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Abstract—Today’s cloud is shared among multiple tenants running different applications, and a desirable multi-tenant datacenter

network infrastructure should provide bandwidth guarantees for throughput-intensive applications, low latency for latency-sensitive

short messages, as well as work conservation to fully utilize the network bandwidth. Despite significant efforts in recent years, none of

them can achieve these three properties simultaneously. In this paper, we identify the key deficiency of prior solutions and use this

insight to motivate our design of Trinity—a simple, practical yet effective solution that achieves bandwidth guarantees, work

conservation and low latency simultaneously in the cloud. We implement Trinity using existing commodity hardwares and demonstrate

its superior performance over prior solutions using testbed experiments.

Index Terms—Data center network, public cloud, bandwidth guarantee, work conservation, low latency
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1 INTRODUCTION

IN today’s clouds, the network resource, unlike the com-
pute and storage resources, is shared in an uncoordinated

best-effort manner among multiple tenants. For this reason,
the tenants may experience varied network performance
which can adversely affect their application performance
and increase their cost. For example, recent studies on sev-
eral major cloud infrastructures have revealed that band-
width and packet latency can vary significantly by an order
of magnitude [1], [2], [3], [4], [5]. The lack of predictable per-
formance has prevented users and enterprises from migrat-
ing their applications into the cloud, especially for delay
sensitive applications such as web search, retail, advertis-
ing, recommendation systems, etc.

A natural way to provide predictable network perfor-
mance is to let the users specify the amount of bandwidth
they need and allocate dedicated bandwidth to them, i.e.,
providing bandwidth guarantees to the tenants. However,
such strict bandwidth allocation may result in bandwidth
waste if the tenant cannot fully utilize his share. Thus, the
cloud network should also provide work conservation to
enable the multiplexing economic benefits for the cloud pro-
vider. At the same time, it should provide low latency to

short flows for small response time. As a result, a good
cloud network design should be able to meet these three
objectives simultaneously.

While significant efforts [1], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15] have been made toward sharing the cloud
and obtaining predictable network performance, none of
them achieves all the three goals simultaneously. For exam-
ple, SecondNet [9] and Oktopus [1] provide bandwidth
guarantees, but they are not work-conserving. ElasticS-
witch [6] aims at work-conserving bandwidth guarantees,
however it cannot ensure low latency for short flows, and
more importantly, its work conservation is sacrificed due to
a fundamental tradeoff between accurately providing band-
width guarantees and being work-conserving (see details in
Section 2).

We identify that a key deficiency of prior solutions such
as ElasticSwitch [6] is that they heavily rely on end-to-end
rate control while neglecting important support from net-
work. The reason why ElasticSwitch has to sacrifice work
conservation for bandwidth guarantees is that: it injects
without distinction the traffic of both bandwidth guarantees
and work conservation into the network; the network, by
itself, cannot automatically avoid the interference between
these two types of traffic. Consequently, work-conserving
traffic of one tenant, if too aggressive, can adversely affect
bandwidth guarantee traffic of other tenants and hurt the
latency of their short flows.

This directly motivates our design of Trinity in this work.
By Trinity, we show that simple network support can be
explored to solve the problem. Observing that today’s com-
modity switches already support 4–8 priority queues [16],
[17], [18], our key idea in Trinity is that by simply differenti-
ating the two types of traffic at the end and prioritizing
them in the network, we can readily achieve all the triple
goals simultaneously.
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Basically, Trinity decouples providing bandwidth guar-
antees from being work-conserving by segregating these
two types of traffic at the end, and leveraging commodity
switches to enforce priority queueing in the network. The
traffic of bandwidth guarantees is prioritized over that of
work conservation. With such prioritization, work conser-
vation can be designed aggressively without affecting band-
width guarantees. Furthermore, such prioritization also
makes it easier for Trinity to achieve low latency for short
flows: it only needs to classify packets of short flows as
bandwidth guarantee traffic and let them receive priority in
the network (see details in Section 3).

Despite being conceptually simple, there are still a few
concrete issues we need to address before making Trinity
truly effective. First, how to design an aggressive rate
control algorithm so that the work-conserving traffic can
fully utilize spare bandwidth in the network, while not
causing a large number of packet drops at switches. Second,
how to handle packet trapping (or starvation) of the work-
conserving traffic in the lower priority queue. Third, how to
deal with possible packet re-ordering which might occur
when a long flow promotes from the lower priority queue
to the higher one. In Section 3.3, we introduce how Trinity
addresses each of them.

We have implemented a Trinity prototype with commod-
ity servers and switches (Section 4). On the end host, our
Trinity kernel module is located as a shim layer over the
physical NIC (Network Interface Card) driver in hypervi-
sor. It does not introduce any modification to network
stacks or applications of tenants. In the switch, Trinity only
requires strict priority queueing and Explicit Congestion
Notification (ECN) which are both built-in functions for
existing commodity switches.

To evaluate Trinity, we build a testbed with 2 Pronto-3295
Gigabit Ethernet switches and 16 Dell servers. Our experi-
mental results show that:

� Trinity provides accurate bandwidth guarantees
while achieving good work conservation. For exam-
ple, Trinity outperforms ElasticSwitch by 20.88–53.06
percent in terms of the average throughput under
different settings;

� Trinity delivers low latency for short flows and
improves their flow completion time (FCT) signifi-
cantly. For example, as for 1 KB short flows, com-
pared to ElasticSwitch, Trinity reduces their FCT by
22-33 percent on average and by 68-71 percent at the
99th percentile;

� Trinity improves the performance of both throughput-
sensitive applications and latency-sensitive applica-
tions. For instance, in latency-sensitive Memcached
application, Trinity outperforms ElasticSwitch by
83 percent in terms of the query completion time at
the 99th percentile.

� Trinity is scalable to be applied to large-scale data
center networks. For example, Trinity only introduces
9 percent CPU overhead in the worst case when
compared to no protection scheme.

The rest of the paper is organized as follows. Section 2
introduces the background and discusses some related
works. Section 3 introduces the Trinity design in detail.

Sections 4 and 5 describe the Trinity implementation and
testbed experiments. Section 6 concludes this paper.

2 BACKGROUND

2.1 Scope and Non-Goals

In today’s clouds, it is easy to share the compute and storage
resources effectively among multiple tenants. In contrast,
sharing network resource with bandwidth guarantees is
believed to be complex and challenging [1], [6], [8], [9],
which requires the following three key technologies:

� Tenant abstraction. Tenant abstractions are used to
model bandwidth guarantees needed by tenants.
Many of these abstractions [1], [9], [10], [15], [19],
[20], [21] offer a virtual network, which allows ten-
ants to have an illusion of having their own dedi-
cated networks. These abstractions usually consist of
VMs, virtual switches and virtual links associated
with bandwidth guarantees. For example, Fig. 1
shows an example of Hose model, where each of the
VMs is connected with a virtual switch via a virtual
link. Each virtual link is associated with a specified
bandwidth to be guaranteed.

