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Abstract—Low latency stream processing on large clusters consisting of hundreds to thousands of servers is an increasingly
important challenge. A crucial barrier to tackling this challenge is stragglers, i.e., tasks that are significantly straggling behind others in
processing the stream data. However, prior straggler mitigation solutions have significant limitations. They balance streaming
workloads among tasks but may incur imbalanced backlogs when the workloads exhibit variance, causing stragglers as well.
Fortunately, we observe that carefully scheduling the outgoing tuples of different tasks can yield benefits for balancing backlogs, and
thus avoids stragglers. To this end, we present Hone, a tuple scheduler that aims to minimize the maximum queue backlog of all tasks
over time. Hone leverages an online Largest-Backlog-First (LBF) algorithm with a provable good competitive ratio to perform efficient
tuple scheduling. We have implemented Hone based on Apache Storm and evaluated it extensively via both simulations and testbed

experiments. Our results show that under the same workload balancing strategy—shuffle grouping, Hone outperforms the original
Storm significantly, with the end-to-end tuple processing latency reduced by 78.7 percent on average.

Index Terms—Distributed stream processing, tuple scheduling, straggler task, backlog balancing

1 INTRODUCTION

TREAM processing has recently witnessed an increasing

wave of popularity across many application domains,
including real-time object recognition [1], internet quality of
experience prediction [2], and online social network analy-
sis [3]. A common denominator of these applications is that
the stream data is on a significant rise. As a result, leading
IT companies (e.g., Google [4], Facebook [5], and Yahoo! [6])
have begun to run distributed stream processing (DSP) jobs
in production clusters. As both clusters and streaming pipe-
lines continue to grow in size and complexity, providing
low latency for stream processing is the fundamental chal-
lenge to a DSP job.

DSP systems such as Storm [7] and Flink [8] represent a
job as a directed acyclic graph (DAG) of operators, with
each operator often being executed by many parallel tasks
[9]. One crucial roadblock to the job performance is strag-
glers, i.e., the tasks that take significantly longer than others
to process the stream data. At this point, past work has pro-
posed several straggler mitigation solutions by balancing
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the workload (i.e., the incoming tuples') assigned to each
task [10], [11], [12], [13].

However, these solutions may not perform as expected.
The crux is that the workloads can exhibit high variability
[14], [15], [16], implying that different tuples will trigger dif-
ferent amounts of outputs under the same operation. For
instance, a SplitSentence task will output two tuples
for (1, Hello World) and one tuple for (2, Hello). In
this case, even when tasks have an equal number of incom-
ing tuples, they will produce different amounts of outgoing
tuples. Meanwhile, the number of outgoing tuples could be
enormous as compared to the scarce network resources
[17], [18], [19]. Consequently, some outgoing tuples neces-
sarily have to be backlogged, and the backlogs can vary
significantly across different tasks. Further, the lack of trans-
mission control on the outgoing tuples in mainstream DSP
systems (e.g., Storm [7] and Flink [8]) could exacerbate the
difference in the backlogs (see Section 2 for details). As a
result, stragglers still exist.

As an example, Fig. 1 further demonstrates that the task
T1 may still be straggling behind T2, though they are
guaranteed to get an equal number of incoming tuples with
an excellent workload balancing strategy—shuffle grouping [71].
In this case, the upstream operator 01 will be forced to slow
down its processing speed under backpressure effect. Mean-
while, the downstream operator 03 may be suspended to
wait for the complete intermediate results from 02. By care-
fully scheduling the outgoing tuples of T1 and T2, it is
undoubtedly feasible to reduce or even eliminate the backlog
imbalance between them, thus mitigating stragglers.

In this paper, we focus on the problem of leveraging
tuple scheduling to mitigate the straggler tasks in a DSP job,

1. A tuple is an ordered list of values, e.g.,a (Key, Value) pair.
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Fig. 1. An illustrating example, where there is a DSP job that has three
operators, i.e., 01, 02, and 03. With shuffle grouping [7], the tasks T1
and T2 of 02 are guaranteed to have an equal number of incoming
tuples. Assume that T1 produces two times the number of outgoing
tuples as compared to T2 due to the incoming tuple variance. In this
case, T1 could be straggling behind T2 when it backlogs more tuples.

with the primary goal of achieving low latency stream proc-
essing. To achieve this goal, we have designed and imple-
mented Horne, an efficient and practical straggler mitigation
solution for DSP jobs. At the heart of Hone is an online
scheduler to schedule the outgoing data tuples of all the
tasks belonging to the same operator. In this scheduler
design, we advocate balancing the backlogs by explicitly
formulating an optimization problem of minimizing the
maximum queue backlog of all tasks across all time slots.
We solve this problem by making no assumptions about the
prior knowledge of future tuple arrivals. Specifically, we
propose a Largest-Backlog-First (LBF) heuristic that greedily
schedules a task for tuple transmission based on its queue
backlog. With the results from rigorous theoretical analysis,
we demonstrate that the proposed LBF heuristic can achieve
a 3+ [log , N|-competitive ratio, where N is the number of
parallel tasks. We have also conducted extensive simula-
tions to demonstrate the effectiveness of the LBF heuristic in
minimizing the maximum queue backlog. The results show
that LBF reduces the maximum queue backlog by up to 83.3
percent, compared to a round-robin heuristic.

To further demonstrate that it is amenable to practical
implementations, we have implemented Hone based on
Apache Storm. In our implementation, instead of overriding
the default tuple transmission behavior in the Storm frame-
work, we take a non-intrusive approach by adding a sched-
uling signal to each task. As a result, the tuple scheduling
decisions determined by the proposed LBF heuristic can be
carried out by controlling the signal of each task only. We
proceed to quantitatively evaluate the performance of Hone
on a small-scale testbed with a streaming application based
on a real-world dataset. The experimental results demon-
strate that under the same workload balancing strategy—
shuffle grouping, Hone can reduce the end-to-end tuple proc-
essing latency by 78.7 percent on average, compared to the
original Storm.

In summary, the main highlights of this paper include:

e We study the problem of scheduling the outgoing
tuples of the tasks in a DSP job to reduce the stream
processing latency.

e We present a practical solution Hone, which reduces
the latency by minimizing the maximum queue
backlogs of parallel tasks with an efficient and online
approximation algorithm LBF.
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Fig. 2. The logical and physical views of a DSP job.

e We implement Hone in Storm. The required modifi-
cation for our implementation is non-intrusive and
incremental to Storm framework.

e We conduct both simulations and testbed experi-
ments to evaluate Hone. The results have demon-
strated the superior performance of Hone in
reducing the stream processing latency.

The rest of this paper is organized as follows. In Section 2,
we present the background of DSP and show the signifi-
cance of tuple scheduling. Section 3 presents an overview of
Hone. In Section 4, we present the details about the tuple
scheduling in Hone. We show the implementation details
of Hone in Section 5. We present the experiment results in
Section 6. Section 8 briefly discusses the related work and
Section 9 concludes this paper.

