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ABSTRACT
Explicit Congestion Notification (ECN) is crucial for produc-
tion datacenters, but current queue-length based ECN/RED
implementation does not work with generic packet schedulers,
leading to either degraded network performance or violated
scheduling policies. In this paper, we first dive into this issue
and reveal that the invalidity of ECN/RED lies in the difficulty
of measuring changing queue capacities under various sched-
ulers and traffic dynamics. Then we present Time-based Con-
gestion Notification (TCN), a simple yet effective ECN solu-
tion, by combining two successful ideas: the sojourn time from
CoDel [23] and the instantaneous marking from DCTCP [6].
Using packet sojourn-time, as opposed to queue-length, as the
congestion signal, TCN eliminates the need of measuring dy-
namic queue capacities, making it suitable for arbitrary sched-
ulers with traffic dynamics. By performing stateless instan-
taneous ECN marking rather than complex stateful dropping,
TCN is designed to be inexpensive to implement on commodity
switching chips. Through extensive testbed experiments and
large-scale simulations, we show TCN can strictly preserve
scheduling policies while providing desirable network perfor-
mance. For example, TCN significantly reduces the average
and 99th percentile completion times for small flows by up to
82.8% and 95.3% compared to current practice in a testbed
experiment with production workload.

1. INTRODUCTION
Datacenters must simultaneously deliver high throughput

and low latency to applications they host—some such as web
search [6] and distributed memory caches [24] require low
latency for short messages, while others like cloud storage
and data-parallel computation [15] desire high throughput for
large data transfers. To accommodate these two requirements,
ECN is adopted by recent datacenter transport designs [6, 8,
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22, 32, 35, 37], and they have shown that a well-tuned ECN
marking threshold can deliver both high throughput and low
latency [6, 35]. For this reason, ECN-based transports, like
DCTCP [6] and DCQCN [37], have been widely implemented
in various OS kernels [1, 2] and NICs [37] and deployed in
production datacenters [19, 28, 37].

Basically, ECN requires both ECN-enabled transport proto-
cols at end hosts and ECN-capable switches in the network. At
the switch, ECN is typically combined with an active queue
management (AQM) scheme. Current switching chips typically
adopt random early detection (RED) to enable ECN [5]. In
ECN/RED, an ECN mark on a packet simply indicates that the
average or instantaneous buildup of the queue corresponding to
the packet exceeds a static ECN marking threshold.

Meanwhile, existing commodity switching chips also support
multiple queues (typically 4-8 [9, 10]) per egress port. To
improve network performance and provide QoS, the current
practice is to use these multiple queues to classify traffic (e.g.,
interactive applications vs data backup) and enforce various
scheduling algorithms (e.g., Weighted Fair Queueing (WFQ) or
Strict Priority (SP)) among different queues/classes.

However, current ECN/RED marking scheme does not sup-
port generic packet schedulers [11, 21]. The crux is that RED
uses queue-length as the congestion signal, and compares it
against a pre-configured ECN marking threshold to mark pack-
ets. The ideal queue-length marking threshold depends on
the queue capacity (the effective instantaneous drain rate of
a queue). When multiple queues share a port, the individual
queue capacities can vary significantly subject to both schedul-
ing disciplines and traffic dynamics. This entails changing ECN
marking thresholds in response to dynamic queue capacities.
But today’s commodity switches only support static thresholds,
leading to either degraded performance or violated scheduling
policies (§3.2).

Recently, MQ-ECN [11] makes a first effort to enable dy-
namic ECN/RED for multi-queue. It leverages special proper-
ties of round-robin schedulers to calculate dynamic ECN mark-
ing threshold for each queue. While it works for round-based
schedulers like Weighted Round Robin (WRR) and Deficit
Weighted Round Robin (DWRR), this solution does not gen-
eralize to other schedulers such as WFQ and SP that do not
possess the concept of “round”. Furthermore, with the advent of
programmable schedulers such as PIFO [30] and UPS [20], we
are faced with more sophisticated packet scheduling algorithms
that MQ-ECN does not apply.

191

http://dx.doi.org/10.1145/2999572.2999575


In this paper, we move one step further and ask a fundamental
question: can we enable ECN over arbitrary packet schedulers
in datacenter networks?

Towards answering this question, we first revisit ECN/RED
(§3). In order to enable ECN/RED for generic packet sched-
ulers, the key is to seek a generic solution to estimate dynamic
queue capacities. However, through extensive experiments, we
find that it is very hard to accurately measure dynamic queue
capacities in practice. The reason is that it is extremely difficult
to determine an ideal measurement window for generic packet
schedulers with traffic dynamics. A smaller measurement win-
dow (i.e., sampling too frequently) degrades accuracy, while a
larger one (i.e., sampling insufficiently) fails to timely capture
fine-grained queue capacity changes (§3.3).

Based on above observation, we exploit latency experienced
by a packet, instead of queue-length, as the congestion sig-
nal and present Time-based Congestion Notification (TCN), a
simple yet effective sojourn-time based solution (§4). TCN syn-
thesizes two successful ideas: the sojourn time from CoDel [23]
and the instantaneous marking from DCTCP [6]:

• By using the sojourn time as the congestion signal, the mark-
ing threshold of TCN is independent of the changing queue
capacities, making it particularly suitable for arbitrary packet
schedulers (§4.1).

• With instantaneous ECN marking, TCN operates in a state-
less fashion. This makes TCN much simpler than CoDel [23]
which tracks the minimum sojourn time over a complex vary-
ing time window to drop (or mark) packets. Therefore, we
expect TCN will be simpler to implement in hardware (§4.2).
Moreover, compared to CoDel, TCN achieves faster reaction
to bursty datacenter traffic (§6.1).

We have implemented a TCN software prototype as a Linux
qdisc kernel module which supports a variety of packet
scheduling algorithms (§5), and built a small-scale testbed with
9 servers connected to such a server-emulated TCN software
switch. We use this testbed to evaluate basic properties of
TCN (§6.1). Our experiment results demonstrate that TCN can
strictly preserve different scheduling policies while delivering
high throughput and low latency simultaneously. For exam-
ple, in a realistic datacenter web search workload [6], we find
that TCN significantly reduces the average and 99th percentile
completion times for small flows by up to 82.8% and 95.3% re-
spectively while delivering similar performance for large flows,
compared to current operation practice (§6.1.3).

To complement small-scale testbed experiments, we also
conduct large-scale ns-2 [4] simulations with 4 realistic data-
center workloads (§6.2). Our simulation results confirm that
TCN maintains its superior performance in large-scale multi-
hop datacenter topologies, For example, TCN achieves up to
94.3% lower 99th percentile completion time for small flows
compared to current practice (§6.2.1). We further use a series
of targeted simulations to show that TCN is robust to different
network settings, such as the number of queues and transport
protocol (§6.2.2).

To make our work easy to reproduce, we make our experi-
ment and simulation code available online at http://sing.cse.ust.
hk/projects/TCN.

2. BACKGROUND

2.1 ECN/RED
In current switching chips, ECN is typically combined with

RED [16] that uses average buffer occupancy1 as the congestion
signal. RED has (at least) 3 parameters to configure: low buffer
occupancy threshold Kmin, high buffer occupancy threshold
Kmax, and maximum probability Pmax.