� VM placement algorithm. Given a tenant abstraction,
VM placement algorithm [1], [9], [10], [15] is needed
to determine whether this abstraction can be
deployed on the physical datacenter network with-
out violating the guarantees for the existing tenants.
Fig. 1 also shows an placement of the two hose mod-
els on the physical network.

� Runtime enforcement. Runtime enforcement [6], [8],
[14] is used to enforce the bandwidth guarantees
specified in each placed tenant abstraction. Note that
by only placing VMs on the physical networks,
bandwidth guarantees are not necessarily satisfied
even if enough bandwidth is provisioned. For exam-
ple, in Fig. 1, if VM X sends traffic at a rate much
larger than BX, the bandwidth guarantee of VM E
may be violated.

The focus of this paper is to design a scalable and effi-
cient runtime enforcement mechanism, such that band-
width guarantees, work conservation and low latency can
be simultanesouly achieved. We rely on prior solutions for
designing tenant abstractions and doing VM placement.

Fig. 1. Example to demonstrate tenant abstractions and VM placement
on a physical network. In this example, we have two hose models to
describe the bandwidth guarantees needed by the VMs of two tenants
(Red and Blue). Note that in the hose model, each virtual link is associ-
ated with a bandwidth guarantee.
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Trinity can support both pipe mode [9], [19], [20] and hose
model [1], [21]. Trinity can also work with abstractions based
on the hose model, such as TIVC abstraction [10] and TAG
abstraction [15].

Trinity is agnostic to the VM placement algorithm. For
schemes that support online reconfiguration of bandwidth
guarantees [22], [23], Trinity can still be applied as long as
the network manager updates the tenant abstractions and
their placement after each reconfiguration.

2.2 Problem and Related Work

Given tenant abstractions and a valid placement, the cloud
provider needs to have a runtime mechanism to enforce the
bandwidth guarantees and utilize unused bandwidth effi-
ciently. We argue that a good mechanism should satisfy
three properties in the following.

� Providing bandwidth guarantees means that each VM
can share a minimum guaranteed bandwidth to
send and receive traffic whenever needed. This is
crucial for the predictable application performance,
especially for data-intensive applications [24], [25]
whose completion time mainly rely on the available
network bandwidth.

� Being work-conserving requires that the bottleneck
link should be always fully utilized as long as there
are sufficient demands. This means that a tenant
should be able to dynamically grab free bandwidth,
which are either unallocated, or allocated but are not
currently used by other tenants. Work conservation
benefits both tenants and the provider because ten-
ants can finish their jobs faster and the provider can
achieve high resource utilization.

� Delivering low latency for short flows is crucial for
many online data-intensive (OLDI) applications such
as web services. For better user experience, many
OLDI applications operate under soft real-time con-
straints that requires short flows to be completed
before deadlines [26].

To the best of our knowledge, prior solutions do not
achieve the three goals simultaneously. Table 1 summarizes
some related work according to the objectives they meet

and the assumptions they have. Specifically, SecondNet [9],
Oktopus [1] and TIVC [10] provide bandwidth guarantees
but not work-conserving, while Seawall [11] does the oppo-
site. EyeQ [8] and GateKeeper [14] are work-conserving, but
they require the network core to be congestion-free which is
not the case for production datacenters [6]. Similarly, Fair-
Cloud PS-P [13] is also work-conserving, but at the cost of
expensive switch hardware support especially per-VM
queues. Furthermore, all these solutions do not consider
low latency. On the other hand, Silo [7] considers guaran-
teed bandwidth and packet latency, but it does not achieve
work conservation.

We also note that there exist some traditional solutions
that tackles similar problems in the broader context of the
Internet. For example, weight fair queuing (WFQ) [27] can
be borrowed to achieve bandwidth guarantees and work
conservation by using per-tenant dedicated queues. How-
ever, today’s commodity switches have a limited number of
queues (e.g, 4-8), which is far from enough for clouds with
many tenants. For some other advanced schemes like [28],
[29], their algorithms are too complicated to be imple-
mented in commodity switches.Deep Dive. The work closest
to Trinity is ElasticSwitch [6]. However, there is a fundamen-
tal tradeoff between accurately providing bandwidth guar-
antees and being work-conserving in ElasticSwitch. In order
for a tenant to detect the spare bandwidth not being used
by other tenants, ElasticSwitch needs to probe the available
bandwidth by increasing the flow rates. However, probing
too conservatively (i.e., increase gradually but drop dramat-
ically) may under-utilize the available bandwidth and is not
sufficiently work-conserving; while probing too aggres-
sively (i.e., increase dramatically but drop gradually) may
affect bandwidth guarantees of other tenants when their
traffic come back to network.

We show this dilemma using testbed experiments in
Fig. 2. As shown in Fig. 2a, there are four VMs of two ten-
ants A and B sharing a same bottleneck link, and VM A1
and B1 send traffic to A2 and B2, respectively. We mea-
sure the throughput at A2 and B2 every 5ms. In the first
experiment, we assume both tenants have 150 Mbps guar-
antees and use conservative probe. In this case, the ideal
work conservation result should be that both tenants stay

TABLE 1
Summary of Previous Approaches and Comparison to Trinity

Design objectives System requirements

Related Work BW
guarantee

Work
conservation

Low
latency

Switch
hardware

Topology Control
model

Oktopus [1], TIVC [10]
SecondNet [9]

Yes No No None MPLS None Centralized

GateKeeper [14]
EyeQ [8]

Yes Yes No None ECN Congestion-free
core

Distributed

Seawall [11], Net-
Share [12] FairCloud
PS-L/N [13]

No Yes No None None Distributed

FairCloud PS-P [13] Yes Yes No Per-VM queues Tree Distributed
Silo [7] Yes No Yes None None Distributed
ElasticSwitch[6] Yes, tradeoff with

work conservation
Yes, tradeoff with
BW guarantee

No None None Distributed

Trinity Yes, without
tradeoff

Yes, without
tradeoff

Yes Priority queues,
ECN

None Distributed
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around 500 Mpbs. However, in Fig. 2b, we can see
that the scheme is not fully work-conserving, because it
probes available spare bandwidth too conservatively by
increasing rates slowly at the beginning, but dropping too
dramatically once it senses congestion. Spare bandwidth
in the valleys is wasted.