2 PRELIMINARIES

In this section, we briefly overview the background of DSP
and elaborate tuple scheduling in DSP.

DSP Job. As aforementioned, a DSP job is often inter-
preted as a DAG, with nodes representing the operators
and edges being the data flows between operators. Each
DAG consists of three types of operators. The first type is
source operator that pulls input data stream from external
sources (e.g., Kafka) in the form of tuples. The second type is
intermediate operator, which is a logic processing unit that
applies a user-defined function to map an incoming tuple
from upstream operator to a group of outgoing tuples for
downstream operators. The last type is sink operator used to
spew output tuples to display the job query results at final
destinations.

DSP Cluster. A DSP cluster consists of a set of physical
machines (called worker nodes). Each node has a limited
number of slots, with each slot being used for one task
instance. Once a job is submitted to the cluster, the DSP sys-
tem executes it with a set of tasks distributed over the
worker nodes. Fig. 2 illustrates the logical and physical
views of a DSP job running on a three-node cluster. This job
contains a source, a sink, and three intermediate operators.
Operators 01, 02 and 03 are executed with two, one, and
three tasks respectively.

DSP Tuple Transfer. The DSP system triggers inter-opera-
tor communication for streaming data tuples between the
tasks of different operators. If connecting operators reside
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Fig. 3. The illustration of the procedure of outgoing tuple transfer in DSP.

in the same node, there exists only intra-node communica-
tion; otherwise, the communication occurs across nodes
over network. The inter-node communication may make a
stream processing application to involve higher network
resource demands than CPU cycles [19], [20], as many appli-
cations nowadays are data-intensive [21]. Moreover, tuple
transfers across the network incur high latency. In fact, a
recent study has pointed out that such tuple transfers can
account for 86 percent of the total latency of a DSP applica-
tion [18]. As we can see from the facts above, inter-node
communication is more likely to be the cause of the perfor-
mance bottleneck rather than intra-node communication,
and accordingly, is the main focus of this paper. One may
question that such inter-node communication can be elimi-
nated by deploying connecting operators on the same node.
However, common operators such as union, shuffle, and
join may require data to be transmitted across nodes since
their inputs are from different nodes [22].

Mainstream DSP systems (e.g., Storm, Flink) mostly
resort to Netty” for the inter-node communication described
above. To be particular, in their design, each task is config-
ured with an outgoing queue as well as an incoming queue.
The outgoing tuples of a task are buffered at its outgoing
queue while the incoming tuples are at the incoming queue.
As shown in Fig. 3, each task has a user logic thread, which
continuously fetches tuples from its incoming queue for
processing. For each tuple in the incoming queue, the user
logic thread will generate one or more tuples which will
then be placed into the outgoing queue. To manage the out-
going tuples, each task uses a send thread to read tuples
from its outgoing queue and push them to Netty for trans-
mission over the network to downstream operators. On the
other hand, Netty will listen on the binding TCP port for
reading tuples from the network and placing them into the
incoming queue of the relevant task.

DSP Tuple Scheduling. It is common that DSP systems
usually attain high processing efficiency for a job by repli-
cating its operators on multiple tasks [9]. Meanwhile, each
task processes a subset of the incoming tuple stream to its
operator and outputs an unbounded sequence of tuples to
its downstream tasks. The tasks running significantly

2. Netty [23] is a non-blocking I/O client-server framework popular
for inter-operator communication in mainstream DSP systems (e.g.,
Storm and Flink).
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slower than others become “stragglers”. These tasks have a
significant negative impact on job performance. Balancing
the input tuple stream among the tasks of an operator could
help to mitigate such impact, which, however, is insuffi-
cient. The reason is that the input tuples of different tasks
can have significant variance [14], [15], [16], resulting in
imbalanced queue backlogs of outgoing tuples between
these tasks and causing stragglers as well.

Scheduling the outgoing tuples of the tasks belonging to
the same operator can help to balance the queue backlogs,
and thus becomes critical for a DSP job, especially when
these tasks reside in the same node. Because in this case,
substantial outgoing tuples from these tasks will share the
same link that has relatively limited bandwidth [17], [18],
[19], increasing the effect of tuple scheduling for low latency
DSP. In fact, placing the tasks of an operator in the same
node is inevitable, because there are usually many DSP jobs
[24] and the number of the tasks from all jobs is apparently
larger than the cluster size.

Mainstream DSP systems, e.g., Storm [7] and Flink [8],
are unaware of exploring tuple scheduling to balance queue
backlogs and mitigate stragglers. More precisely, once
tuples enter the outgoing queues of corresponding tasks,
they will be directly flushed into Netty where the arriving
tuples flow in a FIFO order. With FIFO, a data tuple may
suffer from arbitrary long delay in Netty. Meanwhile, flush-
ing tuples blindly may exacerbate the queue backlog imbal-
ance for tasks in downstream operators. It may even create
a cascading effect and lead to imbalanced backlogs for tasks
in upstream operators when backpressure is enabled.
Hence, we are inspired to design a tuple scheduler to deter-
mine the order in which the outgoing tuples of different
tasks are moved to Netty. In this scheduler, we advocate
making the maximum queue backlog of the tasks belonging
to the same operator as small as possible, to avoid any task
straggling behind.

3 HONE OVERVIEW

Hone is an online tuple scheduler applied to each worker
node to optimize the DSP job performance. In this section,
we present a brief overview of Hone to help the reader fol-
low the analysis and design of our online tuple scheduling
algorithm and implementation details.

3.1 Problem Statement

When improving the performance of a DSP job, given multi-
ple tasks that run on the same worker node and execute the
same operator for this job, Hone must decide to select which
task’s queue to output a data tuple each time. It can balance
the queue backlog of data tuples among all the relevant
tasks and thus achieve efficient straggler mitigation. We
mainly focus on the following metric for improving DSP job
performance:

Definition 1 (Latency). The latency of a DSP job refers to the
average end-to-end tuple processing latency over a win-
dow of time, where the end-to-end processing latency of a
tuple is the time between it entering the DAG from the source
and producing an output result on any sink. Hone must pro-
vide low latency for a DSP job.
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Fig. 4. The overview of Hone.

3.2 Design Overview

We design Hone as an agent or daemon, and run it on each
worker node in the DSP cluster. As shown in Fig. 4, the core
module in Hone is the online tuple scheduler, which inter-
acts with the task manager module in two ways. On the one
hand, it dynamically generates tuple scheduling decisions
and enforces them through the task manager. On the other
hand, it will receive outgoing queue statuses from the task
manager. The task, upon receiving a scheduling instruction
from the task manager, selects a tuple from its outgoing
queue to output. Here, tuples in the same outgoing queue
of a task are scheduled with default FIFO policy.

Online Tuple Scheduler. A key insight for scheduling the
tuples of multiple relevant tasks is to minimize the maxi-
mum queue backlog among all the tasks over time, such
that stragglers can be mitigated efficiently. To achieve this,
Hone applies a 3+ [log,N|-competitive scheduling algo-
rithm, which we will show in Section 4.

