally by primary replicas; write requests are propagated
to and executed by all replicas. If a replica failure is detected
by the client, the client notifies the master to allocate a new
replica, update the chunk locations, and increase the view
number.
Although in general Ursa’s replication protocol follows

the design principles of classical methods [54, 74], it differs
from them mainly in two aspects. First, Ursa ensures that at
most one client can access a virtual disk at any time; Second,
Ursa adopts a hybrid fault model to treat replica and network
faults separately. We briefly discuss these two aspects and
their implications below.
Single-client scenario. Ursa leverages lease [55] and lock
[35] protocols to ensure that at most one client can hold the
lease of a virtual disk at anymoment for reading/writing data
chunks in the virtual disk. This single client scenario simpli-
fies how Ursa guarantees strong consistency. It also does
not impose undesirable constraints on virtual disk services,
because a virtual disk is commonly mounted by a single
VM instance [6, 37] where desktop/server applications use
traditional filesystem APIs for data access.
The client periodically renews the lease, usually every

tens of seconds. For safety, Ursa enforces reasonable timing
constraints to ensure that leases of a virtual disk are not
interleaved. The benefit is that the client is aware of the
most recent state (i.e., the highest version number) and can
choose which replicas will serve its requests. Especially, a
read request can be served by any replica (preferably by the
primary replica stored on SSD), as long as the replica’s data
has a matching version number. If the primary is temporar-
ily unavailable, to preserve high availability the client can
choose another replica. When the failed replica recovers,
the client can switch back. In contrast, existing replication
protocols that provide service to multiple clients either rely
on a primary lease [36, 54], or communicate with a majority
of replicas to confirm the most recent state [33, 95].

When multiple VMs mount the same virtual disk (which is
uncommon in Ursa), we let a single client, which may reside
on any machine, serve all the VMs and use a cluster file



Ursa: Hybrid Block Storage for Cloud-Scale Virtual Disks EuroSys ’19, March 25–28, 2019, Dresden, Germany

system (like OCFS [16]) deployed on the VMs to coordinate
concurrent I/O requests.
Hybrid fault model. Unlike both synchronous replication
systems [54] (which replicate operations to f + 1 replicas
to tolerate f crash faults), and asynchronous replication
systems [95] (which replicate operations to 2f +1 replicas to
tolerate f crash faults), Ursa considers replica and network
faults separately, in light of recent advances in fault models
such as VFT [86] and XFT [70]. In Ursa, the client tries to
replicate a write request to all replicas, but also waits for a
timeout and commits the request if a majority of replicas
replies (step 6 in Fig. 5). Meanwhile, the client also notifies
the master to fix the problem by, e.g., allocating a new replica
to replace the crashed one.Wewill introduce failure recovery
in §4.2.2.
Compared to synchronous replication systems that have

to wait for failure recovery before proceeding, Ursa keeps
the service available upon some replica crashes. Compared
to asynchronous replication systems where f + 1 permanent
faults may lead to data loss even if the other f replicas are
functioning correctly, Ursa still guarantees data durability
if at least one of the f replicas has executed the most recent
write request. More precisely, a data chunk is durable in
Ursa as long as either (i) fewer than a majority of replicas
fail (as in asynchronous replication systems); or (ii) the total
number of replica faults and problematic connections be-
tween the primary (the client for client-directed replication
case) and backups (chunk servers) is smaller than the number
of replicas. Note that a crashed client does not affect data
durability. The client has either committed the request before
crashing, which indicates the request is already executed by
sufficient replicas; or the client has not yet committed the
request. In the second case, the (rebooted) new client will fix
the inconsistency problem during initialization.

4.2 Ursa Replication Protocol
In this section we detail Ursa’s replication protocol, which
contains a normal case sub-protocol where no failure occurs,
and failure recovery sub-protocol that allocates a new replica
to replace the crashed one.

4.2.1 Normal Case

Initialization. Upon opening a virtual disk, the client gets
all the locations and view numbers of the chunks from
the master, and then asynchronously asks all replicas of
each chunk for their version numbers and view numbers.
If all replicas of a chunk have the same view number view
matching the one in the master and all replicas have the same
version number version, then one of them will be chosen as
the primary (preferably the one on an SSD); otherwise, the
client first informs the cluster director to fix the inconsistency
problem (see §4.2.2) and then retries later. Note that the
primary inUrsa plays a temporary role for propagatingwrite

requests to other replicas and replying read/write requests
to the client. The client can choose another replica (in the
same view) as the primary without further re-configuration
due to the single-client scenario discussed in §4.1.
Read and write. Once the version number version and
the primary are confirmed, the client sends read and write
requests to the primary. Read requests in Ursa are served
preferably by primary replicas. For a write request, the client
attaches the view number and version number it knows of
along with the request. As shown in Fig. 5, upon receiving
a write request, the primary (i) checks locally if its view
number and version number match the request’s numbers;
if so (ii) performs the write locally, replicates the write to
the backup replicas, increases its version number, and finally
(iii) replies to the client. When receiving replication requests,
backup replicas perform similar operations and reply to the
primary.
However, if the client’s view number does not match

with the request’s number, the primary declines the request
and replies to the client. It is the client’s responsibility to
obtain the current view number from the master. If the
client’s version number is larger than the one maintained
by the primary, the primary tries to update its state by
incremental repair — transferring modified data pieces from
other replicas. Finally, if the client’s version number is one
short of the primary’s version number, the primary skips
the local write as it has already done it, but still forwards
the write request to the backups and replies to the client
accordingly. The client’s version number will not lag behind
by more than one due to the single-client scenario discussed
in §4.1.

Ursa leverages its hybrid fault model to improve availabil-
ity when some replica crashes or is temporarily unavailable;
at the same time, it strives to sustain data durability. Specif-
ically, write requests are considered committed when all
replicas succeed in the normal case. However, if the primary
cannot collect responses for write requests from all backups
in a timely manner, it compromises durability (usually for a
short period of time) and waits for responses from at least
half of the backups (which form a majority together with
the primary itself), and also waits for a timeout. At the same
time, the client notifies the master to fix the inconsistency
problem, or finally to allocate a new replica by following the
recovery procedure for chunk failures.
Switching of primary replica. If a client sends read/write
requests to a failed primary replica, it will resort to one of the
backup replicas that holds the newest data as a temporary
primary, so as to achieve high availability. Writes are logged
to the journal for the temporary primary, and its performance
will not be affected when using SSD journals (but the client
will limit its rate). Reads are performed after querying the
journal index (§3.2), andmight experience a brief degradation
if the requested data is on HDDs. The cluster director will



EuroSys ’19, March 25–28, 2019, Dresden, Germany Huiba Li and Yiming Zhang, et al.

in parallel create a new replica on another SSD. Finally, the
client will take the new replica on SSD as primary.
Incremental repair. To support incremental repair, each
replica (either on SSD or on HDD) maintains another journal
in memory called journal lite, which caches position, off-
set, and version number of recent write requests. When a
primary/backup recovers from an event of temporary un-
availability such as network partition, the recovered replica
tries to update its data by sending its current version number
to other replicas. Upon receipt, these replicas (i) query their
journal lite with the received version number to locate the
modified data; (ii) construct a repairmessage based on indices
provided journal lite; and (iii) transfer the message with the
new version number to the recovered replica. If the required
data indices cannot be obtained by querying journal lite
(e.g., because of garbage collection), the whole data chunk is
instead transferred.
Client-directed replication. As discussed in §3.2, the pro-
cessing of writes no larger than 8KB is slightly different:
clients directly propagate writes to all replicas instead of
only to the primary (but the version numbers are maintained
in a similar way). This optimization reduces the latency of
small writes at the expense of slightly higher overhead on
the client side.