In the second experiment, we assume tenant A and B
have 150 Mbps and 750 Mbps guarantees respectively and
use aggressive probe. We let A take more spare bandwidth
first, and later on more traffic from B arrives. However, in
Fig. 2c, we can see that, under such aggressive probe, B
even cannot get back its guaranteed bandwidth for a long
while. The reason is that the work-conserving traffic of A
adversely throttles the bandwidth guarantee traffic of B.
Because A drops gradually upon congestion (but increases
dramatically when seeing spare bandwidth), it makes B
unable to grab its minimum guarantee of 750 Mbps in a
short time (although eventually it will).

We note that, in ElasticSwitch [6], they proposed solutions
such as 10 percent headroom, hold-increase and rate-caution
which essentially trade work-conservation for bandwidth
guarantees, but do not completely solve the problem.

3 THE TRINITY DESIGN

3.1 Design Overview

To solve the above dilemma, we seek network support
instead of sticking to pure end-to-end solution. By simply
differentiating the two types of traffic at the end and priori-
tizing them in the network, we break the impasse.

Specifically, Trinity decouples providing bandwidth
guarantees from being work-conserving by differentiating
traffic of bandwidth guarantees from that of work conserva-
tion with two colors at the end (i.e., green indicates band-
width guarantee traffic, and red indicates work-conserving
traffic), and leveraging commodity switch capability to
enforce strict priority queueing in the network. That is, the
traffic of bandwidth guarantees is always prioritized over
that of work conservation in the network. With such priori-
tization enforced, work conservation can now be designed
more aggressively without causing any interference to
bandwidth guarantees. This effectively enables Trinity to
achieve absolute bandwidth guarantees and work conserva-
tion without any tradeoff.

Meanwhile, such prioritization of bandwidth guarantee
traffic over work conservation traffic also enables Trinity to
optimize and ensure low latency for short flows: it only
needs to make sure that the packets of short flows are col-
ored as bandwidth guarantee packets. The reason is as fol-
lows. Since tenant’s bandwidth guarantee requirement has
already been met by the provider based on the network
capacity in the tenant admission control phase, pure band-
width guarantee traffic can be accommodated by the net-
work without congestion and the packets will experience
little, if any, queueing delay. In the case of mixed band-
width guarantee and work-conserving traffic, as long as the
prioritization is in place, bandwidth guarantee packets will
not be blocked by work-conserving traffic, and thus still be
able to see low latency.

3.2 System Framework

The system framework of Trinity is shown in Fig. 3. Trinity
software component runs in the hypervisor layer,
and mainly consists of two parts, a Rate Controller (RC)
module and a number of VM-to-VM channels. For each
source-destination pair of VMs, there is one corresponding
VM-to-VM channel.

Rate Controller Module. RC is responsible for determining
the traffic rates for bandwidth guarantees and work con-
servation for each VM pair. At the receiver side, RC periodi-
cally measures latest channel rates and ECN signals, and
feeds back to the corresponding senders. At the sender side,
RC calculates bandwidth guarantee rate RG and work

Fig. 3. Trinity system framework.

Fig. 2. Deep dive experiments to show the dilemma.
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conservation rate RW for each VM-to-VM channel periodi-
cally based on the received feedback. The detailed rate allo-
cation algorithm will be introduced later in Section 3.3.

VM-to-VM Channel. The processing pipeline of VM-
to-VM channel is shown in Fig. 4. At the sender side, to
decouple providing bandwidth guarantees from being
work-conserving, two token buckets are used: Token Bucket
1 generates tokens (green) at the rate of RG, while Token
Bucket 2 generates tokens (red) at the rate of RW .

The generated tokens are fed to the rate limiters for
performing rate limiting. Green tokens are consumed
with higher priority, i.e., red tokens are used only when
there is no green token available. In addition to rate limit-
ing, these tokens also color packets into corresponding
colors, such that packets are classified into bandwidth
guarantee traffic (green) and work-conserving traffic (red)
at the end.

In the network, as shown in shown in Fig. 3, Trinity lever-
ages 2-level priority queueing at switches to enforce a strict
prioritization of bandwidth guarantee traffic over work-
conserving traffic. Specifically, green packets are placed in
the high priority queue, while red packets are placed in the
low priority queue. Furthermore, Trinity also leverages the
ECN support of commodity switches for its rate control as
shown later.

To achieve low latency for short flows, as introduced,
Trinity only needs to color all packets of short flows as band-
width guarantee packets and lets them receive higher prior-
ity in the network. Hence a Classifier module is employed
in the VM-to-VM channel to assign each flow to either a
short-flow class or a long-flow class. Note that in Fig. 4, only
green tokens are fed to the rate limiter for short-flow buffer.
This is to ensure all packets of short flows receive higher
priority in the network.

To be practical, Trinity does not assume any prior
knowledge of flow sizes; Instead, it prioritizes the first few
packets of every new flow. The threshold can be initially
set as a few or tens of KBs, a typical size of short flows for
latency sensitive applications [30], and subject to improve-
ment by using advanced thresholding schemes such
as [17]. In our implementation, the classifier keeps track of
the bytes sent of every flow; if the bytes sent of a flow is
less than a given threshold, then the flow remains in the
short-flow class; otherwise, it is moved to the long-flow
class until finish.

At the receiver side, Trinity employs a re-sequencing
buffer for each active flow, a common technique used by
many prior works [31], [32], [33], to absorb potential out-
of-order packets.

The Workflow of Trinity. For packets in short-flow buffer,
they only consume tokens in Token Bucket 1 (colored as
green) and enjoy low latency in the network. In case Token
Bucket 1 runs out of tokens (which could happen very occa-
sionally, e.g., a persistent long flow consumes the last green
token right before a new flow starts), the packets just wait
temporarily for the new green tokens to be generated.

For packets in long-flow buffer, they can be colored as
either green or red. When there are available tokens in
Token Bucket 1 and short-flow buffer is empty, they are col-
ored as green and identified as bandwidth guarantee traffic
in the network; Otherwise, they are colored as red and
identified as work-conserving traffic. This includes two
possibilities: 1) no token in Token Bucket 1, this means the
minimum bandwidth guarantee is reached; and 2) tokens
available in Token Bucket 1 but short-flow buffer is not
empty, in such case packets in long-flow buffer do not con-
sume green tokens in order not to cause any delay to pack-
ets in short-flow buffer. It is possible that even Token
Bucket 2 can run out of tokens, in this case, Trinity tries to
buffer the packets in the long-flow buffer before dropping
them when buffer occupancy grows too large.