Task Manager. The task manager mainly keeps track of
the queue statuses of all tasks (e.g., queue backlog informa-
tion), so that the scheduler can make decisions. On the other
hand, it receives the decisions from the scheduler and sends
relevant instructions to tasks for enforcing the scheduling
decisions. We will show the details of the task manager
module in Section 5.

4 ONLINE TUPLE SCHEDULING

In this section, we present a tuple scheduling algorithm for
minimizing the maximum queue backlog among tasks,
without the prior knowledge of future tuple arrivals. Specifi-
cally, we first develop the mathematical model. We then for-
mulate the tuple scheduling problem and solve it with an
efficient online LBF algorithm. Finally, we conduct simula-
tions to evaluate the effectiveness of LBF.

4.1 Mathematical Model

In our analysis, we consider a general case with single-oper-
ator and single-node. Tuple scheduling across the whole
DAG over the entire cluster is achieved by scheduling
tuples for each operator in each node independently.
Besides, we consider a discrete-time mode where the time is
divided into time slots. For simplicity, we assume that in
each time slot, only one data tuple is allowed to be transmit-
ted through the physical NIC of the node. Moreover, each
tuple is assumed can be completed within one time slot.
This is reasonable because a tuple is very small and can be
encapsulated into an Ethernet packet frame [25]. We also
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assume that the number of tasks, as well as their place-
ments, are fixed. One can change the number of tasks in the
runtime to achieve better performance (as in [9]), while this
is out of the scope of our work.

For brevity of exposition, we denote the set of tasks as
N ={wi,we,...,wy} and ¢ as the outgoing queue of task
w;. Initially, at time slot ¢ = 0, all the queues are empty. At
each time slot ¢ > 0, new tuples arrive at the N queues,
while scheduled tuples leave. To be particular, we denote
the number of tuples that arrive at queue ¢; at time slot ¢ as
a;(t), which is a non-negative integer. Further, to indicate
the tuple scheduling, we denote z;(t) as whether the queue
q; is selected to output a tuple at time ¢. The tuples that are
not scheduled will be backlogged. We, therefore, denote
B;(t) as the backlog of queue ¢; at time ¢, which is measured
by the number of tuples. We define B;(0) = 0, Vg;, and then
update it in each time slot ¢ (> 0) as follows:

Bi(t +1) = max{Bi(t) + a;(t) — z;(t), 0}. )

This equation implies that each queue ¢; takes a;(t) as input
and z;(t) as output, and the unscheduled tuples at time ¢
are backlogged to future time slots. The larger the backlog
of a queue, the longer an outgoing tuple takes to wait in this
queue before it can be scheduled, and accordingly, the
higher the likelihood the corresponding task becomes a
straggler.

4.2 Formulating the Problem

Given the model described above, we now study the prob-
lem of determining which queue to be scheduled to trans-
fer one tuple each time to minimize the maximum backlog
among all queues across all time slots. We denote this prob-
lem as Tuple Scheduling Problem (TSP), as shown in the
following;:

Minimize max { max B;(t)} (2)
(i) Vi) 0<t<T—1 “1<i<N

N
Subject to :Z x;(t) = 1, Ve, 3)

1=1

The term max;<;<nB;(t) denotes the maximum backlog of
all queues at time slot ¢. The objective function in Eq. (2) is
clearly to minimize max;<,<yB;(t) over all time slots,
enforcing that each queue has nearly balanced backlog in
each time slot. Since only one tuple can be transmitted in
each time slot, Eq. (3) ensures that there is only one z;(t) =
1 for all ¢; in each t. Eq. (4) enforces that the decision vari-
able z;(t) can only take 0 or 1.

Despite its simple structure, the TSP problem is inher-
ently challenging to be solved. The crux is that the current
control decisions are coupled with future ones, ie., z;(t)
and z;(t + 1). An alternative approach for solving this prob-
lem is to design an optimal offline algorithm. However, it
inevitably relies on a prior knowledge of future tuple arriv-
als, i.e., a;(t), Vi, Vt, which are readily unavailable.

4.3 Online Scheduling Algorithm

To address the challenge in solving the above TSP problem,
we design an online scheduling algorithm that can be
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Fig. 5. Partition of queue ¢; into layers at time slot ¢.

executed in a lightweight fashion. A key feature of this algo-
rithm is that it decides to select which queue to output a
data tuple, without any knowledge of how many tuples
may be received in the future. Despite this, we will prove
that our algorithm can provide a non-trivial competitive
ratio when solving the TSP problem.

Algorithm 1. Largest-Backlog-First (LBF)

Input: Initial queue state: { B;(0), Vg, }

Output: A feasible scheduling solution: {z;(t), Vg;, Vt}

1: In the beginning of each time slot ¢, observe the current
queue backlog B;(t) and the number of arrived tuples a;(t)
for all queues ¢;;

2: Select the queue ¢; with largest backlog B;(t), output one
tuple from this queue and set z;(t) < 1;

3: Update B;(t+ 1) according to Eq. (1) and the newly deter-
mined scheduling decisions;

4: return {z;(t),Vq;, Vt}

We propose the Largest-Backlog-First (LBF) heuristic, as
shown in Algorithm 1. In each time slot ¢, based on the
online observation of the queue backlogs { B;(t), V¢; } and the
number of newly arrived tuples {a;(t),Vq;}, the LBF algo-
rithm selects the queue with largest backlog and outputs its
head tuple. Finally, it updates the queue backlogs according
to Eq. (1) and the newly determined scheduling decisions.
To verify that our algorithm can solve the TSP problem effi-
ciently, we compare its effectiveness to that of the optimal
offline algorithm, as shown in the following theorem.

Theorem 1. The Largest-Backlog-First (LBF) heuristic has a
competitive ratio of 3 + [log o N'| for the TSP problem.

To facilitate the proof, we partition LBF's queues into
layers by introducing a metric gap. More formally, let B (t)
denote the backlog of ¢; at time ¢ under an optimal off-line
algorithm OPT. If p is the Ith tuple from the top of queue ¢;
at t, then we calculate the gap of this tuple as ¢'(t) =
I — B?(t), which essentially measures the differences
between the height of a tuple in a queue and the length of
the corresponding queue in OPT. According to the gap of
each tuple, a queue ¢; can be partitioned into multiple
layers. As shown in Fig. 5, the kth layer of ¢; at ¢ consists of
tuples whose gap satisfies (k—1)b+ 1 < ¢/(t) < kb (where
b = B"). We define the number of tuples contained in the
kth layer of ¢; at time ¢ as U}(t). We can clearly see that for
k> 1, Ui(t) = Up,(t) and () = b if UL, (1) > 0. Uy(t) =
S Ui(t) is the total number of tuples contained in the kth
layer over all queues. We define Vi(¢t) = > ., Up(t) as the
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total number of tuples contained in the layers strictly higher
than the kth layer over all queues. The proof process of The-
orem 1 relies on the following lemma.