4.2.2 Failure Recovery (View Change)
When inconsistency problems happen, the master asks repli-
cas with the highest version number to carry out incremental
repair. If, instead a chunk failure occurs, the master even-
tually allocates a new replica to replace the failed one. The
view number i of the chunk will be increased to i +1, and the
client will be aware of the new view on the next read/write.

More specifically, the master tries to collect version num-
bers from a majority of replicas, then selects the highest
version number versionH among them as the most recent
state. This is in order to ensure that if a write request is
executed at version ≤ versionH by a majority of replicas
in view i , then this write request must be executed in view
i + 1 as well. Then, the master asks the replica with version
number versionH to transfer its data to the new allocated
replica. If necessary, incremental repair is also executed in
order to update existing replicas.
Finally, all replicas update their view number to i + 1 as

long as they maintain the same version number versionH
and store the same data. If the master and a replica fail
simultaneously, the master is recovered first, and then the
chunk is recovered as described above.
The key idea behind failure recovery is that the master

tries to select the highest version number from a quorum, i.e.,
a majority of replicas, as in asynchronous replication systems.
The downside of this approach, however, is that if a majority
of replica crash data can be permanently lost. In contrast,
synchronous replication protocols can make progress with

only one survivor. To make full use of the “write-to-all”
property of the normal case sub-protocol, Ursa should be
able to proceed even if only a minority survive (at least one),
without compromising consistency or durability. To this end,
the key idea is to detect permanently crashed replicas. If
crashed replicas constitute a majority, the master confirms
the most recent state with the help of other available repli-
cas (though a minority). One approach to identifying failed
replicas is for the master to notify the system administrator,
who will manually locate them. A second option is to set
a very conservative timeout value, after which the master
declares unreachable replicas as having crashed. However,
since the second option may still undermine consistency and
durability in asynchronous settings, Ursa currently adopts
the first approach. More automatic and accurate crash failure
detection mechanisms (like FALCON [64], which inspects
the OS process table or VMM) will be the subject of future
work.

5 Discussion
5.1 Richly-Featured Clients
Different from storage clients of other systems including key-
value [101], object [32], and blob [76] stores, Ursa places
rich features (like tiny write replication, striping, snapshot,
and client-side caching) in its clients rather than in its chunk
servers, so as to improve I/O performance by conducting
client-directed operations. The extra maintenance cost for
Ursa clients is moderate and acceptable, mainly because
the Ursa block store and the QEMU virtual machine moni-
tor are tightly coupled, making their cooperation relatively
easy. The rich features of Ursa clients are designed as plug-
gable modules, following the decorator pattern [90], where
all the modules implement a common abstract interface of
read()/write(). The clients may evolve over time without
affecting system availability by adopting an online upgrade
mechanism (§5.2).

5.2 Online Component Upgrade
The various components of Ursa evolve over time, and
it is important to keep high availability during upgrades.
Ursa prefers online component upgrade to conventional VM
migration, because migration takes at least a few seconds for
an unloaded VMs and even longer for loaded VMs, which
may, e.g., crash the VMs connected to the upgrading clients
or degrade the performance of services running on the VMs.
Client. Since the VMM (e.g., QEMU in Fig. 3) will not re-
establish the connection when the socket to the client is
disconnected, it is challenging to upgrade client components
without affecting the guest OS. An intuitive solution is to
place as much as possible code into a shared library that can
be upgraded using dynamic reloading. However, this solution
has many limitations. For instance, neither the main program
nor the interface of the shared library can be upgraded, and



Ursa: Hybrid Block Storage for Cloud-Scale Virtual Disks EuroSys ’19, March 25–28, 2019, Dresden, Germany

a large proportion of existing static libraries may not fit into
the shared library model. To address this problem, we realize
upgrading at the granularity of processes instead of libraries.
We split the client into two processes (core and shell), both of
which share the connection to the VMM. When upgrading,
the core process (i) stops receiving new I/O requests from the
VMM and completes pending requests; (ii) saves its status
into a temporary file; and (iii) exits with a specific code. The
shell process receives the exit code and starts the new version
of the core, which reads its status from the temporary file
and resumes the service.
Master. Upgrading the master component is relatively sim-
ple, since it is not on the regular I/O paths. We gracefully
shut down the old master processes and immediately start
the new ones. During the upgrade, operations like virtual
disk creation and space allocation may fail; if so, then can
be retried after the upgrade completes.
Chunk server. Upgrading the server component is slightly
more complex, since server restarts may confuse the failure
handling routines if real server failures occur simultane-
ously with the upgrade. Therefore, we design a graceful hot-
upgrade mechanism. We send a specific signal to the chunk
server, which (i) closes service ports and stops receiving new
I/O requests; (ii) waits for all in-flight requests to complete;
(iii) starts the new version of chunk server in a new process;
and (iv) checks whether the new chunk server process works
correctly. If the hot upgrade succeeds, the old chunk server
closes all connections and exits, and the clients re-connect
to the new server. If the hot upgrade fails (e.g., because of
wrong configurations, missing libraries, etc.), the old chunk
server kills the new process, re-opens the service port, and
continues its service.
Incremental upgrade. An Ursa cluster is composed of a
large number of service processes. We deliberately upgrade
one process at a time, and confirm that the current upgrade
behaves as expected before performing the next one. It may
take days to upgrade an entire cluster. Therefore, we have
developed all components with backward compatibility to
allow new instances to run together with old ones. Ursa
has upgraded four major versions of the replication protocol
during its over two-year deployment. In each upgrade, we
extended the protocol by adding new operations and keeping
all old operations unchanged, so as to guarantee backward
compatibility.

5.3 Exploiting Disk Parallelism
Ursa empirically runs two processes for a SATA SSD and
four processes for a PCIe SSD in our production clusters.
In contrast, a backup HDD runs only one single-threaded
process both for journal replay (of small writes) and for
replication (of large writes). Our evaluation (omitted be-
cause of lack of space) shows that a single-threaded process
adopting the elevator algorithm [8] is enough to saturate an

HDD SSD RAM Power CPU Other
% 69.1 4.0 6.2 3.0 2.6 15.1
Table 1. Failure ratios in Ursa deployment.

HDD even without using libaio. Multiple backup server
processes or threads for one HDD interfere with each other,
confuse the elevator algorithm, and thus degrade the backup
performance.

5.4 Hardware Reliability
According to our statistics (Table 1), HDDs contribute nearly
70% of the total failures, an order of magnitude higher than
SSDs. Wear leveling [9] ensures the frequently-written jour-
nals not to affect the lifetime of SSDs.