3.3 Detailed Mechanisms

Despite being conceptually simple, there are still a few con-
crete design issues we need to address. We now discuss
these problems and our solutions to them.

Problem #1: Rate control. As introduced, a key benefit of
Trinity is that, by prioritizing bandwidth guarantee traffic
over work-conserving traffic, we can employ aggressive
rate control algorithm for work conservation without affect-
ing bandwidth guarantees. Then the question is: what kind
of rate control we should employ?

Solution. As introduced, for each VM-to-VM channel, RC
needs to compute a bandwidth guarantee rate RG and a
work-conserving rate RW .

At first, we describe the calculation of RG. For pipe mod-
els where bandwidth guarantees between pairs of VMs are
directly specified, RG is the input. For hose models where
only per-VM aggregated bandwidth guanratee is speficied,
Trinity borrows the approach of ElasticSwitch [6] to trans-
form a hose model into a set of minimum bandwidth guar-
antees between VM pairs:

For a channel X ! Y , RC sets its bandwidth guarantee
rate as:

RX!Y
G ¼ minðBX!Y

X ;BX!Y
Y Þ; (1)

where BX!Y
X is the guaranteed bandwidth assigned by X’s

hypervisor for the traffic to Y, and BX!Y
Y is the guaranteed

bandwidth assigned by Y’s hypervisor for the traffic receiv-
ing from X. Let BX be the bandwidth guarantee of VM X. If
X is sending traffic to N destination VMs with unbounded
bandwidth demand, we haveBX!Y

X ¼ BX=N . The computa-
tion for BX!Y

Y is similar.
To fully utilize the spare bandwidth, Trinity adopts an

aggressive algorithm for the calculation of RW . The basic
idea is as follows. When there is no congestion feedback
from network, we allow a VM-to-VM channel to send work-
conserving traffic aggressively without any limits as long as
the NIC allows; When there is congestion feedback from

Fig. 4. The processing pipeline of VM-to-VM channel.
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network, we reduce RW in proportion to an estimation of
network congestion.

Formally, let S be the set of VMs hosted on a server, and
8X 2 S, we use BX to denote the bandwidth guarantee of
X. Assume the capacity of the NIC is C, then the spare
capacity:

CW ¼ C �
X

X2S
BX: (2)

To apply the idea mentioned above, the hypervisor
divides all the active VM-to-VM channels into two sets P
and Q, and computes work conserving rates for channels in
different sets using different schemes. Here P is the set of
congestion-free channels, while Q is the set of congestion-
caution channels. Initially, we put all active channels in P.

Let CP be the total spare capacity belonging to the
congestion-free channels. It is easy to know that:

CP ¼ CW �
X

u!v2Q
Ru!v

W : (3)

Here Ru!v
W is the work-conserving rate of channel u ! v. For

a channelX ! Y in P , its work conserving rate is:

RX!Y
W ¼ CP � RX!Y

GP
u!v2P Ru!v

G

: (4)

It means that all channels in P share spare capacity CP in a
weighted fair sharing fashion, where the weight is set as the
bandwidth guarantee.

Although our Trinity ensures that work-conserving traffic
will not affect bandwidth guarantee traffic, sending too much
work-conserving traffic may cause a large number of packet
losses in the lowpriority queues on switches,whichwill result
in TCP timeout and thus hurt the throughput of TCP flows.

To address this, we enable ECN in the low priority
switch queues. On the end hosts, we let hypervisors moni-
tor the congestion feedback of ECN marking. Specifically,
hypervisors will maintain an estimation of the fraction of
red packets that are marked with ECN (denoted as b) in
each period for all channels. If a congestion-free channel is
detected to be congested, it will be moved from P to Q. For
any congestion-caution channelX ! Y in Q, in each period,
if b is non-zero, we reduce its work conserving rate in pro-
portion to b in a manner similar to DCTCP [30], i.e.,

RX!Y
W ¼ ð1� b=2Þ �RX!Y

W : (5)

If b is zero, it means that there is no congestion in the net-
work. We then increase its work conserving rate as follows:

RX!Y
W ¼ minðRP ; ð1þ aÞ �RX!Y

W Þ: (6)

HereRP is thework-conserving rate this channel will be allo-
cated if it is a congestion-free channel. A congestion-caution
channel should get no more allocation than its share as a
congestion-free channel. a is a factor used to control the
aggressiveness of rate increase. IfRX!Y

W ¼ RP after updating
rate, the hypervisor will move this channel back to P .

In a public cloud, we cannot assume all tenants support
ECN in their transport layer protocols. To make our ECN-
based solution practical: at the sender side, for all out-going
packets, the hypervisor sets the ECN-capable bits in IP

header to be true; at the receiver side, the hypervisor esti-
mates the fraction of ECN marked incoming red packets for
every VM-to-VM channel, and sends this estimation back
to the corresponding hypervisor at the sender side
periodically.

In addition, the hypervisor should also record whether a
connection supports ECN. For a TCP connection, the hyper-
visor can know whether it supports ECN in 3-way hand-
shakes. For those flows that disable ECN, to avoid
disturbing the function of their transport layer protocols,
the hypervisor will clear the ECN bits when delivering
packets to upper layer.

Problem #2: Packet Trapping. There exist scenarios that
red packets can get trapped (starved) in the lower priority
queue of a bottleneck switch. For example, initially the
switch has spare bandwidth (by other tenants’ bandwidth
guarantees but currently not being used) for work-conserv-
ing traffic and thus some red packets get in the lower prior-
ity queue. Suddenly, the bandwidth guarantee packets of
other tenants come back and occupy the bandwidth for a
long duration. Then, the work-conserving red packets get
trapped due to lower priority. As a consequence, the TCP
sender of those red packets responds by retransmitting
the packets repeatedly, and these retransmitted packets
may get dropped persistently since the bottleneck queue is
already full.

Solution. Reserving sufficient bandwidth headroom for
work-conserving traffic can potentially address this prob-
lem, however it is a waste of bandwidth and thus not
desirable.

We introduce a simple solution to this problem without
bandwidth headroom. As mentioned above in rate control,
the hypervisor at the receiver side will estimate the fraction of
ECN marked incoming red packets for every VM-to-VM
channel periodically. Then if a hypervisor does not receive
any red packets for a VM-to-VM channel in the last period, it
can send amessage to inform the corresponding hypervisor at
the sender side of the possible packet trapping. The hypervi-
sor at the sender then checks howmany redpackets the source
VMhas sent out for this VM-to-VM channel in the last period.
If the source VM does send out some red packets, it indicates
packet trapping in the network. The hypervisor then sets the
work-conserving rate RW to a small value (e.g., 10 Kbps), and
marks this channel as congestion-caution channel.