In production datacenters, network operators usually make
two changes to simplify ECN/RED configuration [6, 35]. First,
they use instantaneous buffer occupancy rather than average
buffer occupancy to faster react to traffic bursts. Second, they
set both Kmin and Kmax to K. An arriving packet gets ECN
marked only when the instantaneous buffer occupancy is larger
than K. In this paper, we also adopt such simplified ECN/RED
scheme.

Obviously, the choice of marking threshold K greatly affects
network performance. Unlike Internet, the number of concur-
rent large flows is very low in datacenter environments (e.g.,
2 in the 75th percentile) [6]. Given such low degree statisti-
cal multiplexing, we consider an ideal model where several
synchronized long-lived flows with identical round-trip times
RTT share a bottleneck link with capacity C. As previous
works [6, 11, 35] have shown, to fully utilize link capacity
while delivering low latency, the ECN marking threshold K
should be set as follows:

K = C ×RTT × λ (1)

where λ is a parameter determined by congestion control algo-
rithms (e.g., λ = 1 for ECN∗ [35]2). In this paper, we call such
C×RTT ×λ as the standard marking threshold for ECN/RED.

Prior experience has shown that computing the standard
marking threshold in production datacenters is feasible [35].
This is because, unlike Internet, round-trip times in datacen-
ter networks are relatively stable and can be well estimated
through large-scale measurements [18, 35]. For example, in
a Microsoft production datacenter, the 23%, 74% and 90%
percentile inter-rack RTT are around 200us, 300us and 400us,
respectively [35]. Moreover, since operators have full control of
end-host network stacks, λ can be easily obtained. Hence, it is
fairly easy to compute such a static standard marking threshold
in production datacenters.

2.2 Packet Scheduling
Current commodity switches usually provide some fixed-

function packet scheduling algorithms (e.g., SP and DWRR)
across several queues (e.g., 4-8) per egress port. Packet sched-
ulers are used by operators to improve network performance.
Here, we give two examples.

• Inter-Service Traffic Isolation: Modern production data-
centers host a variety of services (applications) with diverse
network requirements. For example, a real-time online ser-
vice desires ultra-low latency for short messages while a

1We use buffer occupancy and queue length interchangeably
here.
2ECN∗ is regular ECN-enabled TCP which simply cuts the
window by half in the presence of an ECN mark.
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data backup service requires high throughput for large flows.
Current practice is to use queues to isolate traffic from dif-
ferent services [9, 11] and configure DWRR/WRR among
the queues. In this way, we can reserve a minimum guar-
antee bandwidth for each service and mitigate inter-service
network interference to some extent.

• Traffic Prioritization: A service may have a small amount
of important traffic, such as SDN control traffic, BGP control
traffic, RDMA Congestion Notification Packets (CNP) [37],
ACK packets [21], latency-sensitive query messages. The
completion times of this traffic greatly affect service op-
eration and user-perceived performance. Hence, network
operators usually reserve some (typically one) strict higher
priority queues to prioritize the delivery of such important
traffic [11]. The rest of queues in the lowest priority can still
be used for inter-service isolation.
Further, very recently, Sivaraman et al. [30] have proposed

a programmable packet scheduler allowing operators to imple-
ment custom scheduling algorithms for specific application-
level objectives. Mittal et al. [20] have shown that the classical
Least Slack Time First (LSTF) scheduling could be used to em-
ulate different scheduling algorithms in practice. Given above
efforts in programmable schedulers, we envision that more and
more scheduling algorithms will be used in the future.

2.3 Combining ECN & Packet Scheduling
In some production datacenters, ECN and packet scheduling

are used simultaneously, and operators usually configure them
in a hierarchical style: they employ various packet scheduling
algorithms among different queues while leveraging ECN to
achieve high throughput and low latency in the same queue.
Given that more and more packet scheduling algorithms will
be used in the future, it is important to find an ECN marking
scheme that can efficiently support any packet scheduler.

3. ECN/RED DEEP DIVE
In this section, we first present the ideal ECN/RED solution

for generic packet scheduling. Then, we show that current
practice is far from the ideal. Finally, we demonstrate that the
ideal ECN/RED for generic schedulers is intrinsically hard to
realize, motivating our design of TCN.

3.1 Ideal ECN/RED for Generic Schedulers
We consider a switch egress port with multiple queues. We

consider a per-queue ECN/RED marking model where each
queue only tracks its own buffer occupancy and performs ECN
marking independently to other queues. The ECN/RED mark-
ing threshold of queue i is denoted as Ki. Based on Equation 1,
Ki should be set as follows:

Ki = Ci ×RTT × λ (2)

where Ci is the capacity (effective instantaneous drain rate)
of queue i, which is determined by traffic demands and the
underlying packet scheduler. Thus, given a packet scheduler,
the per-queue marking threshold Ki should be dynamically
adjusted according to traffic dynamics.
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Figure 1: [Testbed] Aggregate goodputs achieved by per-
port ECN/RED. Note that service 1 always has 1 flow.

3.2 Current Practice
Today’s switching chips provide multiple ECN/RED config-

uration schemes, such as per-queue, per-port and per-service-
pool3 ECN/RED [11]. The key difference among them is
that they use buffer occupancies of different egress entities
when making marking decisions. However, all these ECN/RED
schemes are essentially static: operators can only configure
static per-queue/port/service-pool marking thresholds. Hence,
compared to the ideal ECN/RED solution that dynamically
adjusts the per-queue marking threshold, existing ECN/RED
implementation unavoidably introduces some performance im-
pairments. We use the following two examples to illustrate
them.

3.2.1 Per-queue ECN/RED
Network operators usually configure per-queue ECN/RED

for its ideal isolation among different queues [6, 19]. However,
how to set fixed per-queue marking threshold is a challenge.
Considering that the queue capacity Ci is always no larger than
the link capacityC, in current practice, many operators chose to
configure the standard marking thresholdC×RTT×λ for each
queue [11]. Such configuration can achieve high throughput
while strictly preserving any scheduling algorithm. However,
when many queues are busy simultaneously, Ci will be much
smaller than C. Under such circumstances, the standard mark-
ing thresholdC×RTT×λwill result in excess queue buildups,
thus degrading packet latency and burst tolerance.

Remark 1: Per-queue ECN/RED with the standard thresh-
old can seriously degrade packet latency and burst tolerance,
especially when many queues are busy simultaneously.

3.2.2 Per-port/service-pool ECN/RED
Though the per-queue capacity Ci is dynamically changing,

the aggregate capacity of all the queues belonging to a switch
port keeps the same. Hence, the reader may wonder whether
per-port ECN/RED can meet our requirements.

By setting the per-port marking threshold to the standard
threshold C ×RTT × λ, per-port ECN/RED can achieve high
throughput and low latency simultaneously. However, it fails
to preserve scheduling policies. A packet, which should not
be marked according to Equation 2, may get ECN marked due
3A service pool is a shared buffer region.
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to the buffer occupancies of the other queues belonging to the
same port. Such impact will become more serious if we enable
per-service-pool ECN/RED because queues from different ports
can interfere with each other.

To confirm such impairment, we conduct a simple testbed
experiment. We connect 3 servers to a Pica8 P-3295 GbE
switch. We enable DCTCP [6] on the servers. At the switch,
we configure per-port ECN/RED and DWRR with 2 equal-
quantum queues. We set the per-port marking threshold to
30KB as the DCTCP paper recommends [6]. We start several
TCP long-lived flows from two senders to the same receiver.
We classify flows into two services based on their senders. Both
services have their dedicated queues at the switch.