Although SSDs have lower average failure rate than HDDs,
a potential risk is that SSD firmware bugs [25] may simulta-
neously fail many SSDs from the same batches and vendors,
because the same bug trigger conditions could happen on
multiple SSDs that have similar usage in a block storage
cluster. For example, Tencent QCloud [20] recently lost valu-
able metadata of one of its tenants due to some firmware
bug of SSDs, and it has been required to pay $1.6 million in
compensation [21].
To avoid correlated failures [53], we increase diversity

by purchasing SSDs of different batches/vendors, and store
primary chunks and backup journals on SSDs of different
batches/vendors. Unlike SSD-only storage, Ursa hybrid stor-
age can rely on the backup HDDs to avoid data loss even if
a firmware bug affects many SSDs.

5.5 Limitations
The hybrid structure is optimized to efficiently handle the
workload pattern of Ursa’s virtual disk service. While it
satisfies our needs well, there are a few limitations.

First, during the failure recovery of a primary replica, the
client might get exposed to the SSD-HDD performance gap
since the replicas are heterogeneous. This requires us to
recover quickly to reduce the time window for such degra-
dation.
Second, Ursa’s SSD journals do not support continuous

peak loads of random small writes for a long period of time (a
rare event for our virtual disk service), since the total journal
size on all SSDs of a storage machine is bounded. We work
around this limitation using secondary HDD journals and
rate-limited clients.

Third, in hybrid storage all replicas on SSDs are primaries
while in traditional SSD-only storage some replicas on SSDs
are backups, so the recovery of SSD failures is more urgent
for Ursa than for SSD-only storage.

Fourth, Ursa requires its total SSD capacity to be at least
as large as its data volume, while traditional cache-based
block storage is adaptive to any SSD capacity.



EuroSys ’19, March 25–28, 2019, Dresden, Germany Huiba Li and Yiming Zhang, et al.

6 Evaluation
This section presents evaluation results from micro bench-
marks, trace-driven experiments, and real-world use of Ursa.
We build two testbeds. The first small testbed has four ma-
chines for most micro-benchmarks and trace-driven experi-
ments, and the second large testbed has 45 machines (from
a production cluster) for scalability tests. Each machine has
dual 8-core Xeon E5-2650 2.30GHz CPU, 128GB RAM, eight
7200RPM 1TB HDDs, and two Intel 750 PCIe 400GB SSDs,
connected to a 10GbE network. The OS is CentOS 7.2. We
test three replication modes, namely, SSD-HDD-hybrid, SSD-
only, and HDD-only. The master and lock module (§4.1) are
co-located on one machine.
We compare Ursa with Ceph [98] and Sheepdog [17].

Measurements are conducted on VMs mounting the virtual
disks. If not specified, each result is the mean of 20 runs. In
most experiments the variances to the mean are relatively
small, so (if not specified) we omit the error bars for clarity.

We seek to answer the following questions: Is the perfor-
mance of Ursa’s hybrid mode in IOPS, latency, and through-
put comparable to the expensive SSD-only mode of Ursa,
Ceph and Sheepdog (§6.1)? What is the impact of Ursa’s var-
ious designs, including journal index, journal expansion, and
failure recovery (§6.2)? How scalable is Ursa (§6.3)? What
is the performance of Ursa in the trace-driven experiments
compared to Ceph and Sheepdog (§6.4)? And how does Ursa
perform in real-world use compared to Amazon AWS and
Tencent QCloud (§ 6.5)?

6.1 I/O Performance
We use three machines to run chunk servers and one to run
the client. We evaluate the performance of Ursa’s hybrid
storage in random IOPS, random I/O latency, and throughput,
and compare it to the expensive SSD-only mode of Ursa,
Ceph and Sheepdog. The I/O size is 4KB in the IOPS and la-
tency tests, which is withinUrsa’s client-directed replication
threshold (§3.2), so in Ursa the backup writes are directly
performed by the client. In comparison, Ceph is designed to
rely on the primary to perform backup writes while Sheep-
dog always has the client issue all primary/backup writes
in parallel. The I/O size is 1MB in the test of throughput.
The queue depth (qd) is 16 (the maximum depth supported
by QEMU’s NBD driver) for IOPS tests, and 1 for latency
and throughput tests. For Ursa’s SSD-HDD-hybrid, the SSD
journal has a maximum size of 1/10 the SSD capacity. SSD-
only Ursa does not use journals. OS page cache is disabled.
The result is shown in Fig. 6, where Ursa-Hybrid (SSD-

HDD-hybrid) has I/O performance similar to Ursa-SSD (SSD-
only) and outperforms Sheepdog (SSD-only) and Ceph (SSD-
only) in all tests except for write throughput. The block size
(BS) in the IOPS and latency tests is set to 4KB. This is smaller
than the 8KB threshold for client-direct replication (§3.2),
and thus the backup writes are directly handled by the client

(instead of the primary server). The I/O read latencies of all
systems are similar because read requests are handled by
primary SSDs. Ursa-Hybrid and Ursa-SSD perform better
in read IOPS than Sheepdog and Ceph, partially because they
exploit multi-level parallelism (§3.4). The write performance
of Ursa-Hybrid is similar to that of Ursa-SSD in IOPS and
latency: the journals of Ursa-Hybrid transform random
backup HDDwrites into sequential SSD writes whose perfor-
mance is comparable to that of random backup SSD writes
in Ursa-SSD, even when the journals are simultaneously
replayed.
In Fig. 6, Ursa-Hybrid has the worst write throughput.

This is because we deliberately set the block size to be 1MB,
which is larger than the 64KB threshold for journal bypassing
(§3.2). This setting, in which all backup writes go directly to
HDDs (instead of using journals), demonstrates the worst-
case throughput of Ursa.
Besides I/O performance, we also measure the CPU effi-

ciency (defined as the I/O performance divided by the CPU
utilization) while focusing on the critical path between the
client and servers. We set the size of all tested data to be
small enough (4MB) that it could fit within a single data
chunk for all tested systems, and all reads and writes could
actually access the cache of the chunk. Fig. 7 shows the
read/write IOPS efficiency for the client and server in Ursa,
Sheepdog and Ceph. Ursa outperforms Sheepdog and Ceph
by orders of magnitude in the efficiency tests, owing not
only to Ursa’s exploitation of multi-level parallelism (§3.4)
but also to its highly optimized implementation. Ceph lacks
client-side results because data cannot be easily extracted
from its in-QEMU client.
We also evaluate the sequential IOPS of these systems

with different queue depths. For sequential reads (Fig. 8) and
writes (Fig. 9), Ursa outperforms others mainly because it
exploits network parallelism and pipelining. In all tested sys-
tems, the sequential write IOPS is lower than the sequential
read IOPS, because writes frequently cause lock contentions
which complicate parallelism exploitation.