Problem #3: Packet Re-Ordering. For a short flow, all of its
packets are colored as green, there is no out-of-order prob-
lem. While for a long flow, due to instantaneous token avail-
ability in Token Bucket 1, the packets can alternate between
green and red. It is possible that in the same long flow,
some packets with smaller sequence numbers are colored as
red as tokens run out in Token Bucket 1, while subsequent
packets with larger sequence numbers are colored as green
because new tokens are being generated. In such case,
packet re-ordering could arise because red packets may
experience longer queueing delay in the network and reach
the destination later than green ones. This is detrimental to
TCP throughput, by triggering window collapse and unnec-
essary retransmissions.

Solution. The solution to this problem is twofold. At the
sender, we minimize the case that packets of a flow alternate
from red back to green. Specifically, we introduce a color
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transition delay parameter t: when there is a need to change
the colors of packets from red to green, we defer the change
by t seconds. There are two benefits for this delay. First, it
increases the chance that some other flows may come up
and consume the tokens in Token Bucket 1 without packet
re-ordering. Second, it decreases the chance that packet re-
ordering happens with the flow itself because this has
already reserved some additional time for the red packets to
transmit. At the receiver, we adopt a re-sequencing
buffer [31], [32], [33] to absorb possible out-of-order packets
as shown in Fig. 3. More specifically, if a green packet p is
received and some packets pi prior to it have not been
received yet, Trinity puts p into the re-sequencing buffer and
a timer is initiated. If all pis are received at a time t before
timeout, they are submitted to TCP receiver together with p
immediately; Otherwise, the whole buffer is submitted
when timeout.

4 IMPLEMENTATION AND TESTBED SETUP

4.1 Trinity Implementation

Trinity consists of two components on end-hosts: receiver RX
processing and sender TX processing. As a prototype, we
have implemented TX and RX processing as a Linux kernel
module. We also implemented a ElasticSwitch-like kernel
module following the description of [6]. The kernel module
is located as a shim layer above the physical NIC driver in
hypervisor, without touching network stacks and applica-
tions of tenant’s VMs. We also developed an application to
configure Trinity kernel module in user space. The applica-
tion communicates with kernel module using IOCTL [34].
Our implementation code in total consists of about 1000
lines of C code and about 900 lines of header files. We now
describe each component in detail.

Sender Trinity Module. The sender module consists of a
hash based flow table and multiple TX contexts. The flow
table is used for tracking per-flow state and packet classifi-
cation. Its operations are as follows: 1) All of the outgoing
packets are intercepted by NETFILTER hook at LOCAL_OUT
and directed to the flow table [35]. 2) Each flow in the flow
table is identified by the 5-tuple: source/destination IPs,
source/destination ports and protocol. When a packet
comes in, we identify its corresponding flow entry (or create
a new entry) and update the amount of bytes sent.1 3) Based
on the bytes sent information, we classify packets and direct
them to FIFO queues of corresponding TX contexts.

We allocate a TX context for each VM-to-VM pair. The TX
context maintains basic TX information and a rate limiter.
Unlike traditional token bucket rate limiter, our rate limiter
has two associated FIFO queues, a timer, two rates (RW and
RG) and corresponding two kinds of tokens. The packets of
short-flow class and long-flow class are segregated by two
FIFO queues. To enforce accurate rates over short timescales
and avoid long delay to short-flow packets, we use Linux
high-resolution kernel timer, HRTIMER [36], for our rate

limiters. Once the timer fires, we update two kinds of tokens
and begin packet scheduling. The packets from short-class
FIFO queue has the high priority to be dequeued but they
can only consume tokens for bandwidth guarantee traffic.
After scheduling short-flow class packets, the packets from
long-flow class can be dequeued and they can consume
both of two kinds of tokens. The dequeued packets consum-
ing different kinds of tokens will be marked with different
Different Service Code Point (DSCP) values and enqueued
to different priority queues in network switches. Note that
DSCP based priority queueing is supported by most of
today’s commodity switches from a wide range of switch
vendors [37], [38], [39], [40], [41]. To make ECN fully effec-
tive for every packet regardless of their protocols, we set
ECN-capable (ECT) codepoint to every dequeued packet.

Receiver Trinity Module:The receiver modules consists of
multiple RX contexts and a control packet generator. We
pre-allocate a RX context for each VM-to-VM communica-
tion pair. The RX context tracks the VM-to-VM pair’s
receive traffic and measures incoming throughput. In each
control interval, the RX context calculates the fraction of
ECNmarking packets and delivers this to source VMs using
special feedback packets. Similar to EyeQ [8], our feedback
packet is a special minimum sized IP packet (64 bytes) with
a special unused IP protocol number (143 in our implemen-
tation). We encode the ECN fraction in the IP identification
field. Since we only generate a packet for each VM-to-VM
pair every control interval, the feedback traffic consumes
limited network bandwidth. Considering a VM concur-
rently receiving traffic from 100 VMs, the feedback traffic
only consumes �50 Mbps throughput over the control inter-
val of 1 ms. Furthermore, we can also piggyback the feed-
back information on packets back to the source VM. To
achieve low latency for control messages, the feedback
packets will be marked with DSCP of bandwidth guarantee
traffic and sent out without going through rate limiters. To
not disturb tenant’s network stacks, the RX context also
clears any possible ECT and ECN marks in incoming pack-
ets when a tenant disables ECN function.

4.2 Testbed Setup

To evaluate Trinity, we build a dumbbell testbed with 16
servers connected to 2 Pronto-3295 48-port Gigabit switches
as shown in Fig. 5. We configure strict priority queueing
and per-queue ECNmarking on switches. The shared buffer
is enabled on our switches by default. With per-queue ECN
marking, each queue has its own marking threshold and
performs ECN marking independently to other queues.
Packets are classified into different priority queues based on

Fig. 5. Trinity testbed.

1. Tenants may establish persistent TCP connections to reduce con-
nection establishment overhead and keep delivering short messages
over these connections. These persistent connections will be eventually
be assigned to the low priority by Trinity after long time. We can period-
ically update flow states based on more comprehensive network behav-
iors. For example, when a flow idles for some time, we can reset the
bytes sent of this flow back to 0.
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their DSCP values. Each server is a Dell PowerEdge R320
with a 4-core Intel E5-1410 2.8 GHz CPU, 8G memory, a
500 GB hard disk, and a Broadcom BCM5719 NetXtreme
Gigabit Ethernet NIC. Each server runs Debian 6.0-64 bit
with Linux 2.6.38.3 kernel. Due to the limited number of
CPU cores in our physical servers, we emulate multiple
VMs by creating multiple virtual network interfaces with
different IP addresses to avoid virtualization overheads. In
our experiments, each tenant has its own virtual subnets.