In this experiment, service 2 has a varying number of TCP
flows from 2 to 16 while service 1 always has 1 flow. Ideally,
based at the switch scheduling policy, two services should
always fairly share the link capacity equally. Figure 1 shows the
final goodput sharing results. The aggregate goodput of service
2 becomes higher and higher as we increase its number of flows.
For example, service 2 can achieve 670Mbps goodput with 8
flows and 782Mbps goodput with 16 flows. This suggests that,
under per-port ECN/RED, traffic from service 1 gets excess
ECN marked due to the impact of traffic from service 2, thus
violating the scheduling policy.

Remark 2: Per-port/service-pool ECN/RED can seriously vio-
late scheduling policies.

3.3 Fundamental Difficulty for Ideal ECN/
RED

Given existing ECN/RED configuration schemes do not sat-
isfy our requirements, we need to design a new AQM to enforce
the ideal ECN/RED solution (Equation 2). To perform the ideal
ECN/RED marking, the key is to find a general solution to esti-
mate the queue capacityCi for any packet scheduling algorithm
under traffic dynamics.

We observe that queue capacity is equal to actual queue de-
parture rate when the queue remains non-empty. Hence, when
a queue always has data in the buffer, we can use the queue de-
parture rate as the estimate for queue capacity. MQ-ECN [11]
leverages the special properties of round-robin schedulers (e.g.,
WRR and DWRR) to realize this. In round-robin schedulers,
a non-empty queue i can transmit quantumi worth of bits at
most in each round. Therefore, MQ-ECN uses quantumi over
the round time Tround4 to estimate the capacity of queue i.
Since MQ-ECN relies on the special properties of round-robin
schedulers, it does not generalize to other schedulers such as
WFQ and PIFO [30] that do not have the round concept. To
this end, we employ the departure rate measurement technique
in Algorithm 1. Note that this is the best solution we learned in
PIE [25].

Basically, we start a measurement cycle only when the queue
length is over a threshold, dq_thresh. This ensures there are
sufficient data in the buffer. Then, we use dq_count to track
the number of bytes departed in this measurement cycle. Once
dq_count crosses dq_thresh, we stop the current cycle and
obtain a sample dq_rate. Note that this method ensures that the

4Tround is the total time to serve all the queues once.

Parameter Description
dq_thresh queue length threshold
is_measure whether in a measurement cycle
dq_count number of bytes depart in the measurement
dq_start start time of measurement cycle
dq_pktsize size of current dequeue packet
dq_rate sample departure rate
avg_rate smoothed departure rate

Table 1: Parameters used in Algorithm 1

Algorithm 1 Departure rate (queue capacity) measurement:
Upon packet departure;
1. Decide to be in a measurement cycle:
if qlen ≥ dq_thresh and !is_measure then

dq_count = 0;
dq_start = now;
is_measure = true;

2. During the measurement cycle:
if is_measure then

dq_count = dq_count+ dq_pktsize;
if dq_count ≥ dq_thresh then

dq_rate = dq_count/(now − dq_start);
avg_rate = ε× avg_rate+ (1− ε)× dq_rate;
is_measure = false;

queue buffer is non-empty during the measurement cycle. After
that, we exponentially average dq_rate to calculate a smooth
departure rate, avg_rate, which is the estimate for the queue
capacity. Finally, we use avg_rate× RTT × λ (Equation 2)
to calculate the ECN marking threshold.

In the algorithm, the parameter dq_thresh is key, which
determines the measurement frequency. Conventional wisdom
recommends 10KB [25]. However, we find there is an intrinsic
tradeoff in the choice of dq_thresh. In datacenter environ-
ment with dynamic traffic, it is unlikely to choose a right value
for generic packet schedulers. A smaller dq_thresh value (re-
sults in too frequent measurement) can degrade measurement
accuracy; whereas a larger dq_thresh value (leads to insuf-
ficient measurement) cannot accurately capture the dynamic
changes of queue capacity. We believe this tradeoff applies to
any general departure rate estimation.

To demonstrate such a tradeoff, we conduct a simple ns-2 [4]
simulation. We simulate a 10Gbps topology with 11 servers
connected to a switch. The base RTT is 100us. We employ
ECN∗ [35] as the transport protocol. Hence, the standard thresh-
old is 125KB (100us × 10Gbps) in our setup. We configure
DWRR with two queues at the switch. Both queues have a
quantum of 18KB. We evaluate three ECN/RED schemes: the
ideal ECN/RED solution with dq_thresh of 40KB and 10KB
and MQ-ECN [11], the state-of-the-art dynamic ECN/RED
solution for round robin schedulers. We use 0.875 as the aver-
aging parameter. Among 11 servers, 10 act as the senders and
the rest one is the receiver. We first start 8 TCP flows from 8
senders, which are mapped to queue 1. At time 0.01s, we start
another 2 TCP flows from the rest 2 senders, which are mapped
to queue 2. Hence, the capacity of queue 1 should be decreased
to 5Gbps after 0.01s.
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Figure 2: [Simulation] The capacity of queue 1 estimated by different schemes. Note that rates in (a) and (b) are estimated
by Algorithm 1 with different dq_thresh values. In (c), MQ-ECN only works for round-robin schedulers, not others.

Figure 2 plots the capacity of queue 1 estimated by different
schemes. Note that we use the smoothed rates in the figures
to calculate ECN marking thresholds. We make the following
three key observations.
• First, with dq_thresh of 40KB, the ideal ECN/RED solu-

tion can only obtain 29 sample rates in 2ms period. Conse-
quently, it takes more than 2ms for the smoothed capacity
to converge to 5Gbps, which is too long for highly dynamic
datacenter workloads. Moreover, a large dq_thresh may
increase packet latency as the ECN marking scheme starts
to react only when it sees a large queue buildup.
• Second, with dq_thresh of 10KB (recommended by [25]),

the sample rates of the ideal ECN/RED solution drasti-
cally oscillate between 3.7Gbps and 10Gbps. This is be-
cause dq_thresh (10KB) is smaller than the queue quantum
(18KB), we obtain either a very high sample rate (10Gbps)
if the measurement cycle is inside the same round or a very
low sample rate (3.7Gbps) if the measurement cycle spans
across several rounds. Such highly oscillated samples not
only result in the oscillation of the smoothed rate, but also
lead to a wrong queue capacity estimate above 6Gbps, de-
viating from 5Gbps by over 20%. Thus, using it for ECN
marking threshold calculation will introduce excess latency.
• Third, MQ-ECN [11] can obtain a large number of accurate

samples by explicitly using the round time, Tround, as the
measurement window. Within Tround, all the queues exactly
get served once and queue i can transmit quantumi worth of
bits at most according to the scheduling policy. Hence, using
quantumi/Tround as the estimate, MQ-ECN’s smoothed
rate quickly converges to 5Gbps within 600us. Despite
its good performance, MQ-ECN can only handle round-
robin schedulers. In case of WFQ, SP or other advanced
programmable schedulers, there is no way to have such a
round, and MQ-ECN does not apply.

Due to the above tradeoff, network operators need to cautiously
tune a suitable rate measurement frequency. However, this
frequency is related to both underlying packet schedulers and
network traffic situations, instead of a static universal value.
Such effort is a huge burden for network operators, which
is almost impossible to achieve in practice, even for a given
scheduler, e.g., WFQ, under highly dynamic traffic.