6.2 Impact of Various Design Components
This section evaluates Ursa’s various design components
including journal index, journal expansion, and failure re-
covery.
Ursa has extremely high requirements on the perfor-

mance of range queries over its journal index (§3.3), which
cannot be satisfied by existing LSMT-based techniques. We
evaluate the performance of Ursa’s range-query-optimized
index, and compare it with state-of-the-art PebblesDB [87],
which supports range query by locating the first key (using
seek()) and traversing all keys in the range (using next()).
We insert 700,000 random ranges respectively to Ursa and
PebblesDB, each with an integer start randomly chosen from
[0, 220) and a random length ranging from [1, 26]. For Ursa,
we have 100,000 ranges stored in the red-black-tree and



Ursa: Hybrid Block Storage for Cloud-Scale Virtual Disks EuroSys ’19, March 25–28, 2019, Dresden, Germany

Ra
nd

om
 IO

PS

0 K

10 K

20 K

30 K

40 K

50 K

Sheepdog Ceph Ursa-SSD Ursa-Hybrid

Read Write

(a) Rand. IOPS (BS=4KB, QD=16)

Ra
nd

om
 I/

O
 L

at
en

cy
 (u

s)

0

200

400

600

800

1000

Sheepdog Ceph Ursa-SSD Ursa-Hybrid

Read Write

(b) Rand. I/O Latency (BS=4KB, QD=1)

Th
ro

ug
hp

ut
 (M

B/
s)

0

100

200

300

400

500

600

Sheepdog Ceph Ursa-SSD Ursa-Hybrid

Read Write

(c) Seq. TP (BS=1MB, QD=1)

Figure 6. Performance of Ursa (SSD-HDD-hybrid and SSD-only), Sheepdog and Ceph (SSD-only). Cache is disabled.

Ef
fic

ie
nc

y 
(IO

PS
/c

or
e)

0 K

40 K

80 K

120 K

160 K

Systems
Ursa Sheepdog Ceph

client read
client write
server read
server write

Figure 7. IOPS efficiency.

Se
qu

en
tia

l I
O

PS

0 K

10 K

20 K

30 K

40 K

50 K

Queue Depth
1 2 4 8 16

Sheepdog
Ceph
Ursa-SSD
Ursa-Hybrid

Figure 8. Sequential read IOPS.

Se
qu

en
tia

l I
O

PS

0 K

2 K

4 K

6 K

8 K

Queue Depth
1 2 4 8 16

Sheepdog Ceph
Ursa-SSD Ursa-Hybrid

Figure 9. Sequential write IOPS.

O
pe

ra
tio

ns
 / 

Se
co

nd

1

10

100

1K

10K

100K

1M

10M

PebblesDB Ursa Index

2.17M

19K

1.35M

18K

Range Insert Range Query

Figure 10. Ursa vs. PebblesDB.

IO
PS

0K

10K

20K

30K

40K

Time

Journal on SSD Journal on HDD

Figure 11. Journal expansion.

R
ec

ov
er

y 
Tr

af
fic

 (M
B/

s)

0

100

200

300

400

500

600

Time (1 sample / second)

Figure 12. Failure recovery.

600,000 in the array. We perform 100,000 random range
queries respectively to Ursa’s index and PebblesDB.
The result is shown in Fig. 10: Ursa outperforms Peb-

blesDB by two orders of magnitude in both range insertions
and range queries. This is mainly because Ursa’s in-memory
journal index is designed specifically for range mappings
({offset, length}→ j_offset), while PebblesDB’s FLSM
(Fragmented Log-Structured Merge Trees) structure is only
for normal key-value mappings (offset→ j_offset).
In the micro-benchmark tests (§6.1), the secondary HDD

journals have not been used since no backup workloads
are long enough to make all SSDs exhaust their quotas. To
verify the design of journal expansion (§3.2) for rarely-long
workloads of random small writes, we emulate an overflow

of an SSD journal and evaluate the IOPS before and after the
overflow.

The result is shown in Fig. 11, where each data point rep-
resents the mean IOPS of 10 successive seconds. Clearly, the
backup load is successfully redirected from the SSD journal to
the HDD journal, demonstrating the effectiveness of Ursa’s
journal expansion mechanism. Performance degradation is
not significantly high, because HDDs perform much better
in sequential journal appends than in random small writes.
As discussed in §3.2, HDD journals are seldom used for
replication in Ursa’s practical deployment, mainly because
Ursa’s SSD journals already hold most of the random small
write workloads.



EuroSys ’19, March 25–28, 2019, Dresden, Germany Huiba Li and Yiming Zhang, et al.
Ag

gr
eg

at
ed

 IO
PS

0 M 

2 M 

4 M 

6 M 

8 M 

10 M 

12 M 

# of server machines
11 22 33 44

read write

(a) IOPS (BS=4KB, QD=16)

Ag
gr

eg
at

ed
 T

hr
ou

gh
pu

t (
G

B/
s)

  0  

  10  

  20  

  30  

  40  

# of server machines

11 22 33 44

read write

(b) Seq. Throughput (BS=1MB, QD=1)

Pa
ra

lle
l T

hr
ou

gh
pu

t (
M

B/
s)

0
200
400
600
800

1,000
1,200
1,400

stripe group size

non-stripping 2 4 8

read write

(c) Striping (BS=1MB).

Figure 13. Scalability test.

Av
er

ag
e 

IO
PS

0 K

4 K

8 K

12 K

16 K

20 K

prxy_0 proj_0 mds_1

Sheepdog Ceph Ursa-SSD
Ursa-Hybrid

Figure 14. Trace-driven comparison.

Av
er

ag
e 

I/O
 L

at
en

cy
 (u

s)

0

500

1000

1500

2000

2500

Ursa AWS  
AP-NorthEast-1a

QCloud 
Beijing-1

Read Write

Figure 15. Public cloud latency.

100 200 300 400 500 600
Latency (usec)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Figure 16. Latency PDF & CDF.

To evaluate the recovery of Ursa hybrid storage where
the backup data might be located both on backup HDDs and
in SSD journals, we fill a chunk server’s SSD on a target
machine, and then disable it to evaluate the recovery proce-
dure. Since in the small testbed we have only three chunk
server machines (each having two SSDs and eight HDDs),
for simplicity Ursa recovers data to the other SSD co-located
with the failed SSD on the target machine. Leveraging the
LSMT-based index (§3.3), the data is recovered from both
backup HDDs and SSD journals in the other two machines.

We measure the failure recovery procedure, and the result
is shown in Fig. 12. The recovery speed keeps about 500
MB/sec during the recovery. The speed is bounded by the
inbound network bandwidth (10Gbps). The journal on the
failed SSD is asynchronously recovered.

6.3 Scalability
We measure the aggregate I/O performance of Ursa, as
the number of storage machines increases from 11 to 44.
Chunk servers and clients run on all machines to saturate the
system. Fig. 13a and 13b show that both IOPS and throughput
increase linearly with the number of machines. Ursa’s I/O
latency changes little (not shown because of lack of space)
as the number of machines increases from 11 to 44.
We evaluate the effect of striping (§3.4) on throughput

in the 44-machine cluster, running a client on a dedicated

machine equipped with two 10GbE NICs. The queue depth
is set to 16 instead of 1 for exploiting more parallelism.
Fig. 13c shows that both read and write throughput increase
as the stripe group size increases. The throughput of reads is
relatively stable (900MB/sec ∼ 1.4GB/sec). The throughput of
writes is lower than that of reads, because multiple replicas
need to be written and journals are bypassed in backup
operations (block size = 1MB).

6.4 Trace Driven Evaluation
We evaluate the IOPS of Ursa-Hybrid using MSR traces [1]
that record block-level reads andwrites of traditional desktop
and server applications gathered below the filesystem cache,
and compare it with Ceph, Sheepdog and Ursa-SSD (all in
SSD-only mode). We write a custom benchmark tool that
ignores the timestamps in the traces and issues I/O requests
with qd16. We run the 36 MSR traces, which have various
combinations of read/write ratios. Fig. 14 shows three repre-
sentative traces (prxy_0, proj_0, and mds_1) demonstrating
different I/O patterns. In all experiments Ursa-SSD is the
best performer, and Ursa-Hybrid is comparable to or better
than Ceph and Sheepdog (in their SSD-only mode).