5 EVALUATION

We evaluate Trinity using testbed experiments. Our evalua-
tion centers around four key questions:

� Does Trinity have any tradeoff between bandwidth guar-
antee and work conservation? By comparing to three
other schemes: no protection, static reservation and
ElasticSwitch, we show that Trinity can accurately
provide minimum bandwidth guarantees while at
the same time enabling VMs with large bandwidth
demand to fully utilize spare link capacity. Specifi-
cally, Trinity outperforms ElasticSwitch by 20.88–
53.06 percent in terms of average throughput under
different settings.

� Can Trinity deliver low latency for short flows and benefit
their flow completion time? We evaluate the scenarios
where short flows coexist with long flows. Our
results show that, compared to ElasticSwitch, Trinity
improves the FCT by 22-33 percent on average
and 68-71 percent at the 99th percentile for 1 KB
short flows; furthermore, it reduces the FCT by
21-38 percent on average and 62-70 percent at the
99th percentile for 20KB short flows.

� Can Trinity improve the performance of both throughput-
sensitive applications and latency-sensitive applications?
As for FileStore application, which is throughput-
sensitive, Trinity achieves good work conservation
and outperforms ElasticSwitch by 5.4 percent in
terms of data shuffle completion time. As for Memc-
ached application, which is latency-sensitive, Trinity
ensures low latency and outperforms ElasticSwitch
by 83 percent in terms of the query completion time
at the 99th percentile.

� Is Trinity scalable to be applied to large-scale data center net-
works?We evaluate the CPU overhead of Trinity under
various scenarios. Our results show that, compared to
no protection scheme, Trinity only introduces 5 percent
additional CPUusage in themost stressed scenario.

In addition, we also evaluate the convergence time of
Trinity. We find that under Trinity, rates of VMs can quickly
adapt to varying network condition and converge within a
short time.

Schemes Compared:Wemainly compare Trinity against Elas-
ticSwitch [6], static reservation (Oktopus-like [1]) and no reser-
vation in our testbed. Among themElasticSwitch is our closest
work to compare. Qualitative analysis of other schemes like
Gatekeeper [14] and EyeQ [8] shows that those approaches
cannot provide guarantees when the network core is con-
gested, sowe exclude them in our testbed experiments.

Parameters: The rate control interval is set to 5 ms. We set
ECN marking threshold to be 30 KB as DCTCP [30]

recommends. For the rate control algorithm of ElasticS-
witch [6], we also use its recommended algorithm.

5.1 Bandwidth Guarantees and Work Conservation

We show that Trinity can provide bandwidth guarantee
while achieving good work conservation when multiple
tenants are competing for the same bottleneck link.

Many Connections versus One Connection. In this experi-
ment, there are four VMs (A1, A2, B1 and B2) of two tenants
A and B sharing a same bottleneck link. VM A1 on server S1

sends traffic to VM A2 on server S9 using one TCP connec-
tion, while VM B1 on server S2 sends traffic to VM B2 on
server S10 using different numbers of TCP connections.

We measure the throughput at VM A2 under four
schemes: no protection, static reservation [1], [9], ElasticS-
witch, and Trinity. In Fig. 6a, both tenants are provisioned
with 100 Mbps guarantees. In Fig. 6b, both tenants are pro-
visioned with 300 Mbps guarantees.

Fig. 6. Average throughput of VM A2 when the number of TCP connec-
tions used by tenant B varies.
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From the results, we make the following two observa-
tions: 1) No protection does not provide any bandwidth
guarantee as link capacity is shared among all TCP connec-
tions. Static reservation provides minimum bandwidth
guarantee, but does not utilize any spare bandwidth. Elas-
ticSwitch provides bandwidth guarantees and utilizes part
of the spare bandwidth. In contrast, Trinity not only pro-
vides bandwidth guarantee but also fully utilizes all the
spare bandwidth. In terms of the average throughput,
Trinity outperforms ElasticSwitch by 20.88 to 53.06 percent
in different bandwidth guarantee settings. 2) ElasticSwitch
wastes around 50 percent of the spare bandwidth. For
instance, in Fig. 6a, when reserving 20 percent of the link
capacity on the bottleneck link as bandwidth guarantees,
ideally, VM A2 should achieve around 500 Mbps through-
put on average. However, under ElasticSwitch, the average
throughput of VM A2 is only about 230 Mbps.

We further look into the reason behind it by measuring
the throughput of VM A2 every 5ms (i.e., rate control inter-
val). In Fig. 6c, we show the result of the case where there
are 10 TCP connections between VM B1 and B2. As illus-
trated, under ElasticSwitch, the throughput of VM A2 drops
back to minimum guarantee as long as it senses congestion.
Due to this conservative rate control, ElasticSwitch can only
utilize about half of the spare bandwidth on average. On
the other hand, our Trinity achieves nearly ideal throughput
at the granularity of millisecond, this is because Trinity

adjusts rate for each active VM pair based on a fine-grained
estimation of the network congestion as introduced in
Section 3.3.

A follow-up question may arise: can ElasticSwitch pro-
vide bandwidth guarantee and achieve good work-conser-
vation by using the rate control algorithm of Trinity? We
answer this question in the following experiment.Tradeoff
between Bandwidth Guarantees and Work Conservation. We
denote ElasticSwitch with original rate control as conserva-
tive ElasticSwitch (C-ElasticSwitch), and with Trinity’s rate
control as aggressive ElasticSwitch (A-ElasticSwitch). In
this experiment, we use the same scenario as above, and
measure the average throughput of VM A2 and B2 under
C-ElasticSwitch, A-ElasticSwitch and Trinity. The number of
TCP connections between VM B1 and B2 is set to 10.

The results in Fig. 7 show: 1) C-ElasticSwitch provides
bandwidth guarantees but cannot fully utilize spare band-
width as shown in Fig. 7a; 2) A-ElasticSwitch achieves good
work conservation, but fails to provide bandwidth guaran-
tees as shown in Fig. 7b; 3) Trinity provides accurate band-
width guarantees while achieving good work conservation
in both cases.

The takeaway of this experiment is that: 1) There is a trade-
off between bandwidth guarantee and work-conservation.
Pure end-to-end solutions are difficult to achieve both goals
simultaneously. 2) In-network prioritization with priority
queueing is key to eliminating this tradeoff.