Lemma 1. For k > 1 and for any time t, Uy(t) > Vi,(2).

Proof of Lemma 1. We prove the lemma by induction on
the time ¢. Clearly, Uj(t) > V4 (¢) is true at ¢ = 0, because
no tuple is outputted and the backlog of each queue
in LBF is same as that in OPT. Assuming Uj(t) > V()
holds for ¢t > 0, it only remains to prove the following
inequality:

Ui(t+1) > Vit +1). ®)

To this end, we run the algorithms OPT and LBF simulta-
neously. Assume OPT and LBF select ¢; and g¢; at time ¢,
respectively. If i = j, Eq. (5) is straightforward. If i # j,
we have U}'(t + 1) = U(t) and V}"(t + 1) = V}*(¢) for any
quee g, (h # i, ).
We now focus on g;. If B”’f (t)
1) < B¥'(t + 1). Thus, we get

< B!(t), then B (¢ +

Ult+1)=U(t) =0and Vi(t+1) = Vi(t) = 0. (6)
If B}/ (t) > B¥(t), then let o« = [(B!" (t) — BY")/b] + 1.
Considering the definitions of Uj () and V}(t), we obtain

i — UL(t)7 k’?é(L
Ut+1) = {Ui(t)+1 ko @
Vit +1) = {U’z(t)’ k> a (®)

Next, we consider g;. If B”’f (t) < B‘)pt( t), then Béhf (t+
1) < BY "(t41) and therefore we have

Ul(t+1) = Ul(t) =0 and V/(t + 1) = V{(t) = 0.

9
b f opt lbf 0 t .
If B (t) > B (t), thgn let g = [(B;”(t) — B")/b]. Again
by the definitions of U} (t) and V}i(t), we have

; Ui k
Uit +1) = { U%;_ - ’ g: (10)
W(t+1)-{§é8“’ ];;f (11)

Considering Eqs. (6)-(11), it suffices to show that Eq. (5)
is true even when Ul(t+1)=Ul(t) -1 or Vi(t+1) =
Vi) +

Now we focus on the first case where UJ(t+1) =
UJ(t) — 1. From Eq. (10), we can infer Blbf( t) > B"pt( t)
and k= B. Hence, B“’f t) < B;’pf( ) + Bb. This leads to
B”’f(t +1)= B”’f( t) — 1 < B?pt (t+ 1) + pb, implying that
the (B+2)th layer of g; is empty at ¢+ 1. Assume that
there exists a queue ¢, (h # j) whose (B + 2)th layer con-
tains some tuples at ¢ + 1. Since g, is not selected by LBF
att, we have

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 16,2021 at 00:54:09 UTC from IEEE Xplore. Restrictions apply.



2026

BY(ty=BY(t+1)> (B+1)b+1

(12)

> B"(t) + pb = B (1).
This means that ¢, should be selected by LBF at ¢, result-
ing in a contradiction. Thus, the (8+ 2)th layers of all
queues must be empty at ¢ + 1. Hence, we have Ug(t +
1) > Ugia(t + 1) = V(t + 1), implying that Eq. (5) holds
in this case.

Next, we consider another case where V/(t+1) =
V,%(t) +1. Since Vi(t+1)>1, we have lbf(t)

bf(t+ 1) > kb+ 1. Further, we can know k < B. As
LBF selects g; rather than ¢; at t, we have

Ibf Ibf t
B (t) > B (t) > kb+1> By (t) + (k- 1)b + 1.

(13)

If BY'(t)+ (k—1)b+1 < B//(t) < BY'(t) + kb, we can
then similarly use the proof by contradiction to show
that the (k + 2)th layers of all queues are empty at ¢ + 1.
Thus, we have Ui(t+1) > U (t +1) = Vi(t +1). On
the other hand, if Blbf (t) > B"pt(t) + kb, then we have
Vi(t) > 0. After LBF outputs a tuple at ¢ from ¢;, we
have V/(t +1) = V/(t) — 1 and thereafter k < 8. Thus,

we obtain
Vit+ 1) = Vit + D)+ Vit +1)+ D WiE+1)
=V +D)+ WV -1+ Vi) =

h#i.j

Regarding Uj(t), we can obtain Uj(t+ 1) > U,(t) from
Eq. (7) and Uj(t+1) = Uj(t) from Eq. (10) (as & # f).
Thus, we have Ug(t+ 1) > U(t) > Vi(t) = Vi(t + 1),
which means that Eq. (5) still holds in this case. Combin-
ing the above two cases, Lemma 1 can then be proved. O

Proof of Theorem 1. Using Lemma 1, we have
Vit (t) = - Uk+1(t) < Vk(t) -
1
= Via(t) < S V().

Vi(t) Vi (t)

(15)

Applying the above inequality [log,N| times, we have

1 [log 2N 1 logo N
VitogyN141 (1) < (5) Vi(t) < (5) Vi(t)

N-b
=N !

(16)

1
S0
The above inequality implies that the number of tuples in
the layers strictly above the ([log, N] + 1)th layer is at
most b. The backlog at time ¢ under LBF can then be
bounded by

B (t) < B (t) + b+ ([logy N]+ 1) - b an
< (34 [log, NY) -b.
The above inequality holds at any ¢. Thus, proved. ]

The following theorem shows that any general online
algorithm is N-competitive for the TSP, demonstrating the
superior theoretical performance of LBF algorithm.
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of (a) different input rates and (b) different number of queues.

Theorem 2. The general on-line algorithm for the TSP problem
is N-competitive.

Proof of Theorem 2. Let C(t) denote the number of tuples
backlogged in all the N queues at time ¢. Let BI(t) =
max;<;<yB?(t) denote the maximal queue length over the
N queues at time ¢ incurred by any on-line algorithm g.
Then, we clearly have B?(t) < C(t). On the other hand, in
the off-line optimal algorithm, C'(t) will be evenly distrib-
uted among the N queues. As such, for the off-line opti-
mal algorithm, the maximum queue length at time ¢,
B!(t), should satisfy B(t) > C(t)/N. Thus, we yield
BI(t) < NB'(t) at any time t. Proved. O

4.4 Simulation for LBF

Simulation Setup. We conduct extensive simulations to eval-
uate the effectiveness of the LBF heuristic in balancing the
queue backlogs. In our simulations, we assume that, for
each queue, the data tuple arrival follows a Poisson distri-
bution. All queues have the same tuple input rate. We con-
duct multiple simulation experiments by varying the input
rate and the number of queues. Each simulation runs for
10,000 time slots, with each time slot being 100 us. In each
time slot, only one tuple can be scheduled. We use Round-
Robin (RRB) as the baseline. In RRB, if queue ¢; is selected at
time slot ¢, then the queue selected at time slot ¢+ 1 is
4(i+1ymod v Where N is the number of queues. We consider
RRB initially selects ¢;.