6.5 Production Evaluation
Ursa has been deployed for over two years [14]. We compare
Ursa block storage service with other public SSD-only block



Ursa: Hybrid Block Storage for Cloud-Scale Virtual Disks EuroSys ’19, March 25–28, 2019, Dresden, Germany

storage services including Amazon AWS [3] and Tencent
QCloud [20]. We do not measure IOPS or throughput, be-
cause in commercial clouds both metrics are limited by the
SLA. For each block storage service, we use a VM (with 2-
vCPU, 4GB-RAM) to continuously measure the I/O latency
every 2 seconds for two days.

Fig. 15 depicts the mean, 1st percentile, and 99th percentile
I/O latency of each block storage service, showing Ursa’s
SSD-HDD-hybrid storage has I/O latency comparable with
that of other commercial SSD-only storage services. Note
that it is not practical to conduct a completely fair compari-
son between Ursa and AWS/QCloud, because the block stor-
age services may adopt different architecture/hardware and
all tests are affected by background workloads due to, e.g.,
overselling. Fig. 16 shows the probability density function
(PDF) and cumulative distribution function (CDF) of Ursa’s
I/O latency, including both read and write operations.

7 Related Work
In this section, we briefly discuss related work on block stor-
age, EC storage, hybrid storage, file systems, object storage,
and consistency issues.
Block storage. Distributed block storage [59, 63, 73, 97]
provides a block interface to remote clients using protocols
like iSCSI [26] and AoE [39]. For example, Petal [63] uses re-
dundant network storage to provide virtual disks. Salus [96]
leverages HDFS [11] and HBase [56] to provide virtual disk
service with ordered-commit semantics using a two-phase
commit protocol. pNFS (parallel NFS) [59] exports a block-
/object/file interface to local cloud storage. Blizzard [74] is
built on FDS [79] and exposes disk parallelism to virtual
disks with crash consistency guarantees. Strata [46] designs
a block store using only SSDs. Ursa shares a few similar
design points with these systems (e.g., striping [74] and
replication [29]). Compared to them, Ursa implements a
production block store with the SSD-HDD-hybrid structure
and exploits multi-level parallelism.
EC storage. Erasure coding (EC) is more efficient than repli-
cation [88]. The key challenge for EC is to improve write
performance. For example, Sheepdog [17] does not directly
support partial write, instead it emulates partial write by
reading unmodified data, re-encoding them together, and
writing them as a full write. Parity logging approaches [40,
60, 93] log deltas of parity chunks, which cannot efficiently
support partial writes since every write requires a read at the
data chunk. PariX [67] performs speculative partial writes
to alleviate the inability of EC [40] to support random small
writes. Compared to replication, EC optimizes for capacity at
the expense of I/O performance. Since (HDD) capacity is the
least valuable resource in a hybrid architecture, we prefer
Ursa to PariX for providing our block storage service.
Hybrid storage. Previous SSD-HDD hybrid designs mainly
focus on using SSD as a cache layer. For example, Nitro [66]

designs a capacity-optimized SSD cache for primary storage.
Solid State Hybrid Drives (SSHD [51]) integrate an SSD inside
a traditional HDD and realize SSD cache in a way similar to
Nitro. Griffin [92] designs a hybrid storage device that uses
HDDs as a write cache for SSDs to extend SSD lifetimes.
Compared to these studies, Ursa uses SSDs directly for
primary storage instead of as a cache, so as to boost I/O
performance.
File systems. Distributed file systems spread the data of
a file across many storage servers [45, 65]. For instance,
GFS [54] is a large-scale fault-tolerant file system for data-
intensive cloud applications. Zebra [57] uses striping on
RAID [42] and logs [89] for high disk parallelism. BPFS [45]
focuses on persistent memory hardware and uses epoch
barrier to provide an in-memory file system with ordering
guarantees. OptFS [43] improves the journaling file sys-
tem [85] by decoupling durability from ordering. Compared
to them, Ursa targets different scenarios and workloads and
consequently makes different design decisions. For instance,
GFS has random/sequential reads and append writes from
cloud applications, while Ursa has (dominant) random and
(non-dominant) sequential I/O workloads, but no appends
from its mounted VMs running desktop/server applications.
Object storage. Object storage stores data as objects with
a unique ID in a flat address space [4, 32, 76]. For example,
Haystack [32] stores billions of photos, and Ceph [98] sup-
ports not only objects but also traditional files. Object storage
usually provides append-only and replacement operations. In
contrast, Ursa targets VMs running unmodified applications
that often randomly modify some parts of a virtual disk.
Consistency. Some storage systems like HBase [12] and
BigTable [41] focus on strong consistency [5, 12, 41], but at
the expense of reduced availability or durability [96]. To ad-
dress this problem, some systems relax the consistency guar-
antees for better availability and durability [34, 50, 61], while
others focus on providing end-to-end protection against
faulty nodes [52, 68, 71]. Ursa exploits the usage scenario of
block storage (where one virtual disk is commonly mounted
by one single VM) to provide strong consistency guarantees
without sacrificing performance in most cases.

8 Conclusion
This paper describes Ursa, a block storage system which
designs the SSD-HDD-hybrid structure by proposing an
efficient journal mechanism to bridge the performance gap
between SSDs and HDDs. Evaluation shows that Ursa out-
performs state-of-the-art open-source and commercial block
storage systems. Our future work includes (i) utilization of
RDMA/DPDK/SPDK for achieving extremely low latency
and (ii) improvement of the IOPS performance for (non-
dominant) sequential writes. The key components of Ursa
are available at [2].



EuroSys ’19, March 25–28, 2019, Dresden, Germany Huiba Li and Yiming Zhang, et al.

Acknowledgments
We would like to thank Lorenzo Alvisi, our shepherd, and
the anonymous reviewers for their insightful comments.
We thank Wei Bai and Peng Chen for the discussion at
MSRA. We also thank Xiaohui Liu for carefully drawing
Fig. 16. Yiming Zhang is the corresponding author. This
research is supported by the National Key Research and
Development Program of China (2016YFB1000101), and the
National Natural Science Foundation of China (61772541 and
61872376).

Appendix A Proofs of Linearizability
We sketch the proof that Ursa guarantees per-chunk lin-
earizability. The proof includes two parts: (1) in normal
case where no failure recovery (view-change) occurs, Ursa
replication protocol ensures linearizability; (2) during view
change from i to i +1, Ursa replication protocol ensures that
every write request committed at version number n in view
i is committed at version number n in view i + 1.

Note that we assume the clocks between the Master and
clients are loosely synchronized so as to ensure the single-
client property for each virtual disk (and chunk), i.e., timing
assumption holds. Interested readers may refer to, e.g., [36,
54] for the detail of how primary lease works. The single-
client property or client lease is ensured in a similar way.
We say a write request is committed if the client who

issued the request has confirmed its execution, i.e., the client
has executed step 6 in Fig 5.