Remark 3: Network operators need to cautiously tune the rate
measurement frequency for the ideal ECN/RED solution. This
greatly increases their burden and is hard to accomplish.

4. TCN
The goal of TCN is to enable ECN over generic packet

schedulers, while maintaining good network performance. The
main problem with ECN/RED, as introduced above, is that its
use of queue-length as the congestion signal is conflated with
the queue capacity, which is very hard to measure in highly
dynamic datacenter networks. Motivated by this, TCN exploits
packet sojourn-time, instead of queue-length, as the congestion
signal. By using the sojourn time as the congestion signal, the
marking threshold of TCN is independent of the changing queue
capacities, making it suitable for arbitrary packet schedulers.

4.1 Mechanism
We use Qi to denote the length of queue i. According to the

ideal ECN/RED solution (Equation 2), the switch should mark
arriving packets when Qi is larger than Ci ×RTT × λ. Thus,
an arriving packet should get ECN marked when Qi

Ci
is larger

than RTT × λ.
Qi

Ci
is exactly the sojourn time (the amount of time a packet

spends in the switch queue) for packets in queue i. We consider
that a packet pkt enqueued to queue i sees Qi worth of bits
behind it. Before pkt is transmitted, queue i keeps non-empty.
Hence, Ci is equal to the departure rate during this period.
Therefore, pkt spends Qi

Ci
time in queue i.

Inspired by above analysis, TCN employs sojourn time as
the congestion signal. Sojourn time can be directly measured
in today’s switching chips (more details in §4.2). A departing
packet gets ECN marked when its sojourn time is larger than
the threshold T . Obviously, T can be given as:

T = RTT × λ (3)

In this paper, we call RTT × λ as the standard marking thresh-
old for TCN. Compared to previous ECN/RED solution, TCN
mainly has the following three benefits.

Maintain good network performance: TCN starts to notify
the sources of congestion when sojourn times of packets exceed
RTT ×λ. The choice of RTT ×λ ensures that TCN can fully
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utilize link capacity while delivering low latency. By contrast,
per-queue ECN/RED with standard threshold suffers from poor
packet latency and burst tolerance (Remark 1).

Support arbitrary schedulers: TCN employs the same so-
journ time marking threshold for all the queues. Sojourn time
directly reflects congestion states regardless of traffic demands
and packet schedulers. Hence, TCN allows any scheduling pol-
icy. By contrast, MQ-ECN [11] can only handle round-robin
schedulers while per-port ECN/RED can violate scheduling
policies (Remark 2)

Easy to configure: To enable TCN, network operators only
need to configure a static sojourn time threshold: RTT ×λ. As
§2.1 has shown, RTT and λ can be well estimated and easily
known in production datacenters. Hence, it is easy for operators
to configure TCN. By contrast, it is hard, almost impossible,
for operators to choose a proper measurement frequency for
the ideal ECN/RED solution for generic schedulers and various
traffic patterns (Remark 3).

4.2 Hardware Implementation Feasibility
TCN is simple and inexpensive to implement in hardware.

In this section, we briefly analyze the feasibility of TCN and
present a few observations; we leave a prototype implementa-
tion of a TCN-capable hardware as future work. We implement
a software TCN prototype in §5, and believe realizing TCN
on a switch equipped with programmable data plane technolo-
gies [12, 13] is relatively simple and cheap.

Calculating packet sojourn time: To track the packet-level
sojourn time, the switching chip simply needs to attach one
more metadata to each packet at the enqueue time: enqueue-
time timestamp. Because draining a smallest (64B) frame
takes around 13ns at 40Gbps or 5ns at 100Gbps, and a typical
RTT in a datacenter is at most a few hundred us, a 2B-long
timestamp with a resolution of 4 or 8ns would be sufficient
(4ns ∗ 216 ≈ 262us, 8ns ∗ 216 ≈ 524us). When the packet is
drained from the queue, the scheduler or the egress pipeline
logic can simply take the current timestamp (i.e., the dequeue-
time timestamp) from the chip-local clock and perform an
integer subtraction operation (e.g., an unsigned subtraction
with two 17b or 18b operands to cope with the case when a
timestamp value wraps). Performing such an operation is trivial
in hardware. The overhead of attaching a 2B-long metadata to
every buffered packet introduces only a marginal complexity for
two reasons. First, 2B is already a tiny fraction of an average
packet size. Second, today’s switching chips already attach
some tens to a lower hundred bytes of metadata to each packet
for statistics monitoring, forwarding, hints for scheduling, (e.g.,
broadcast domain ID, VRF ID). Note that the latest P4 behavior
model has already exposed the sojourn time as the metadata [3].

Making marking decision: TCN makes marking decisions
in a completely stateless fashion. The switching chip simply
needs to compare the sojourn time (a local variable) with a
static threshold (a constant) to make the marking decision for a
packet. Hence, the chip does not need to keep any state across
packets or queues. This is in contrast to CoDel [23], which
requires four state variables per queue and modifies these states
in a sophisticated fashion (described below §4.3).

Marking, as opposed to dropping: To obtain the sojourn
time, TCN needs to be implemented on the dequeue side of
a switching chip. Since TCN only marks packets instead of
dropping packets, it does not cause any bubble (i.e., idle time)
on the output link, which otherwise, can seriously reduce the
effective throughput. By contrast, CoDel [23] requires a special
speed-up or prefetching logic on the dequeue side to avoid in-
troducing bubbles when it drops packets that are just dequeued.
This speed-up logic is particularly complicated and expensive
to build in high-speed switching silicon, which must ensure
a full line rate (a few Tbps today) under any circumstances,
irrespective of dropping dequeued packets or not.

4.3 Deeper Understanding of TCN
TCN vs CoDel [23]: TCN draws inspiration from CoDel [23],
an AQM solution to address the bufferbloat problem on In-
ternet. Similar to TCN, CoDel also uses sojourn time as the
congestion signal. However, CoDel tracks the minimum sojourn
time in a varying time window interval to identify persistent
packet delay (or bad queues). If the minimum sojourn time of
recent interval is larger than a threshold, a packet gets dropped
(or ECN marked) at dequeue. Despite its potential in theory,
CoDel is expensive and complex to implement in hardware as
introduced in §4.2 and [25, 29].

Unlike CoDel, TCN marks packets simply based on the
instantaneous sojourn time of each departing packet. It is
important to note that such simplicity of TCN is mainly driven
by the homogeneous network environments of datacenters. In
datacenters, round-trip times do not change drastically and the
statistical multiplexing degree of large flows is known to be
very low (§2.1). Further, we have full control of end hosts.
Thus, it is feasible to compute a static threshold RTT × λ in
datacenters for instantly identifying potential excess delay and
marking packets in a completely stateless fashion.

By contrast, on Internet, it is hard to figure out such a
RTT × λ due to the significant variations of round-trip times
and unknown statistical multiplexing degree. As a result, CoDel
needs to conservatively identify the persistent delay by using
the minimum sojourn time over a time interval against an em-
pirical threshold.