Maximum Queue Backlog. Fig. 6a first depicts the maxi-
mum queue backlog among all queues across all time slots
by varying the input rate from 500 to 5,000 tuples/s and fix-
ing the number of queues to 10. It is clear that LBF can
always achieve a smaller maximum queue backlog than
RRB, with the maximum queue backlog reduced by up to
83.3 percent. We further observe that the maximum queue
backlogs of both LBF and RRB increase as the input rate
grows. The reason is that the service rate (i.e., one tuple a
time) remains unchanged. One may wonder why the gap of
maximum queue backlog between LBF and RRB decreases
with the increasing of the input rate. The crux is that when
the input rate is far more than the service rate, the system
becomes highly overloaded, and hence the tuple scheduling
can have little effect. Fortunately, modern DSP systems [7],
[8] will trigger the backpressure mechanism to avoid high
loads, implying that tuple scheduling is useful in most com-
mon cases. To further evaluate the impact of the number of
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Fig. 7. Improvements in Jain’s fairness index of queue backlogs at nine
sampled time slots (i.e., 1000, 2000, ..., 9000) over RRB using LBF
under (a) different input rate and (b) different number of queues.

queues on the maximum queue backlogs, we fix the input
rate of each queue to 1,000 tuples/s and vary the number of
queues from 10 to 100. As shown in Fig. 6b, the maximum
queue backlog of LBF is always smaller than that of RRB,
demonstrating the effectiveness of LBF in resolving the TSP
problem. We can further observe that the maximum queue
backlogs of both LBF and RRB first increase and then change
a little, as the number of queues keeps growing. The reason
is that when the number of queues increases to a sufficiently
large value and each queue has the same input rate, there
always exists a queue that needs to wait for a long time to
be scheduled.

Backlog Balancing Among Queues. We also leverage the
Jain’s fairness index [26] to evaluate the backlog balancing
performance among the queues. Specifically, given the
backlog B;(t) of each queue ¢; at a certain time slot ¢, the
Jain’s fairness index of backlogs of all queues at ¢ is defined

N 2
as F(t)="2e M0
N'Zi:l B;()°
value closer to 1 means the queue backlogs are more bal-
anced. For comparison, we define the following metric:

which is a value between % and 1. A

Jain’s Fairness Index under LBF

Factor of Improvement= Jain’s Fairness Index under RRB’

With this definition, Fig. 7a first shows the improvements in
Jain’s fairness index of queue backlogs at sampled time slots
under different input rates. Note that the number of queues
is fixed to 10. We observe that for all settings with different
input rates, the factor of improvement is larger than one at
most of the time. This verifies that LBF achieves a higher
Jain’s fairness index and hence results in more balanced
queue backlogs than RRB. More specifically, LBF can be 10x
better than RRB. One may question that RRB sometimes out-
performs LBF in terms of Jain’s fairness index, e.g., under the
input rate of 500 tuples/s. Despite this, as shown in Fig. 6a,
LBF can indeed obtain a lower maximum queue backlog
under the input rate 500 tuples/s. Moreover, minimizing the
maximum queue backlog can be more relevant in mitigating
the stragglers for DSP jobs. We can further observe that as
the input rate increases, the factor of improvement
approaches to 1 gradually, implying that LBF and RRB can
have nearly the same queue backlog balancing performance
at high load scenarios. This is actually in line with the
decreasing trend of the maximum queue backlog gap
between LBF and RRB in Fig. 6a. Fig. 7b plots the factor of
improvements in the Jain’s fairness index of queue backlogs
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Fig. 8. Average queuing delay of tuples achieved by LBF and RRB under
(a) different input rates and (b) different number of queues.

at sampled time slots for the cases with different number of
queues and with the input rate being fixed to 1,000 tuples/s.
It is obvious that LBF outperforms RRB over all sampled
time slots and all cases considering the Jain’s fairness index.
Moreover, the factor of improvement using LBF over RRB
increases to 1.9 until the number of queues reaches 20. After
that, it decreases to 1 gradually. The underlying reason is
that more queues can make tuple scheduling have less
impact in queue backlogs considering the low service rate,
and hence can lead to a more balanced backlog, especially
when all queues have the same input rate.

Average Queuing Delay. The above results show that LBF
can achieve superior queue backlog balancing performance
than RRB. We now investigate if this can lead to low delay.
Fig. 8a first shows the average queuing delay of all tuples
with varying input rate per queue, under both LBF and RRB.
In this figure, we set the number of queues to 10. We can see
that LBF achieves a lower average tuple queuing delay than
RRB. More specifically, LBF can reduce the average tuple
queuing delay by up to 89.8 percent, compared to RRB. We
further observe that the average tuple queuing delay of both
LBF and RRB increases as the input rate per queue grows.
This is reasonable because higher input rate will lead to
more workload injected into the system. An interesting obs-
ervation is that the reduction in the average tuple queuing
delay using LBF over RRB seems to decrease with the
increase of input rate per queue. The reason is that when the
system is overloaded, tuple scheduling can have little space
to take effect for reducing queuing delay. By fixing the input
rate per queue to 1,000 tuples/s, Fig. 8b further depicts the
average queuing delay achieved by both LBF and RRB, with
the number of queues varying from 10 to 100. LBF can always
outperform RRB, with the average queuing delay of tuples
being reduced by up to 70.1 percent. As the input rate per
queue is fixed, more queues lead to more workloads. That’s
why the average tuple queuing delay increases when the
number of queues grows.

Based on the simulation results, we conclude that LBF
can achieve superior performance than RRB. Therefore, in
the following, we will incorporate LBF into a real DSP sys-
tem (i.e., Storm) to see if it can benefit the low latency stream
processing.

5 IMPLEMENTATION OF HONE

We implement Hone in Storm, which is a modern frame-
work popular for distributed stream processing. Storm is
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Fig. 9. Hone implementation in Storm.

simple, scalable, and fast in processing unbounded streams
of data. Nowadays, more than 80 companies are using the
Storm framework to build their streaming pipelines [27].

To incorporate our Hone in Storm, we take a non-intru-
sive approach. From a high level, Hone runs in the worker
process, and is invoked every 7 milliseconds (we will evalu-
ate the impact of 7 in Section 6). Fig. 9 shows the detailed
architecture of the Hone implementation in Storm. As we
can see from the figure, after the TaskManger module in
Hone obtains the queue size information, the LBF algorithm
will be invoked to make tuple scheduling decisions. After
that, the TaskManger module will then set the scheduling
signal for the relevant task to 1 for transmissions and 0 for
otherwise. We can observe from the Hone implementation
architecture that during the entire process, the TaskMan-
ager is the key to incorporate the LBF scheduling logic into
Storm. More specifically, the TaskManager module involves
two key steps: getting the queue length and enforcing the
scheduling decisions; in what follows, we will present more
details about these two steps.