A.1 Normal Case
In normal case where no failure occurs, we prove that per-
chunk linearizability is guaranteed. Specifically,

Lemma .1. In normal case, if a write request reqw is commit-
ted and a read request reqr is issued thereafter, then reqr will
see the data modified by reqw .

At first we argue that in normal case, the request executed
at each version number is unique:

Corollary .2. In normal case, if replica Ri has executed reqw
at version number n, replica R′

i has executed req
′
w at version

number n, then reqw = req′w .

Upon opening a virtual disk, the client confirms all meta-
data by the help of the master and chunk servers before
proceeding. Hence, the client and all chunk servers start
with a consistent state, i.e., with matching view number
and version number. If the old client is detached and a new
client is connected, the new client will be following the same
procedure.

Suppose Ri has executed reqw at n in view i , then a client
c should have issued reqw in view i , and c will not issue
another request at n. So if req′w is also issued by c , then
reqw = req′w . Without loss of generality, suppose a new
client c ′ is connected after c is detached. At initial time,

either c ′ should have obtained a matching version number
n′ and n′ ≥ n, or the replicas are inconsistent in version
number and the master will fix the problem by incremental
repair. In either case, c ′ will start with a version number
n′ ≥ n since Ri has executed reqw at n. So if R′

i has executed
req′w at version number n, reqw = req′w .

Corollary .2 is true.
Upon a write request reqw is committed at version number

n, reqw must be executed by a majority of replicas, and these
replicas and the client has updated their version number to
n+1. Based on Corollary .2, no other request can be executed
by any replica at n.
Upon client c issues a read request reqr after reqw is

committed, c must be aware of the highest version number
n′ ≥ n. Either c is the one who committed reqw , or c is a
new client and started with a matching version number ≥ n.
In either case, the client can accept a reply of reqr only if
the version number it maintains n′ is matching with the
one replied, no matter which replica served the read request.
Then based on Corollary .2, reqr will see the data modified
by reqw .

A.2 Failure Recovery
In failure recovery where a new replica is allocated, we focus
on the proof that a data modified by a committed write
request is durable.

Lemma .3. If reqw is committed at version number n in view
i , after failure recovery (view change) to view i + 1, reqw is
executed at n by every replica in view i + 1.

Since reqw is committed in view i , reqw is executed by a
majority of replicas, say by setmi . During view change to i+1,
the master tries to collect version numbers from a majority
of replicas in view i , say from setm′

i . (1) If it succeeds, then
there exists a chunk server si ∈ mi ∩m′

i that has executed
reqw at version number n, so si provides version number
n′ ≥ n and transfers its data to new replica. (2) Otherwise,
we assume failure recovery can still proceed with a majority
of replicas in view i failed, as discussed in Sec. 4.2.2. Then,
the master collects version numbers from the rest normal
replicas, saymr

i . Since the total number of replica faults and
problematic connections between the primary (the client for
client-directed replication case) and backups (chunk servers)
is less than the number of all replicas, there exists replica
sr ∈ mi that does not crash or be partitioned during the
propagation of reqw in view i . Hence, sr has executed reqw
in view i . sr also must be inmr

i as it is normal during failure
recovery. Hence, sr provides version number n′ ≥ n and
transfers its data to the new replica. In either case, Lemma .3
is true.

With Lemma .1 and Lemma .3, if reqw is committed before
reqr is issued, then reqr will see the data modified by reqw .



Ursa: Hybrid Block Storage for Cloud-Scale Virtual Disks EuroSys ’19, March 25–28, 2019, Dresden, Germany

References
[1] http://iotta.snia.org/traces/388.
[2] http://nicexlab.com/ursa/.
[3] https://aws.amazon.com/ebs/.
[4] https://aws.amazon.com/s3/.
[5] https://azure.microsoft.com/en-us/services/storage/.
[6] https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

ebs-attaching-volume.html.
[7] https://en.wikipedia.org/wiki/Advanced_Format.
[8] https://en.wikipedia.org/wiki/Elevator_algorithm.
[9] https://en.wikipedia.org/wiki/Wear_leveling.
[10] https://git.fedorahosted.org/cgit/libaio.git.
[11] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.
[12] https://hbase.apache.org/.
[13] https://intl.aliyun.com/.
[14] https://mos.meituan.com/.
[15] https://nbd.sourceforge.io/.
[16] https://oss.oracle.com/projects/ocfs/.
[17] https://sheepdog.github.io/sheepdog/.
[18] https://wiki.openstack.org/cinder.
[19] https://www.microsoft.com/en-us/cloud-platform/

desktop-virtualization.
[20] https://www.qcloud.com/.
[21] https://www.technode.com/2018/08/06/

tencent-cloud-user-claims-1-6-million-compensation-for-data-loss/.
[22] https://www.zadarastorage.com/blog/tech-corner/

hdd-versus-ssd-head-head-comparison/.
[23] http://www.facebook.com/notes/facebook-engineering/

more-details-on-todays-outage/431441338919/.
[24] http://www.storagereview.com/ssd_vs_hdd.
[25] www.storagereview.com/how_upgrade_ssd_firmware.
[26] Stephen Aiken, Dirk Grunwald, Andrew R Pleszkun, and Jesse

Willeke. A performance analysis of the iscsi protocol. In Mass
Storage Systems and Technologies, 2003.(MSST 2003). Proceedings. 20th
IEEE/11th NASA Goddard Conference on, pages 123–134. IEEE, 2003.

[27] Ashok Anand, Chitra Muthukrishnan, Steven Kappes, Aditya Akella,
and Suman Nath. Cheap and large cams for high performance data-
intensive networked systems. In NSDI, pages 433–448. USENIX
Association, 2010.

[28] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-
ishayee, Lawrence Tan, and Vijay Vasudevan. Fawn: a fast array of
wimpy nodes. In Jeanna Neefe Matthews and Thomas E. Anderson,
editors, SOSP, pages 1–14. ACM, 2009.

[29] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory
robustly in message-passing systems. Journal of the ACM (JACM),
42(1):124–142, 1995.

[30] Mary G Baker, John H Hartman, Michael D Kupfer, Ken W Shirriff,
and John K Ousterhout. Measurements of a distributed file system.
In Proc. Symposium on Operating Systems Principles, pages 198–212,
1991.

[31] Oana Maria Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan Gupta, and Pavan
Konka. Triad: creating synergies between memory, disk and log in log
structured key-value stores. In Annual Technical Conference. USENIX
Association, 2017.

[32] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter
Vajgel. Finding a needle in haystack: Facebook’s photo storage. In
Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, pages 47–60, Berkeley, CA, USA, 2010.
USENIX Association.

[33] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P.
Kusters, and Peng Li. Paxos replicated state machines as the basis
of a high-performance data store. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, NSDI’11,

pages 141–154, Berkeley, CA, USA, 2011. USENIX Association.
[34] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Pe-

ter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry Li, MarkMarchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. Tao: Facebook’s distributed data store
for the social graph. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference, USENIX ATC’13, pages 49–60, Berkeley,
CA, USA, 2013. USENIX Association.

[35] Mike Burrows. The chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, pages 335–
350, Berkeley, CA, USA, 2006. USENIX Association.

[36] Mike Burrows. The chubby lock service for loosely-coupled dis-
tributed systems. In Proceedings of the 7th symposium on Operating
systems design and implementation, pages 335–350. USENIX Associa-
tion, 2006.