Compared to CoDel, TCN has following two advantages:
• Cheaper to implement in hardware: TCN is stateless as

it does not modify state in the data plane. Therefore, we
expect TCN is easier to implement in hardware. By contrast,
CoDel creates and modifies states in a sophisticated fashion,
which increases hardware implementation complexity. For
example, Sivaraman et al. [29] found that CoDel could not
be implemented on their targets as it required a complex
square root operation to update time window. Moreover,
due to lack of control of end hosts, CoDel should support
dequeue dropping for non-ECT (ECN-Capable Transport)
Internet traffic, which is also expensive to implement in
hardware [25].
• Faster reaction to bursty traffic: TCN delivers faster con-

gestion notification since it makes marking decisions in-
stantly rather than after a time window. So TCN can better
handle bursty datacenter traffic (e.g., incast [33, 34]). Our
evaluation results (§6.1) confirm this.
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Figure 3: [Simulation] Switch buffer occupancies achieved by enqueue ECN/RED, dequeue ECN/RED and TCN.

TCN vs dequeue ECN/RED marking: Wu et al. [35] have
proposed dequeue ECN/RED marking. When a packet is de-
queued, it compares current queue length against the mark-
ing threshold to make the marking decision. Since dequeue
ECN/RED is still based on queue length, it has all the draw-
backs discussed in §3. However, compared to traditional en-
queue ECN/RED marking, dequeue ECN/RED marking can
deliver the congestion information earlier when queues are
building up, thus providing better burst tolerance.

Similar to dequeue ECN/RED marking, TCN also marks
packets at dequeue side as it relies on the sojourn time. Hence,
the reader may wonder whether TCN can also accelerate the de-
livery of congestion information like dequeue ECN/RED. Our
answer is no. This is because TCN leverages congestion states
of current dequeued packets to make marking decisions, while
dequeue ECN/RED indeed uses congestion states of future de-
queued packets. Hence, when the switch buffer occupancy
keeps increasing, dequeue ECN/RED marking reacts earlier
than TCN as it predicts that future dequeued packets will expe-
rience congestion.

To confirm this, we simulate a 10Gbps network with 9 servers
connected to a switch using ns-2 [4]. The base RTT is 100us.
We employ ECN∗ [35] (regular ECN-enabled TCP) as the trans-
port protocol. We start 8 synchronized long-lived TCP flows
from 8 senders to the same receiver. All the flows are classified
to the same switch queue. We evaluate three ECN marking
schemes: dequeue ECN/RED, enqueue ECN/RED and TCN.
The marking thresholds for both ECN/RED schemes are 125KB
(100us × 10Gbps) in our setup. The marking threshold for
TCN is 100us.

Figure 3 shows the switch buffer occupancies versus time
achieved by the three schemes. At the beginning, there is a
peak buffer occupancy. This is because TCP window grows ex-
ponentially during the slow start phase before ECN takes effect.
The peak value is around 375KB (3× Bandwidth Delay Prod-
uct (BDP)) for both TCN and enqueue ECN/RED. In theory,
enqueue ECN/RED and TCN should make the same marking
decisions in this simulation. This is because when the queue
capacity is fixed, we can directly convert a buffer occupancy to
a corresponding sojourn time. By contrast, dequeue ECN/RED
achieves a smaller peak value, which is around 250KB (2×
BDP). This is because dequeue ECN/RED reacts earlier than
the other two schemes, thus reducing peak buffer occupancy.

After getting ECN marked, TCP flows enter congestion avoid-
ance phase. Therefore, all the three marking schemes deliver
very similar buffer occupancy variations from 0 to 125KB after
the peak.

RED-like, probabilistic TCN marking: Raw ECN/RED has
two marking thresholds and a maximum probability to perform
a probabilistic marking (§2.1). In the previous analysis, TCN
assumes only one marking threshold by using the same value
for both thresholds. However, some ECN-based transports, like
DCQCN [37], do require RED-like probabilistic marking to
alleviate the unfairness problem.

TCN can be easily extended to perform such probabilistic
marking. Similar to RED, TCN can also have two sojourn time
thresholds Tmin, Tmax and a maximum marking probability
Pmax. If the sojourn time is < Tmin, the packet does not
get ECN marked. If the sojourn time is > Tmax, the packet
gets ECN marked. Otherwise, the packet is marked with a
probability in the range of (0, Pmax).

Discussion: We note that delay-based transports [14, 31] have
long been studied in Internet. But they are not widely used
in datacenters because in-network delays are comparable to
sources of noise in the system. Recently, TIMELY [21] lever-
ages special NIC hardware functions (e.g., high-quality times-
tamping, hardware-generated ACKs, etc.) to better measure
in-network delays in datacenters and uses delay gradients for
congestion control. Compared to TIMELY, TCN is actually a
sojourn-time based AQM to enable ECN at each hop. One goal
of TCN is to make ECN-based transports, like DCTCP [6] or
DCQCN [37] that are already adopted in production datacen-
ters, work under multi-queue scenarios. It would be interesting
to compare the performance of TCN-empowered DCQCN with
TIMELY under multi-queue scenarios, which is part of our
future work.

5. SOFTWARE PROTOTYPE
We use a server with multiple Gigabit Network Interface

Cards (NICs) to emulate the switch. As a software prototype,
we implement TCN, CoDel, MQ-ECN and per-queue/port
ECN/RED and in a Linux queueing discipline (qdisc) kernel
module running at the server-emulated switch. Consequently,
packets are completely processed in kernel space without intro-
ducing data copy or context switch overhead between user and
kernel space.
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In summary, our qdisc kernel module has five components:
packet classifier, enqueue ECN marking, packet scheduler, rate
limiter and dequeue ECN marking (based on packet processing
order). We now describe them in detail.

Packet Classifier: The qdisc kernel module maintains mul-
tiple FIFO transmission queues for each NIC. When the kernel
module receives a packet from IP layer, it classifies the packet
based on the Differentiated Services Code Point (DSCP) field.
Then this packet is enqueued to the corresponding queue.

Enqueue ECN Marking: Upon an arrival packet is enqueued,
we start to perform enqueue ECN marking. Per-queue/port
ECN/RED directly compare buffer occupancy against the static
threshold to make the marking decision. MQ-ECN needs to
calculate the dynamic threshold of the corresponding queue and
then make the marking decision. By contrast, TCN and CoDel
use tstamp field of sk_buff to record enqueue timestamp
here, leaving the marking decision on the dequeue side.

Packet Schedulers: We implement 4 common packet schedul-
ing algorithms: WFQ, DWRR, SP/WFQ, and SP/DWRR.
• WFQ: To implement WFQ, we maintain a virtual time for

the head packet of each queue. The WFQ scheduler chooses
the head packet with the smallest virtual time to transmit.
• DWRR: The DWRR scheduler maintains a linked list to

store all the active queues. When a packet arrives at an
empty queue, this queue is inserted into the tail of the linked
list. The DWRR scheduler always serves the head queue
of the linked list. If a queue just finishes its service but
still has packets, it is attached to the tail of the linked list
again. Furthermore, to implement MQ-ECN, we maintain a
timestamp for each queue to track round time.
• SP/WFQ and SP/DWRR: Both schedulers reserve several

strict higher priority queues while leaving all the WFQ/DWRR
queues on the lowest priority. They schedule packets as fol-
lows: they first try to schedule packets from strict higher
priority queues based on priorities; only when all the higher
priority queues are empty, they start to schedule packets on
the lowest priority according to WFQ/DWRR.