5.2 Low Latency for Short Flows

We show that Trinity can deliver low latency for short flows
when short flows coexist with long flows.

Tradeoff between Low Latency and Work Conservation. It has
been shown that, when most of the link capacity are
reserved as guarantees, ElasticSwitch is work-conserving.
However, we will show that there is actually a tradeoff
between low latency and work-conservation. In this experi-
ment, we have 6 VMs A1, A2, B1, B2, C1 and C2 of three ten-
ants A, B and C. They are hosted on servers S1, S9, S2, S10, S3

and S11, respectively.
In this experiment, VM A1 sends 1 KB or 20 KB short

flows to A2 periodically, and in the meantime, VM B1
and C1 send long flows to VM B2 and C2, respectively.
To explore the tradeoff between low latency and work-
conservation, we study two cases: 1. Three tenants are all
provisioned with 200 Mbps guarantees on the bottleneck
link, and thus we have 400 Mbps spare bandwidth; 2.
Tenant A is provisioned with 200 Mbps guarantee on the
bottleneck link. Tenants B and C are both provisioned with
400 Mbps guarantees on the bottleneck link. Hence no spare
bandwidth is left in this case.

For case 1, the results are shown in Table 2. For case 2, the
results are shown in Table 3. From the results, we observe
that: 1) Compared to ElasticSwitch, Trinity reduces the FCT
by 22-33 percent on average and by 68-71 percent at the 99th
percentile for 1 KB short flows; furthermore, it reduces the
FCT by 21-38 percent on average and by 62-70 percent at the
99th percentile for 20 KB short flows. 2) Although ElasticS-
witch is work-conserving when 100 percent of link capacity
is reserved as guarantees, it is at the cost of sacrificing latency
of short flows. By comparing the results in Table 2 with that
in Table 3, we can see that, under ElasticSwitch, the FCT

Fig. 7. Average throughput under 3 schemes.
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increases by 17-21 percent on average, and by 30-39 percent
at the 99th percentile. In contrast, under Trinity, we do not
observe any significant increase on the FCT.

The takeaway of this experiment is two-fold: 1) There is a
tradeoff between low latency and work conservation. Pure
end-host based solutions are difficult to achieve both goals
simultaneously. 2) By letting packets of short flows receive
high priority in the network, we can well address this trade-
off and improve the FCT of short flows significantly.

Short Flows Mixed with Long Flows on End-Host. If a VM is
sending both long flows and short flows to a remote VM,
then the congestion on end-host cannot be simply ignored
anymore. Recall that in the design of Trinity, packets of short
flows have higher priority to consume tokens in Token
Bucket 1 over packets of long flows. We show that this
mechanism can reduce end-host delay of short flows when
short flows are mixed with long flows on end-host.

In this experiment, we change the scenario above by let-
ting VM A1 send both short flows and long flows with
unbounded demand to VM A2. In Table 4, we show the
results of the case when only 60 percent of link capacity is
reserved as guarantees.

From the results, we can find that: compared to ElasticS-
witch, Trinity reduces the FCT by 82 percent on average and
by 86 percent at the 99th percentile for 1KB short flows; Fur-
thermore, it reduces the FCT by 78 percent on average and
by 79 percent at the 99th percentile for 20 KB short flows.
This implies that Trinity can reduce both in-network delay
and end-host delay.

5.3 Experiments with Applications

We show that: 1) For throughput-sensitive applications such
as FileStore and MapReduce, Trinity can not only provide
predictable network performance, but also reduce their
shuffle completion times; 2) For latency-sensitive applica-
tions like MemCached, Trinity can improve its performance
by reducing the query completion times.

Throughput-Sensitive Applications. Both FileStore andMap-
Reduce are throughput-sensitive, and data shuffle is a poten-
tial bottleneck. In this experiment, we emulate the data
shuffle phase of both jobs, and measure the shuffle comple-
tion times.

As for FileStore, on each server of S1-S8, there is a 300 MB
file to be copied to 4 random servers from S9-S16 to create
some redundancies. In total, we have 32 communication
pairs, and each pair is provisioned with 5Mbps guarantee.
We create 8 parallel TCP connections between each pair.

As for MapReduce, we runs 12 VMs, one on each server
of S1-S12. We let the 8 VMs on servers S1-S8 (act as mappers)
send 256 MB traffic to each of the 4 VMs on S9-S12 (act as
reducers) to emulate data shuffle. It has 32 communication
pairs in total and each pair has 15 Mbps guarantee. We
create 2 parallel TCP connections between each pair.

Fig. 8a shows that under no protection, FileStore gets
more bandwidth by creating more TCP connections and
thus completes faster. This result implies that under no pro-
tection, tenants can cheat by creating more parallel TCP con-
nections. Fig. 8b shows that under static reservation, both
jobs have minimum performance guarantee, but spend
much more time to finish (more than 500s).

Fig. 8c shows that compared to static reservation, Elas-
ticSwitch reduces the shuffle completion time of FileStore
and MapReduce jobs by 32.4 and 70.9 percent, respec-
tively, because it can utilize part of the spare bandwidth.
Fig. 8d shows that compared to ElasticSwitch, Trinity fur-
ther reduces the shuffle completion time of FileStore by
5.4 percent (159s to 150s) by better utilizing the spare
bandwidth on the bottleneck link. Note that 64 percent of

TABLE 2
Flow Completion Time of Short Flows (60 Percent of

Link Capacity is Reserved as Guarantees)

Trinity ElasticSwitch

Flow size 1 KB 20 KB 1 KB 20 KB
Average FCT(us) 212 857 272 1083
99th percentile FCT(us) 274 1104 857 2878

TABLE 3
Flow Completion Time of Short Flows (100 Percent of

Link Capacity is Reserved as Guarantees)

Trinity ElasticSwitch

Flow size 1 KB 20 KB 1 KB 20 KB
Average FCT(us) 219 878 328 1413
99th percentile FCT(us) 291 1218 1002 3997

TABLE 4
Flow Completion Time of Short Flows when Short Flows are

Mixed with Long Flows on End-Host (60 Percent of
Link Capacity is Reserved as Guarantees)

Trinity ElasticSwitch

Flow size 1 KB 20 KB 1 KB 20 KB
Average FCT(us) 252 1105 1378 4989
99th percentile FCT(us) 302 1574 2160 7431

Fig. 8. The data shuffle progress of both FileStore and MapReduce under four schemes.
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the link capacity of the bottleneck link is reserved as the
guaranteed bandwidth in this experiment. Therefore, we
can only observe a relatively small improvement of shuffle
completion time under Trinity compared to ElasticSwitch.