[37] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, et al. Windows azure storage: a highly available
cloud storage service with strong consistency. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, pages
143–157. ACM, 2011.

[38] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o. Ext4: The next
generation of ext2/3 filesystem. In 2007 Linux Storage & Filesystem
Workshop, LSF 2007, San Jose, CA, USA, February 12-13, 2007, 2007.

[39] Ed L Cashin. Kernel korner: Ata over ethernet: putting hard drives
on the lan. Linux Journal, 2005(134):10, 2005.

[40] Jeremy CW Chan, Qian Ding, Patrick PC Lee, and Helen HW Chan.
Parity logging with reserved space: Towards efficient updates and
recovery in erasure-coded clustered storage. In Proceedings of the
12th USENIX Conference on File and Storage Technologies (FAST 14),
pages 163–176, 2014.

[41] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew
Fikes, and Robert Gruber. Bigtable: A distributed storage system for
structured data. In OSDI, pages 205–218, 2006.

[42] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and
David A Patterson. Raid: High-performance, reliable secondary
storage. ACM Computing Surveys (CSUR), 26(2):145–185, 1994.

[43] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Optimistic
crash consistency. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, pages 228–243. ACM, 2013.

[44] Vijay Chidambaram, Tushar Sharma, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Consistency without ordering. In FAST,
page 9, 2012.

[45] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better i/o
through byte-addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, pages
133–146. ACM, 2009.

[46] Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser,
Tim Deegan, Daniel Stodden, Geoffre Lefebvre, Daniel Ferstay, and
Andrew Warfield. Strata: High-performance scalable storage on
virtualized non-volatile memory. In Proceedings of the 12th USENIX
conference on File and Storage Technologies (FAST), pages 17–31, 2014.

[47] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 51(1):107–
113, 2008.

[48] Biplob Debnath, Sudipta Sengupta, and Jin Li. Skimpystash: Ram
space skimpy key-value store on flash-based storage. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’11, pages 25–36, New York, NY, USA, 2011. ACM.

http://iotta.snia.org/traces/388
http://nicexlab.com/ursa/
https://aws.amazon.com/ebs/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-attaching-volume.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-attaching-volume.html
https://en.wikipedia.org/wiki/Advanced_Format
https://en.wikipedia.org/wiki/Elevator_algorithm
https://en.wikipedia.org/wiki/Wear_leveling
https://git.fedorahosted.org/cgit/libaio.git
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hbase.apache.org/
https://intl.aliyun.com/
https://mos.meituan.com/
https://nbd.sourceforge.io/
https://oss.oracle.com/projects/ocfs/
https://sheepdog.github.io/sheepdog/
https://wiki.openstack.org/cinder
https://www.microsoft.com/en-us/cloud-platform/desktop-virtualization
https://www.microsoft.com/en-us/cloud-platform/desktop-virtualization
https://www.qcloud.com/
https://www.technode.com/2018/08/06/tencent-cloud-user-claims-1-6-million-compensation-for-data-loss/
https://www.technode.com/2018/08/06/tencent-cloud-user-claims-1-6-million-compensation-for-data-loss/
https://www.zadarastorage.com/blog/tech-corner/hdd-versus-ssd-head-head-comparison/
https://www.zadarastorage.com/blog/tech-corner/hdd-versus-ssd-head-head-comparison/
http://www.facebook.com/notes/facebook-engineering/
more-details-on-todays-outage/431441338919/
http://www.storagereview.com/ssd_vs_hdd
www.storagereview.com/how_upgrade_ssd_firmware


EuroSys ’19, March 25–28, 2019, Dresden, Germany Huiba Li and Yiming Zhang, et al.

[49] Biplob K. Debnath, Sudipta Sengupta, and Jin Li. Flashstore: High
throughput persistent key-value store. PVLDB, 3(2):1414–1425, 2010.

[50] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s
highly available key-value store. In SOSP, pages 205–220, 2007.

[51] Borislav Dordevic, Valentina Timcenko, and Slavica Bostjancic Rakas.
Sshd: Modeling and performance analysis. INFOTEH-JAHORINA,
15(3):526–529, 2016.

[52] Ariel J Feldman, William P Zeller, Michael J Freedman, and EdwardW
Felten. Sporc: Group collaboration using untrusted cloud resources.
In OSDI, volume 10, pages 337–350, 2010.

[53] Daniel Ford, François Labelle, Florentina I Popovici, Murray Stokely,
Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan.
Availability in globally distributed storage systems. In OSDI,
volume 10, pages 1–7, 2010.

[54] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In SOSP, pages 29–43, 2003.

[55] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mech-
anism for distributed file cache consistency. In Proceedings of the
Twelfth ACM Symposium on Operating Systems Principles, SOSP ’89,
pages 202–210, New York, NY, USA, 1989. ACM.

[56] Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand Aiyer,
Liyin Tang, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Analysis of hdfs under hbase: A facebook messages case study.
In Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST 14), pages 199–212, 2014.

[57] John H Hartman and John K Ousterhout. The zebra striped network
file system. ACMTransactions on Computer Systems (TOCS), 13(3):274–
310, 1995.

[58] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM Trans. Program.
Lang. Syst., 12(3):463–492, July 1990.

[59] Dean Hildebrand and Peter Honeyman. Exporting storage systems
in a scalable manner with pnfs. In 22nd IEEE/13th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST’05), pages
18–27. IEEE, 2005.

[60] Chao Jin, Dan Feng, Hong Jiang, and Lei Tian. Raid6l: A log-assisted
raid6 storage architecture with improved write performance. In
2011 IEEE 27th Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–6. IEEE, 2011.

[61] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April
2010.

[62] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[63] Edward K Lee and Chandramohan A Thekkath. Petal: Distributed
virtual disks. InACM SIGPLAN Notices, volume 31, pages 84–92. ACM,
1996.

[64] Joshua B Leners, Hao Wu, Wei-Lun Hung, Marcos K Aguilera, and
Michael Walfish. Detecting failures in distributed systems with
the falcon spy network. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 279–294. ACM,
2011.

[65] AndrewW Leung, Shankar Pasupathy, Garth R Goodson, and Ethan L
Miller. Measurement and analysis of large-scale network file system
workloads. In USENIX annual technical conference, volume 1, pages
2–5, 2008.

[66] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smal-
done, and Grant Wallace. Nitro: A capacity-optimized ssd cache
for primary storage. In USENIX Annual Technical Conference, pages
501–512, 2014.

[67] Huiba Li, Yiming Zhang, Zhiming Zhang, Shengyun Liu, Dongsheng
Li, Xiaohui Liu, and Yuxing Peng. Parix: Speculative partial writes

in erasure-coded systems. In Annual Technical Conference, pages
581–587. USENIX Association, 2017.

[68] Jinyuan Li, Maxwell N Krohn, David Mazières, and Dennis Shasha.
Secure untrusted data repository (sundr). In OSDI, volume 4, pages
9–9, 2004.

[69] Hyeontaek Lim, Bin Fan, David G Andersen, and Michael Kaminsky.
Silt: A memory-efficient, high-performance key-value store. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 1–13. ACM, 2011.

[70] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and
Marko Vukolic. Xft: Practical fault tolerance beyond crashes. In
Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, pages 485–500, Berkeley, CA,
USA, 2016. USENIX Association.