Obtaining Queue Length. Before presenting how we obtain
the queue length of all tasks, we first review the design of
Storm. In the implementation of Storm, each worker process
maintains a class called as Workerstate. This class stores
the state of all tasks (also called as executors in Storm) in a
worker process. For each executor, it is associated with an
outgoing queue. This queue contains a variable called as
size that stores exactly the up-to-date queue length infor-
mation. Further, it exposes an APl—getQueuedCount (),
to enable users can have the ability to access such size infor-
mation. With the above insights about Storm, we can obtain
the queue length information of each executor by simply
invoking the getQueuedCount () function. We then feed
the queue length information of all executors to the LBF algo-
rithm for determining tuple scheduling decisions.

Enforcing Tuple Scheduling Decisions. Recall that each task
is equipped with an outgoing queue as well as a long-run-
ning send thread. Once the queue is nonempty, the corre-
sponding thread will read tuples from this queue and push
them to Netty for transmission. One intuitive approach for
enforcing our tuple scheduling decisions in Storm is to
replace all these send threads with a single central thread to
read tuples from all the queues. In other words, if a queue is
selected for transmission according to the scheduling deci-
sions, the central thread will choose to fetch tuples from this
queue and hence other queues are suspended. However,
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this approach is undesirable because the required modifica-
tion will be too intrusive to the Storm framework. Hence,
we take a non-intrusive approach without modifying the
existing internal behavior of the Storm. In our implementa-
tion, we add a variable, called as signal, in each executor.
Then, Hone sets the signal to 1 for the executor that has
largest queue length and to 0 for others, based on the sched-
uling decisions of the LBF algorithm. Finally, each send
thread checks if the signal equals to 1 before fetching
tuples. If yes, it reads tuples and pushes them to Netty for
transmission; otherwise, it runs quietly and fetches nothing.

It should be noted that our Hone is not limited to transmit
exactly one tuple per time slot for a scheduled queue.
Instead, it allows each scheduled queue to transmit tuples
for the same while (which may be larger than a time slot).
This aggregation has two benefits. First, it makes the sched-
uler to run in low frequency, thus involving low scheduling
overhead. Second, it can reduce the amount of potentially
wasted network resources caused by many small tuples
that require less than one time slot to finish.

Since each send thread will check its scheduling signal
before fetching tuples from their corresponding queues, a
tuple will be either fetched and pushed to the underlying
Netty framework for transmission or waiting in the queue.
In other words, each tuple will be fully scheduled or non-
scheduled, and there exist no tuples that have some part of
data being pushed to Netty while leaving the remaining
data in the queue.

6 PERFORMANCE EVALUATION OF HONE

In this section, we demonstrate that our Hone scheduler is
practical yet beneficial with a small-scale testbed evaluation.
Our evaluation seeks to answer the following questions:

e How does Hone perform in reducing the tuple processing
latency? Compared to the default Storm, Hone can
reduce the average end-to-end tuple processing
latency by 78.7 percent, even under the same work-
load balancing strategy.

o  What impact do different parameters have on the perfor-
mance of Hone? Our results show that Hone can out-
perform the default Storm, irrespective of the
changes of the input rate and the scheduling interval.

e  Can Hone mitigate stragglers in practice? The slowest
task in Hone is significantly faster than that in Storm,
meaning that Hone is efficient in straggler mitigation.

6.1 Experimental Setup
Testbed. We run all the experiments on a three-node testbed.
Each node has two Intel(R) Xeon(R) E5-2630 v2 @2.60GHz
CPUs and 64GB of RAM, running Ubuntu 16.04 LTS. Each
CPU has two physical cores with each core having six vir-
tual cores. The bandwidth between each pair of nodes is 1
Gbps. It should be noted that the high costs prohibit us
from building a large-scale testbed. On the other hand, even
though this three-node testbed is small in scale, it suffices to
be used for testing Hone’s performance.

Applications. We use WordCount streaming applications
for testing the performance of Hone. We choose WordCount
because it is a fundamental benchmark application for
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Fig. 10. The comparison of the average end-to-end tuple processing latency between Hone and the original Storm under the settings of different

input rates and different scheduling intervals.

distributed stream processing [9], [24], [28] and it can be
used to process the real-world dataset (which we will show
later) used in our experiments. The WordCount calculates
the frequency of every distinct word appearing in the input
tuple stream. It mainly involves two intermediate operators:
split and count. More specifically, it treats each input
tuple as a sentence, and splits each sentence into words
which are then sent to the count operator for word fre-
quency calculating.

Dataset. We use a publicly available 12 GB dataset from
Wikipedia [29] as the input. To focus on the streaming
regime, we split this Wikipedia dataset into sentences, view
each sentence as a tuple, and feed one tuple to the Word-
Count application every time interval. We call this interval
as sleep time. By controlling the sleep time, we can set the
input rate of the WordCount flexibly. It is worth noting that
tuples in this Wikipedia dataset exhibit significant variabil-
ity, with the number of words per tuple varying from 1 to 32.

Baseline. We compare Hone with the default Storm [7]
which is unaware of the tuple scheduling. As mentioned in
Section 2, it pushes tuples to the underlying Netty frame-
work for transmission, regardless of which one should be
pushed first and which one later. For both Hone and Storm,
we use shuffle grouping to balance the incoming tuples
between the tasks of each operator. shuffle grouping has been
shown to be an excellent workload balancing strategy that
guarantees each relevant task will get an equal number of
tuples [12], [13], [14].

Deployment. In our experiments, we use one node to serve
as the Spout (i.e., source operator), while the other two
nodes execute the Split and Count operators respectively.
The number of tasks configured for each operator is 10. We
mainly study the impacts of the following two parameters
on the performance of Hone: the input rate (which is con-
trolled via the sleep time per Spout task) and the schedul-
ing interval (i.e.,, 7). When evaluating the impact of each
parameter, we fix the other parameter. We run each experi-
ment for 30 minutes. It should be noted that the send
threads of tasks will typically batch outgoing tuples off their
outgoing queues, which, however, bringing negative impact
to low tuple latency. To eliminate such impact, we disable
such batching (i.e., setting the batch size to 1) when running
both Storm and Hone.

Performance Metric. Our primary performance metric for
the comparison between Hone and the default Storm, as

defined in Section 3, is the average end-to-end tuple proc-
essing latency over a window of time (i.e., 30 minutes).

6.2 Experimental Results

Owerall Performance. Fig. 10 overviews the experimental
results of the average end-to-end tuple processing latency
for both Hone and Storm under the settings with different
input rates and different scheduling intervals. We can
clearly observe from this figure that Hone can drastically
reduce the average end-to-end tuple processing latency,
compared to Storm. To be particular, such reduction can be
up to 92.2 percent when the input rate approximately equals
to 1,170 tuples/s and the scheduling interval is equal to
120 ms. Furthermore, the average reduction across all the
settings listed in Fig. 10 can be 78.7 percent. In the following,
we focus on the analysis of the impacts of the input rate and
the scheduling interval on Hone’s performance.