Rate Limiter: A packet dequeued by qdisc will further go
through NIC driver and NIC hardware before it is pushed to
the wire. If we dequeue packets from qdisc without any
rate control, many packets can still get queued on NIC driver
TX ring buffer and NIC hardware. Consequently, the buffer
occupancy monitored by qdisc can be much smaller than
the real value of a switch port, thus degrading the accuracy of
ECN marking and packet drop decisions. Such issue was also
identified by many previous works [11, 36].

To address above issue, we use a Token-Bucket rate limiter
to shape outgoing traffic from qdisc at 99.5% of the NIC
capacity (995Mbps). To minimize traffic burstiness, we use a
small bucket size of ∼1.67MTU (2.5KB) which can achieve
99% link utilization. In this way, we can minimize undesirable
buffering in other places and make the buffer occupancy of
qdisc better reflect the real buffer occupancy of a switch port.

Dequeue ECN Marking: Eventually, TCN and CoDel mark
dequeued packets when they are about to be delivered to NIC
driver. Both schemes uses current system time minus the en-
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Figure 4: Traffic distributions for evaluation.

queued timestamp to obtain the sojourn time and makes the
marking decision. Our CoDel implementation closely tracks
the Linux source code.

6. EVALUATION
In this section, we use a combination of testbed experiments

and ns-2 simulations to answer the following three questions:
• How does TCN perform in practice? In the static flow

experiment (§6.1.1), we find that TCN can achieve high
throughput and low latency while strictly preserving the
scheduling policies. With realistic workloads (§6.1.2 and
§6.1.3), we find that TCN can maintain its good perfor-
mance with various scheduling policies (including WFQ
and SP/WFQ that MQ-ECN cannot support). For example,
compared to per-queue ECN with standard threshold, TCN
(with SP/DWRR) reduces the average and 99th percentile
completion times for small flows by up to 82.8% and 95.3%,
respectively. Compared to CoDel, TCN (with SP/WFQ)
achieves up to 84% lower 99th percentile completion time
for small flows.
• Does TCN perform well in large datacenters? In large-

scale ns-2 simulations (§6.2.1), we find that TCN gener-
ally achieves the best performance in large multi-switch
topologies. For example, compared to per-queue ECN with
standard threshold, TCN achieves up to 94.3% lower 99th
percentile completion time for small flows.
• How robust is TCN to network settings? Using a series

of targeted simulations, we show that TCN is robust to
transport protocol and the number of queues (§6.2.2) .

Schemes compared: We mainly evaluate the performance of
four ECN solutions: TCN, CoDel [23], MQ-ECN [11] and
per-queue ECN/RED with standard threshold (current practice
§3.2). In the simple static flow experiment (§6.1.1), we also
consider the ideal ECN/RED solution (Equation 2) by assuming
the prior knowledge of queue capacities. We exclude per-port
ECN/RED as it can violate scheduling policies.

Among above solutions, MQ-ECN and per-queue ECN/RED
with standard threshold are queue-length based solutions. In-
stead using the static standard threshold, MQ-ECN dynamically
adjusts the queue-length threshold based on the estimated queue
capacity. For MQ-ECN, we set β to 0.75 and Tidle to the trans-
mission time of a MTU as the paper [11] suggests. Note that
MQ-ECN can only support pure round-robin schedulers.

CoDel and TCN are sojourn-time based solutions and mark
packets on the dequeue side. To achieve a fair comparison, we
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Figure 5: [Testbed] (a) Aggregate goodputs of three queues
achieved by TCN. (b) RTT distributions of queue 3.

configure CoDel to only mark packets (rather than drop) in our
evaluation.
Benchmark traffic: We use four traffic distributions based on
measurement from production datacenters (Figure 4): a web
search workload [6], a data mining workload [17], a Hadoop
workload [27] and a cache workload [27]. In general, all the
workloads are heavy-tailed. Among them, the web search work-
load is less skewed: ∼60% of its all bytes are from flows
smaller than 10MB. Hence, the web search workload is more
difficult to handle as it is likely that multiple flows are concur-
rently active on the same link. Therefore, we focus on the more
challenging web search workload in testbed experiments while
using all the four in large-scale simulations.
Performance metric: We use flow completion time (FCT) as
the performance metric. We consider average FCT across all
flows, small flows and large flows. To evaluate tail latency, we
also give the 99th percentile FCT of small flows. For clear com-
parison, we normalize final FCT results to the values achieved
by TCN.

6.1 Testbed Experiments
Testbed setup: We built a small-scale testbed that consists of
9 servers connected to a 9-port server-emulated switch. Each
server is a Dell PowerEdge R320 with a 4-core Intel E5-1410
2.8GHz CPU, 8G memory, a 500GB hard disk. All the servers
run Linux kernel 3.18.11. We enable DCTCP as the transport
protocol and set TCP RTOmin to 10ms as many proposals
suggest [6, 33]. The server-emulated switch has 10 Broad-
com BCM5719 NetXtreme Gigabit NICs in total where one
is reserved for control access. To better emulate real switches,
we disable NIC offloading techniques at the switch to avoid
large segments. Each switch port has a 96KB buffer which is
completely shared by all the queues in a first-in-first-serve
basis. Given the base RTT is around 250us, the standard
ECN marking threshold is 32KB for ECN/RED and 256us
for TCN. For Codel, we experimentally determine its best
setting (target = 51.2us, interval = 1024us) since the rec-
ommendation setting (5ms and 100ms) in [23] is for Internet.

6.1.1 Static Flow Experiment
We begin with a simple experiment to show that TCN can

achieve good network performance while preserving the schedul-
ing policies. At the switch, we configure SP/WFQ with three

queues: queue 1 has a strict higher priority while queue 2 and 3
have equal weights in the lowest priority. We use three servers
as the sender and one as the receiver. We first start a 500Mbps
TCP flow from sender 1, then start a TCP flow from sender 2,
and finally, start 4 TCP flows from sender 3. The packets from
sender 1, 2 and 3 are classified to queue 1, 2 and 3, respectively.
Based on the SP/WFQ scheduling policies, the final aggregate
throughput of queue 1, 2 and 3 should be 500Mbps, 250Mbps,
and 250Mbps, respectively.

Figure 5(a) gives per-queue aggregate goodputs versus time
achieved by TCN. During the experiment, queue 1 maintains its
∼470Mbps goodput (goodput is slightly smaller than through-
put due to the IP/TCP header overhead), matching its strict
higher priority at the switch. When queue 3 becomes active,
queue 2 and queue 3 fairly share the remaining capacity re-
gardless of the numbers of flows. We also use ns-2 simula-
tion to reproduce above experiment and find that TCN can
achieve similar convergence time as per-queue ECN with stan-
dard threshold. This suggests that TCN can strictly preserve
the scheduling policies (a combination of WFQ and SP) while
achieving high throughput.

We also measure RTT of queue 3 using ping packets. Fig-
ure 5(b) gives RTT distributions achieved by TCN, per-queue
ECN with standard threshold, the ideal ECN/RED (equation 2)
and CoDel. Note that for the ideal ECN/RED, the mark-
ing thresholds of queue 2 and 3 are both 8KB (250Mbps ÷
1000Mbps × 32KB). TCN provides similar latency as the
ideal ECN/RED and CoDel while significantly outperforming
per-queue ECN/RED with standard threshold. Compared to
per-queue ECN/RED with standard threshold, TCN achieves
61.7% (1084us to 415us) and 58.4% (1400us to 582us) lower
RTT in average and the 99th percentile. If we exclude the
base RTT (250us), TCN indeed achieves more than 4× im-
provement in queueing delay. This suggests that TCN can also
deliver low latency.