Latency-Sensitive Applications. To evaluate how Trinity
improves the performance of latency-sensitive applications,
we run a memcached tenant: 8 instances hosted on servers
S1-S8 and 8 clients hosted on servers S9-S16. We pre-
populate instances with 4B-key, 1 KB-value pairs. The client
generates a GET query to all 8 instances and each instance
responds with a 1KB value. A query is completed only
when the client receives all the responses from instances.
The base query completion time is around 730us in our
testbed.

In this experiment, we create an adversarial UDP ten-
ant which runs many long-lived UDP flows from S9-S16

to S1-S8 and compare Trinity with ElasticSwitch. We plot
the CDF of query completion times in Fig. 9. From the
figure, we find Trinity outperforms ElasticSwitch by 83
percent in terms of the query completion time at the 99th
percentile. The results imply that Trinity can improve the
performance of latency-sensitive applications by letting
short query messages receive higher priority in the
network.

5.4 CPU Overhead

In this part, we show that Trinity is scalable as it introduces
low CPU overhead to servers.

CPU Overhead under Various Numbers of Active Flows. In
this experiment, we have four VMs A1, A2, A3 and A4
hosted on servers S1, S9, S10 and S11, respectively. We create
two scenarios to evaluate the CPU overhead of both Trinity
sender module and Trinity receiver module under various
numbers of active flows.

In the first scenario, VMA1 send traffic to VMsA2, A3 and
A4 using various numbers of TCP connections. We measure
the CPU utilization of VM A1 to study the CPU overhead
introduced by Trinity sender module. In the second scenario,
VMs A2, A3 and A4 send traffic to VM A1 using various
numbers of TCP connections. We measure the CPU utilza-
tion of VM A1 to study the CPU overhead introduced by
Trinity receiver module. For both scenarios, we record CPU
utilization every 1 second using the sysstat [42] tool, and cal-
culate the average utilization over 100 seconds.

For both scenarios, we also measure the CPU utilization of
no protection scheme. Under no protection scheme, no flow
classification, packet coloring or rate limiting is done at
end-host hypervisors. So its CPU utilization is mainly the
cost of transmitting network traffic, and can be viewed as
the base utilization.

The average CPU utilization under both scenarios are
plotted in Fig. 10a and 10b, respectively. From the results,
we can make two observations. First, the average CPU utili-
zation increases as we reduce the rate control interval of
Trinity from 2 ms to 0.5 ms, but the increase is not signifi-
cant. As CPU overhead of Trinity partly depends on the fre-
quency of updating work conserving rate, it is no wonder
that smaller rate control interval leads to higher CPU utili-
zation. As shown in both figures, compared with no protec-
tion scheme, the additional CPU utilization introduced by
Trinity modules is only about 5 percent when the control
interval is as small as 0.5ms. This indicates that Trinity is
capable to do fine-grained rate control with small additional
CPU utilization.

Second, in both scenarios, the CPU utilization almost
stays the same as we increase the number of active flows
between each VM pair. This is mainly because total network
load is bounded by the link capacity, and adding more

Fig. 9. CDF of query completion times under two schemes.

Fig. 10. Measurement of CPU overhead when increasing number of
active flows between each VM pair.
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TCP connections does not generate more packets to be proc-
essed at end-hosts. This also indicates that performing flow
classification in Trinity introduces little CPU overhead.

CPU Overhead under Varying Network Load. In this experi-
ment, we build a small testbed consisting of 4 servers con-
nected to a 10 Gbps Mellanox SN2000 switch. Each server is
equipped with an Intel 82599EB 10 GbE NIC. We vary the
link capacity by configuring per port hardware traffic
shaper at the switch. There are 4 VMs A1-A4, one on each
server. Similar to last experiment, we use two scenarios to
evaluate the CPU overhead of Trinity modules under vary-
ing network load.

In the first scenario, VM A1 works as a source to send
traffic to VMs A2-A4. In the second scenario, VM A1 works
as a destination to receive traffic from VMs A2-A4. Let L be
the configured link capacity. For both scenarios, each VM
pair has L/8 bandwidth guarantee. We vary the value of L
from 1Gbps to 10Gbps, and measure the corresponding
average CPU utilization of VM A1, as shown in Fig. 11
(We use no protection scheme as the base).

From the results, we find that the extra CPU utilization
introduced by Trinity increases as we increase the network
load, but the increase is not significant. At 10 Gbps, Trinity
introduces only �8 percent extra CPU utilization at the
sender module, and �9 percent extra CPU utilization at
the receiver module. Note that our current implementation
is single-core based, which can hardly scale up to higher
link speed, e.g., 40 Gbps or 100 Gbps. The implementation
of a multi-core aware Trinity, which can balance the network
load across multple CPU cores, is left as our future work.

5.5 Convergence Time

In this part, we show that under Trinity, rates of VMs can
quickly adapt to varying network condition and converge
within a short time (i.e., a few milliseconds).

To evaluate the convergence time of Trinity, in this exper-
iment, we let four VMs A1, A2, B1 and B2, belonging to ten-
ants A and B, compete a bottleneck link. Both tenants are
provisioned with 200 Mbps bandwidth guarantees. And
VMs A1, A2, B1 and B2 are hosted by servers S1; S9; S2 and
S10, respectively. Note that we set the rate control interval
as 1ms in this experiment.

Initially, only VM A1 are sending TCP traffic to VM A2.
Some time later, tenant B becomes active, and VM B1 starts
to send unbounded UDP traffic to VM B2.

As shown in Fig. 12, we sample the sending rate of VM
A1 and VM B1 every 5 ms, and observe how long it takes
for both VMs to get converged. As we can see, when VM B1
starts to send UDP traffic to VM B2, rates of both VMs con-
verge to about 500 Mbps within only 5ms. The results indi-
cate that, by adopting ECN-based rate control, Trinity can
converge within a short time under mixed traffic load and
varying network condition.

6 CONCLUSION

This paper presented Trinity, a simple yet effective solution
that provides triple properties: bandwidth guarantees,
work conservation and low latency simultaneously in the
cloud. By differentiating traffic at the end and enforcing pri-
oritization in the network, Trinity eliminates the tradeoff
between providing bandwidth guarantees and being work-
conserving, while achieving low latency for short flows. We
have implemented Trinity using commodity switches and
servers, and demonstrated its performance with testbed
experiments.
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Fig. 11. Measurement of CPU overhead when increasing the network
load.

Fig. 12. Convergence time of Trinity under mixed traffic load and varying
network condition.
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