Impact of Input Rate. To explore the impact of input rate,
we change the sleep time per Spout task, i.e., the interval at
which we feed tuples to the WordCount application via one
Spout task. We focus on three scenarios with the sleep time
being 8500 s, 8000 s, and 7500 us, respectively. Given that
the WordCount application has 10 Spout tasks, the overall
input rates for these three scenarios are approximately set to
1170 tuples/s, 1250 tuples/s, and 1330 tuples/s, respec-
tively. By combining Figs. 10a, 10b and 10c, we observe that
the average tuple processing latency achieved by both Hone
and Storm increases with the increase of input rate. This is
reasonable because that the higher the input rate, the more
tuples a task needs to process. We can easily check that the
average tuple processing latency incurred by Storm is higher
than that achieved by Hone. The root reason is that our Hone
can balance the queue backlogs well among the tasks to miti-
gate stragglers. Taking a step further, we find that given the
same latency constraint, our Hone can support a higher input
rate, as compared to Storm. One may wonder why the aver-
age tuple processing latency incurred by Hone substantially
increases when the input rate scales from 1170 tuples/s to
1250 tuples/s, and remains relatively stable (or only
increases little) afterward. The underlying reason may be
that when there are more tuples injected into the system, the
imbalance of the outgoing queue backlogs could be more
severe, leaving more space for Hone to take effect for optimiz-
ing the average tuple processing latency.
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Impact of Scheduling Interval t. Recall that Hone is invoked
every t milliseconds to schedule tuples and hence t is the
scheduling interval. By varying t from 10 ms to 130 ms, we
study the impact of the parameter r on Hone’s performance
in reducing the average tuple processing latency, as shown
in Fig. 10. From this figure, we make the following observa-
tions. First, across all input rates, when the scheduling inter-
val 7 is small, e.g., r = 10 ms, Hone incurs relatively high
average tuple processing latency. This is because a smaller
scheduling interval can lead to more thread communication
overhead with respect to enforcing the frequently updated
scheduling decisions. Despite this, Hone can still outperform
Storm at small scheduling intervals. Second, as the parame-
ter T increases in a certain range (e.g., [10,50] ms in Fig. 10a),
the thread communication overhead decreases and the
tuple scheduling effect is getting better. As a result, the
average tuple processing latency achieved by Hone is low
when 7 reaches a moderate value. Finally, when the sched-
uling interval 7 is sufficiently large, e.g., 130 ms, the tuple
scheduling may have less effect in balancing queue back-
logs. That's why the average tuple processing latency is
increasing after r = 100 ms.

Performance on Straggler Task Mitigation. To investigate
the straggler mitigation performance, we record the average
processing latency of each Split task of the WordCount
application for both Hone and Storm, across different num-
ber of already executed tuples. The results are shown in
Fig. 11. We make the following observations from this
figure. First, across all tasks and all number of executed
tuples, Hone can always achieve a lower average processing
latency than Storm. This result directly demonstrates the
effectiveness of our Hone in mitigating stragglers in DSP.
Second, as the number of executed tuples increases, the
average processing latency of each task grows using Storm
while such latency remains within a relatively small range
using Hone. The underlying reason is that Storm ignores the
tuple scheduling, making substantial tuples to be back-
logged after being executed. In contrast, Hone makes use of
tuple scheduling to restrain the growth of the queue back-
logs of each task, lowering the impact of an increasing num-
ber of executed tuples on the average processing latency.

Performance Under Partial Key Grouping. So far, our evalu-
ation is based on shuffle grouping strategy. We now evalu-
ate our algorithm under partial key grouping (PKG) [12]
strategy to see if Hone can still provide superior perfor-
mance. PKG is a simple stream workload partitioning strat-
egy, which associates each key to two possible tasks, and
selects the least loaded of the two whenever a tuple for a
given key must be processed. In this experiment, we fix the
sleep time to 8500 us and vary the scheduling interval
from 10 ms to 130 ms. The results are shown in Fig. 12. From
this figure, we can clearly observe that Hone can achieve a
lower average tuple processing latency than the original
Storm, across all settings of scheduling intervals. More pre-
cisely, compared to original Storm, Hone can reduce the
average tuple processing latency by 94.2 percent on average.
Such results directly demonstrate that our Hone performs
well under PKG strategy. One may wonder at this point
that the reduction of Hone under partial key grouping is
more obvious than that under shuffle grouping. The reason
is that partial key grouping may balance the stream work-
load worse than shuffle grouping for the WordCount appli-
cation, thus leaving more space for our Hone to take effect
for reducing the average tuple processing latency.

Impact of Tuple Variance. We now study how the number
of words per tuple impacts the performance of Hone. To this
end, we construct three workloads based on the Wikipedia
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Fig. 12. The comparison of the average end-to-end tuple processing
latency between Hone and the original Storm under partial key grouping
(PKG) [12] strategy, with varying scheduling intervals and with the sleep
time being 8500 ps.
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Fig. 13. The comparison of the average end-to-end tuple processing
latency between Hone and the original Storm, under varying maximum
number of words per tuple.

dataset described in Section 6.1, by controlling the maxi-
mum number of words per tuple to 10, 20, 30, respectively.
Fig. 13 depicts the average end-to-end tuple processing
latency of both Hone and the original Storm, under these
three workloads. We find that Hone can achieve a lower
average tuple processing latency than the original Storm,
across the three workloads. The average reduction in the
average tuple processing latency achieved by Hone over
Storm is 84.9 percent. We can further find that the reduction
in the average tuple processing latency using Hone over
Storm increase as the maximum number of words per tuple
grows. This is because the larger the number of words per
tuple in the workload, the more unbalanced backlogs will
be experienced by relevant tasks, thus leaving more optimi-
zation space for Hone to take effect for reducing tuple proc-
essing latency.

Performance Under a 10-Docker-Node Cluster. So far, the
above experiments are conducted in a cluster with only
three nodes. We now study if Hone can perform well in a
large cluster. To this end, we use one server in the testbed
(in Section 6.1), and leverage the Docker technique to emu-
late a large cluster on this server. Specifically, we launch ten
docker containers for this cluster. The application is still the
WordCount application. We use three docker nodes for the
Spout operator, four for Split operator and the remaining
three for Count operator. Each operator has ten tasks. We
deploy Hone and the original Storm on this cluster and run
the WordCount application respectively, with the sleep
time fixed to 8,500 us and the scheduling interval t being
varied from 10 ms to 130 ms. Fig. 14 shows the results. It is
clear that Hone outperforms the original Storm across all set-
tings of the scheduling interval r, with the average tuple
processing latency being reduced by up to 79.4 percent.
Such results demonstrate that our Hone can still provide
performance gain under a relatively large cluster. One may
wonder further why the reduction in the average tuple
processing latency achieved by Hone over Storm decreases
as the scheduling interval t goes down. The reason is again
that Hone incurs more scheduling overhead with a smaller
scheduling interval .