6.1.2 Inter-Service Traffic Isolation
In this experiment, we develop a client/server application to

generate realistic traffic according to the web search workload
(Figure 4) and measure the FCT on the application layer. The
client application, running on 1 server, initially opens 5 per-
sistent TCP connections to each of the rest 8 servers. During
the experiment, the client application generates requests based
on a Poisson process through available connections (or create
new connections if no available connection) to the other servers
to fetch data. The server applications, running on the rest 8
servers, respond with requested data. Hence, a TCP connection
can carry multiple flows (messages). At the switch, we config-
ure DWRR and WFQ with 4 equal weight/quantum (1.5KB)
queues. To emulate inter-service traffic isolation, the server ap-
plication uses setsockopt to set DSCP values for outgoing
traffic, thus mapping different flows to different queues. Note
that a flow is randomly mapped to one of the 4 service queues.
We vary the network load from 10% to 90% and run 5000 flows
for each setting.

Figure 6 and 7 show the FCT results across all flows (a),
small flows (0,100KB] (b,c), and large flows (10MB,∞) (d)
respectively. We omit the results for medium flows due to space
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Figure 6: [Testbed] Inter-service traffic isolation with DWRR (4 queues) and DCTCP: FCT statistics.
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Figure 7: [Testbed] Inter-service traffic isolation with WFQ (4 queues) and DCTCP: FCT statistics.

limitation. Note that we exclude MQ-ECN from Figure 7 as
it does not support WFQ. Based on the results, we make the
following three observations:

Overall: Generally, all the schemes achieve similar overall
average FCTs. This is expected. In a long-tailed traffic dis-
tribution, the majority of bytes are from a small number of
throughput-sensitive large flows. Therefore, the overall average
FCT is mainly determined by throughput. Since all the schemes
can fully the link capacity, they achieve similar overall average
FCT results.

Despite this, we observe that TCN, CoDel and MQ-ECN (for
DWRR only) slightly outperform per-queue ECN with standard
threshold at high loads (≥ 70%). For example, compared to per-
queue ECN with standard threshold, TCN reduces the overall
average FCT by up to 2.5% and 2.7% for DWRR and WFQ,
respectively. This is because, when networks run at high loads,
per-queue ECN with standard threshold suffers from frequent
packet drops and TCP timeouts as multiple queues are likely to
be active simultaneously. By contrast, TCN can still keep low
buffer occupancies to minimize such impact.

Small flows: For small flows, TCN performs similarly as MQ-
ECN for DWRR while maintaining good performance for WFQ.
Compared to per-queue ECN with standard threshold, the aver-
age FCT for the small flows with TCN is up to 61.4% (9679us
to 3733us) lower for DWRR and 61.1% (9529us to 3711us)
lower for WFQ. As expected, TCN achieves larger performance
improvement at the 99th percentile: up to 73.3% (DWRR)
and 79.3% (WFQ) lower 99th percentile FCT compared to
per-queue ECN with standard threshold. Compared to CoDel,
TCN achieves up to 71.2% (11370us to 3273us) and 71.4%
(12323us to 3525us) lower 99th percentile FCT for DWRR
and WFQ, respectively. The reason is that CoDel introduces

many packet drops and TCP timeouts (≥10ms) as it cannot
quickly react to bursty traffic. All above suggest that TCN can
provide low latency and good burst tolerance, thus minimizing
the FCT for small flows.

Large flows: TCN also maintains good performance for large
flows. Compared to per-queue ECN with standard threshold,
the average FCT for large flows with TCN is within 2.8%
for DWRR and 2.6% for WFQ. This shows that TCN can
achieve high throughput in highly dynamic workloads by using
RTT × λ as the sojourn time marking threshold.

6.1.3 Traffic Prioritization
In this experiment, we use the same setting as §6.1.2 except

for two changes. First, at the switch, we configure SP/DWRR
and SP/WFQ by adding a new strict higher priority queue to pri-
oritize the delivery of latency-sensitive small flows. Second, at
end host, we install a Linux Netfilter kernel module to per-
form a two-priority PIAS [10] flow scheduling. For each flow
(message), the first 100K bytes are classified into the shared
strict higher priority queue while the rest bytes are classified
into their dedicated service queues in the low priority5. In this
way, small flows are prioritized over large flows in general.

Figure 8 and 9 show the FCT results with SP/DWRR and
SP/WFQ. Here we exclude MQ-ECN [11] as it does not support
SP in general. Again, we breakdown FCT across different flow
sizes, and make the following two observations:

Overall and large flows: In general, TCN and CoDel achieve

5Our kernel module can identify flow (message) boundaries
over a persistent connection by tracking tcp_sendmsg called
times. When the time gap between two consecutive calls over
the same connection is larger than a threshold (500us in our
experiments) and TCP send buffer is empty, we regard this as
the beginning of a new flow.
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Figure 8: [Testbed] Traffic prioritization with SP (1 queue) / DWRR (4 queues) and DCTCP: FCT statistics.
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Figure 9: [Testbed] Traffic prioritization with SP (1 queue) / WFQ (4 queues) and DCTCP: FCT statistics.

similar performance as per-queue ECN with standard threshold
while slightly outperforming it at high loads. TCN achieves
up to 3.7% and 3% lower overall average FCT, for SP/DWRR
and SP/WFQ, respectively. This is mainly because TCN can
greatly reduce packet drops and TCP timeouts at high loads by
maintaining low buffer occupancies.

TCN also maintains good performance for large flows. Com-
pared to per-queue ECN with standard threshold, TCN’s per-
formance is within 2.1% for SP/DWRR and within 1.9% for
SP/WFQ. This suggests that TCN can efficiently utilize the
link capacity in highly dynamic datacenter workloads.

Small flows: Compared to the previous service isolation exper-
iment (§6.1.2), all ECN marking schemes indeed achieve much
lower FCT for small flows since small flows are all finished in
the high priority queue6. For example, at 90% load, TCN with
PIAS (SP/DWRR) achieves 71.3% (3733us to 1073us) lower
average FCT for small flows compared to TCN without PIAS.

Even with flow scheduling, TCN still significantly outper-
forms per-queue ECN with standard threshold and CoDel. For
example, TCN (SP/DWRR) reduces the FCT for small flows
by up to 82.8% (6222us to 1073us) and 95.3% (82658us to
3860us) in average and the 99th percentile, respectively. Given
all small flows are finished in the high priority queue, why can
TCN still gain such a large performance improvement? This is
because packets in the high priority queue can still get dropped
under the buffer pressure from other low priority queues ac-
cording to shared buffer policy. TCN can greatly mitigate this
impact by maintaining low buffer occupancies. By contrast,
per-queue ECN with standard threshold causes frequent packet
drops and TCP timeouts (≥10ms) at high loads, leading the tail
FCT to as high as tens of milliseconds. Compared to CoDel,

6Due to space limitation, we omit raw FCT results here.

TCN (SP/WFQ) achieves up to 84% lower 99th percentile FCT
for small flows. This further confirms that TCN can quickly
react to traffic burstiness with instantaneous marking.