[71] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo
Alvisi, Mike Dahlin, and Michael Walfish. Depot: Cloud storage
with minimal trust. ACM Transactions on Computer Systems (TOCS),
29(4):12, 2011.

[72] Sidney R Maxwell. Experiments with a coroutine execution model
for genetic programming. In Evolutionary Computation, 1994. IEEE
World Congress on Computational Intelligence., Proceedings of the First
IEEE Conference on, pages 413–417. IEEE, 1994.

[73] Dutch T Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre,
Michael J Feeley, Norman C Hutchinson, and Andrew Warfield.
Parallax: virtual disks for virtual machines. In ACM SIGOPS Operating
Systems Review, volume 42, pages 41–54. ACM, 2008.

[74] James Mickens, Edmund B Nightingale, Jeremy Elson, Darren
Gehring, Bin Fan, Asim Kadav, Vijay Chidambaram, Osama Khan, and
Krishna Nareddy. Blizzard: Fast, cloud-scale block storage for cloud-
oblivious applications. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pages 257–273, 2014.

[75] C Mohan. Disk read-write optimizations and data integrity in
transaction systems using write-ahead logging. In Data Engineering,
1995. Proceedings of the Eleventh International Conference on, pages
324–331. IEEE, 1995.

[76] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill,
Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath
Sivakumar, Linpeng Tang, and Sanjeev Kumar. F4: Facebook’s warm
blob storage system. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI’14, pages
383–398, Berkeley, CA, USA, 2014. USENIX Association.

[77] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron.
Write off-loading: Practical power management for enterprise storage.
ACM Transactions on Storage (TOS), 4(3):10, 2008.

[78] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma,
Laura Caulfield, Anand Sivasubramaniam, Ben Cutler, Jie Liu, Badrid-
dine Khessib, and Kushagra Vaid. Ssd failures in datacenters: What?
when? and why? In Proceedings of the 9th ACM International on
Systems and Storage Conference. ACM, 2016.

[79] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann,
Jon Howell, , and Yutaka Suzue. Flat datacenter storage. In OSDI,
2012.

[80] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A
new primary copy method to support highly-available distributed
systems. In Proceedings of the Seventh Annual ACM Symposium on
Principles of Distributed Computing, PODC ’88, pages 8–17, New York,
NY, USA, 1988. ACM.

[81] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX Conference on
USENIXAnnual Technical Conference, USENIXATC’14, pages 305–320,
Berkeley, CA, USA, 2014. USENIX Association.

[82] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John K. Ouster-
hout, and Mendel Rosenblum. Fast crash recovery in ramcloud. In
SOSP, pages 29–41, 2011.



Ursa: Hybrid Block Storage for Cloud-Scale Virtual Disks EuroSys ’19, March 25–28, 2019, Dresden, Germany

[83] John K. Ousterhout, Parag Agrawal, David Erickson, Christos
Kozyrakis, Jacob Leverich, David Mazières, Subhasish Mitra, Aravind
Narayanan, Guru M. Parulkar, Mendel Rosenblum, Stephen M.
Rumble, Eric Stratmann, and Ryan Stutsman. The case for ramclouds:
scalable high-performance storage entirely in dram. Operating
Systems Review, 43(4):92–105, 2009.

[84] Patrick OâĂŹNeil, Edward Cheng, Dieter Gawlick, and Elizabeth
OâĂŹNeil. The log-structured merge-tree (lsm-tree). Acta Informat-
ica, 33(4):351–385, 1996.

[85] Juan Piernas, Toni Cortes, and JoséMGarcía. Dualfs: a new journaling
file system without meta-data duplication. In Proceedings of the 16th
international conference on Supercomputing, pages 137–146. ACM,
2002.

[86] Daniel Porto, João Leitão, Cheng Li, Allen Clement, Aniket Kate,
Flavio Junqueira, and Rodrigo Rodrigues. Visigoth fault tolerance. In
Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 8:1–8:14, New York, NY, USA, 2015. ACM.

[87] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abra-
ham. Pebblesdb: Building key-value stores using fragmented log-
structured merge trees. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 497–514. ACM, 2017.

[88] Luigi Rizzo. Effective erasure codes for reliable computer communi-
cation protocols. ACM SIGCOMM computer communication review,
27(2):24–36, 1997.

[89] Mendel Rosenblum and John K Ousterhout. The design and
implementation of a log-structured file system. ACM Transactions on
Computer Systems (TOCS), 10(1):26–52, 1992.

[90] Jason M Smith and David Stotts. Spqr: Flexible automated design
pattern extraction from source code. In Automated Software Engineer-
ing, 2003. Proceedings. 18th IEEE International Conference on, pages
215–224. IEEE, 2003.

[91] Jon A Solworth and Cyril U Orji. Write-only disk caches. In ACM
SIGMOD Record, volume 19, pages 123–132. ACM, 1990.

[92] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan,
and TedWobber. Extending ssd lifetimes with disk-basedwrite caches.
In FAST, volume 10, pages 101–114, 2010.

[93] Daniel Stodolsky, Garth Gibson, and Mark Holland. Parity logging
overcoming the small write problem in redundant disk arrays. In
ACM SIGARCH Computer Architecture News, volume 21, pages 64–75.
ACM, 1993.

[94] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike
Nishimoto, and Geoff Peck. Scalability in the XFS file system. In
Proceedings of the USENIX Annual Technical Conference, San Diego,
California, USA, January 22-26, 1996, pages 1–14, 1996.

[95] Yang Wang, Lorenzo Alvisi, and Mike Dahlin. Gnothi: Separating
data and metadata for efficient and available storage replication.
In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, USENIX ATC’12, pages 38–38, Berkeley, CA, USA, 2012.
USENIX Association.

[96] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan,
Jeevitha Kirubanandam, Lorenzo Alvisi, andMike Dahlin. Robustness
in the salus scalable block store. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13), pages 357–370, 2013.

[97] Andrew Warfield, Russ Ross, Keir Fraser, Christian Limpach, and
Steven Hand. Parallax: Managing storage for a million machines. In
HotOS, 2005.

[98] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 307–320. USENIX Association, 2006.

[99] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant
Rowtron. Better never than late:meeting deadlines in datacenter
networks. In ACM SIGCOMM, pages 50–61, 2011.

[100] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, and Ankur
Dave. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI, pages 1–14, 2012.

[101] Yiming Zhang, Chuanxiong Guo, Dongsheng Li, Rui Chu, Haitao Wu,
and Yongqiang Xiong. Cubicring: Enabling one-hop failure detection
and recovery for distributed in-memory storage systems. In NSDI,
pages 529–542, 2015.


	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 Architecture Overview
	3.2 SSD-HDD-Hybrid Storage Structure
	3.3 Journal Index
	3.4 Multi-Level Parallelism

	4 Consistency
	4.1 Overview
	4.2 Ursa Replication Protocol

	5 Discussion
	5.1 Richly-Featured Clients
	5.2 Online Component Upgrade
	5.3 Exploiting Disk Parallelism
	5.4 Hardware Reliability
	5.5 Limitations

	6 Evaluation
	6.1 I/O Performance
	6.2 Impact of Various Design Components
	6.3 Scalability
	6.4 Trace Driven Evaluation
	6.5 Production Evaluation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