7 DISCUSSION

Considering Throughput. So far, our work only considers
reducing latency for a DSP job. However, many DSP jobs also
desire high throughput (i.e., the number of tuples processed
per time unit) [24]. In fact, as indicated by the experimental
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Fig. 14. The comparison of the average end-to-end tuple processing
latency between Hone and the original Storm, under a 10-docker-con-
tainer cluster.

results in Fig. 10, maintaining a lower average tuple process-
ing latency can make a system to support a higher tuple injec-
tion rate. This indirectly implies that our Hone can achieve
high throughput. To further improve throughput, one can
resort to some other techniques, i.e., dynamically scaling of
computational resources allocated to a DSP job [9] or balanc-
ing workload among parallel tasks with work-stealing [30].

Designing Key Grouping With Hone as a Basis. Our Hone
mainly focuses on scheduling the outgoing tuples to balance
the backlogs of parallel tasks. However, we observe that
Hone can help to design efficient key grouping mechanisms
to balance input workload among parallel tasks as long as
Hone is enabled in the upstream operator of these tasks. Spe-
cifically, to achieve this goal, one can do the following. First,
one can tag the scheduling time (in Unix time format) to
each tuple whenever it is scheduled by Hone. Then, one can
associate each key to two possible tasks: one of the two pro-
cesses tuples having odd scheduling time stamp, and
another one handles tuples with even scheduling time
stamp. As such, the imbalance of the backlogs in upstream
operator’s tasks will not be cascaded to downstream
operators.

Optimizing Transmission Delay. Our work only considers
queuing delay of the tuples in the outgoing queues while
leaving the tuple transmissions to the underlying Netty
framework. Techniques such as bandwidth allocation [31],
flow scheduling [32], congestion control [33], load balancing
[34] can complement Hone by optimizing the transmission
delay of tuples in the network. Alternatively, one can also
pursue a cross-layer design to achieve better performance
for a DSP job by dynamically adjusting flow rates according
to the instantaneous information (e.g., the amount of out-
standing tuples) obtained from the application layer. Such
cross-layer design remains largely unexplored. We leave it
to future work.

Handling Non-Data-Parallel Operators. Our Hone only
works for the operators that can be executed with multiple
parallel tasks. However, there do exist some operators that
can not be parallelized such as sort, sum and top-k. Such
non-data-parallel operators cannot benefit from the sched-
uling of Hone. One can tag such operators for Hone to ignore.
Alternatively, one can do the following to integrate them.
First, one can divide such operators into two sub-operators,
with one of the two being able to be parallelized and
another one being non-data-parallel. Then, one can still
apply Hone to schedule outgoing tuples of the parallel
tasks for the data-parallel sub-operator, whereas the non-
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data-parallel sub-operator can run within a single task and
simply merges results from parallel tasks from the data-par-
allel sub-operator.

Handling Stragglers in Heterogeneous Clusters. Our work
only considers stragglers caused by the variability in the
workloads. However, hardware heterogeneity can cause
straggler tasks as well [35], [36]. To handle stragglers in het-
erogeneous clusters, one can use a reactive or proactive
approach. The reactive approach allows all tasks to run for
a while and marks slow running tasks as stragglers. It then
reacts by replicating multiple copies of slow tasks or mov-
ing those tasks to fast nodes. On the other hand, the proac-
tive approach can replica each task and only use the one
that finishes first. Alternatively, it can predict straggler tasks
using the promising machine learning techniques based on
past workload traces and scheduling decisions, and then re-
schedule them.

8 RELATED WORK

Hone mainly focuses on mitigating straggler tasks in a DSP
job to speed up stream processing. We review the closely
related work along the following topics:

Straggler Mitigation in Batch Processing. Mitigating strag-
gler tasks in batch processing applications/jobs has always
been a research hotspot. In order to deal with stragglers,
prior solutions mainly prevent tasks from computing on
slow machines or replicate stragglers on other machines—
known as speculative re-execution or scheduling [37], [38],
[39], [40], [41], [42], [43]. However, they detect stragglers too
late and the re-schedule actions are carried out in the run-
time, bringing in additional yet inevitable overhead. Hence,
they are inapplicable to stream processing scenarios with
the needs of continuous optimizations. There also exist
some solutions on addressing stragglers in deep learning
clusters with elastic parallelism control [44] or dynamic
workload re-assignment [45]. They suffer from the same
issues with the above solutions and can not be generalized
to stream processing.

Straggler Mitigation in Stream Processing. The most effec-
tive, and indeed the most widely adopted technique for mit-
igating stragglers in stream processing is load balancing. To
enable load balancing in DSP systems, existing work can be
classified into three categories. The first category is to bal-
ance the number of tasks among distributed worker nodes
to prevent tasks from running on slower nodes [10], [11],
[46], [47]. Another category of work focuses on partitioning
the input workload among parallel tasks based on the keys
of the tuples in the stream [12], [13], [14], [15]. However,
both categories of work ignore the outgoing tuple schedul-
ing, which are insufficient for low latency DSP. Moreover,
the workload-based solutions may lead to imbalanced
queue backlogs due to tuple variance in the workloads, thus
leading to poor performance. By contrast, Hone can balance
the queue backlogs of different tasks. There are also other
techniques for straggler mitigation, such as pre-scheduling
[48], [49], which, however, rely on recurring nature of the
workload and can only applicable to batched streaming
processing.

Low Latency Stream Processing. Except for mitigating stra-
gglers to achieve low latency stream processing, there exist
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several other techniques in literature [50], [51], [52], [53], [54],
[55]. For example, Das et al. [50] design a control algorithm to
automatically adapt batch sizes to maintain low latency for
Spark Streaming. Rabkin et al. [51] leverage aggregation and
degradation to reduce traffic over WANSs to speed up the
streaming analytics. Heintz et al. [52] use an idea of approxi-
mate processing, which sacrifices some accuracy to achieve
low latency for geo-distributed streaming analytics. Tao ef al.
propose a dependable scheduling strategy with active replica
placement to enhance workflow application performance [53].
Xu et al. [54] and Li et al. [55] leverage the techniques of in-
memory computing and memory object caching, respectively,
to speed up Internet of things real-time data processing. The
techniques above can complement Horne to further reduce the
stream processing latency.

9 CONCLUSION

In this paper, we have presented Hone, a tuple scheduler
that seeks to balance the queue backlogs of different tasks to
mitigate stragglers in a DSP job. To perform efficient tuple
scheduling, Hone employs an online LBF heuristic that has a
provable good competitive ratio in minimizing the maxi-
mum queue backlogs of tasks over time. To the best of our
knowledge, Hone is the first work that proposes and proves
the position that tuple scheduling must be well utilized for
straggler mitigation in DSP. Through real implementation
and testbed experiments, we have shown convincing evi-
dence that Hone provides a remarkably lower average end-
to-end tuple processing latency than the default Storm,
when both Hone and Storm use the same workload balanc-
ing strategy.
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