6.2 Large-Scale NS-2 Simulations
In this section, we use ns-2 [4] simulator to evaluate the

performance of TCN in large-scale multi-hop datacenter net-
works. Similar to the testbed experiments, we have evaluated
both inter-service traffic isolation and traffic prioritization in
simulations. In the interest of space, we only show results for
the more complex case of traffic prioritization here.

Topology: We simulate a 144-host leaf-spine topology with
12 leaf (ToR) switches and 12 spine (Core) switches. Each
leaf switch has 12 10Gbps links to hosts and 12 10Gbps links
to spines, forming a non-blocking fabric. We employ ECMP
for load balancing. The base RTT across the spine (4 hops) is
85.2us which 80us is spent at end hosts.

Transport: We use DCTCP [6] by default. The initial window
is 16 packets. We set both minimum value and the initial value
of TCP RTO to 5ms. Note that initial TCP RTO is 3 seconds
by default which is too large for datacenter networks.

Switch: Each switch port has a 300KB buffer which is com-
pletely shared by 8 queues in a first-in-first-serve basis. The
standard marking threshold is 65 packets for ECN/RED and
78us for TCN. We configure SP/WFQ and SP/DWRR where
one queue has a strict higher priority over the rest 7 equal
weight/quantum (1.5KB) WFQ/DWRR queues.

Workloads: Since we have 144 hosts, there are 144×143 com-
munication pairs in total. We evenly classify these pairs into
7 services. Different services use different traffic distributions
in Figure 4. Each service has its own dedicated service queue
while sharing the same high priority queue at the switch. Same
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Figure 10: [Simulation] Traffic prioritization with SP (1 queue) / DWRR (7 queues) and DCTCP: FCT statistics.
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Figure 11: [Simulation] Traffic prioritization with SP (1 queue) / WFQ (7 queues) and DCTCP: FCT statistics.

as §6.1.3, we perform a two-priority PIAS [10] flow schedul-
ing. The first 100K bytes of a flow are classified to the shared
high priority queue while the rest bytes are classified to their
dedicated service queues in the low priority. All simulations
last for 50000 flows.

6.2.1 Overall Performance
Figure 10 and 11 show the FCT results across different flow

sizes. We make the following two observations.

Overall and large flows: TCN slightly outperforms per-queue
ECN with standard threshold across all flows in all scenarios.
It achieves ∼0.72-1.38% and ∼0.61-1.62% lower overall av-
erage FCT for SP/DWRR and SP/WFQ, respectively. TCN
also achieves very good performance for large flows. TCN’s
performance is within 1.2% of per-queue ECN with standard
threshold for SP/DWRR and within 1.37% for SP/WFQ. This
suggests that TCN can achieve high throughput in large-scale
multi-hop datacenter networks.

Small flows: Compared to per-queue ECN with standard thresh-
old, the average FCT for the small flows with TCN is up to
38.2% lower for SP/DWRR and up to 38.8% lower for SP/WFQ.
As expected, TCN achieves larger improvements at the 99th
percentile: it reduces the 99th percentile FCT by up to 94.3%
for both schedulers. With PIAS, the performance for small
flows is mainly determined by the burst tolerance of the ECN
marking scheme. For example, at 90% load, per-queue ECN
with standard threshold (with SP/DWRR) causes 589 TCP time-
outs for small flows, resulting in a very large 99th percentile
FCT (5390us). This indicates that more than 1% small flows
experience at least one TCP timeout. By contrast, TCN only ex-
periences 46 TCP timeouts for small flows in the same scenario,
thus achieving a very small 99th percentile FCT (357us).

6.2.2 TCN Deep Dive
In this section, we evaluate TCN’s robustness to network

settings through a series of targeted simulations.

Impact of transport protocol: In addition to DCTCP [6],
there are many other ECN-based transport protocols, such as
DCQCN [37] and ECN∗ [35]. Among them, ECN∗ may be the
most challenging one as it simply cuts window by half in the
presence of ECN without any smoothing. Consequently, ECN∗

is more sensitive to premature ECN markings than DCTCP. A
lower ECN marking threshold can severely degrade the through-
put of ECN∗. For example, with zero buffering, DCTCP can
still maintain 94% throughput in theory while ECN∗ can only
deliver 75% throughput [7].

We run simulations using ECN∗ instead of DCTCP. We
set the standard ECN marking threshold to 84 packets for
ECN/RED and 101us for TCN. Figure 12 gives the FCT with
ECN∗. We find that, compared to per-queue ECN with stan-
dard threshold, TCN achieves similar performance for large
flows while showing large improvements for small flows. Even
with very challenging ECN∗, TCN’s performance is still within
1.8% of per-queue ECN with standard threshold for large flows.
This indicates that TCN is robust to transport protocol.

Impact of the number of queues: In the future, switching
chips may provide more and more queues. To evaluate TCN’s
robustness to the number of queues, we increase the number of
switch queues to 32 which 31 queues with equal quantum run
in the low priority. To create more challenges, we still employ
ECN∗ as the transport protocol.

Figure 13 gives the FCT results with 32 queues and ECN∗. In
general, TCN still outperforms per-queue ECN with standard
threshold. By comparing Figure 13 and 12, we observe that
TCN shows larger performance improvements over per-queue
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Figure 12: [Simulation] Traffic prioritization with SP (1 queue) / DWRR (7 queues) and ECN∗: FCT statistics.
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Figure 13: [Simulation] Traffic prioritization with SP (1 queue) / DWRR (31 queues) and ECN∗: FCT statistics.

ECN with standard threshold for small flows with 32 queues.
For example, at 90% load, TCN shows 38.7% and 47.8% lower
average FCT for small flows with 8 queues and 32 queues,
respectively. This is because per-queue ECN with standard
threshold causes more packet drops and TCP timeouts with
more queues. At 90% load, per-queue ECN with standard
threshold causes 2469 and 4478 TCP timeouts with 8 queues
and 32 queues, respectively. By contrast, TCN does not have
such performance degradation. This suggests that TCN is
robust to the number of queues.

7. RELATED WORK
Generally, ECN-related works in datacenters are vast [6,

11, 26, 32, 35, 37]. But the closest related one to TCN is
MQ-ECN [11], which also tries to enable ECN for multiple
queues. However, MQ-ECN only works for round-robin sched-
ulers, whereas TCN enables ECN for arbitrary packet sched-
ulers. More fundamentally, MQ-ECN is still designed along
the line of ECN/RED principle that uses queue-length as con-
gestion signal, thus sharing all the problems we discussed in §3.
By contrast, TCN completely dismisses queue-length based
ECN/RED after identifying its limitations, and instead uses
packet sojourn-time as congestion signal to activate ECN.

CoDel [23] is the state-of-the-art sojourn-time based AQM
for Internet. Compared to CoDel, TCN can better handle bursty
datacenter workloads and be easier to implement in hardware
due to its stateless fashion.

Recently, Mittal et al. [20] have proposed an edge-based
AQM solution, in which they use one-way cumulative queuing
delay as the congestion signal and only mark ECN at the net-
work edge. In comparison, TCN relies on packet sojourn time
at each hop.

8. CONCLUSION
With the goal of supporting ECN over generic packet sched-

ulers, this paper has delivered two points: 1) queue-length based
ECN/RED is fundamentally hard to achieve it; 2) sojourn-time
based TCN is a simple yet elegant solution to it. We have
spent extensive experimental efforts demonstrating not only the
validity of TCN, but also the invalidity of ECN/RED.
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