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Abstract
Cross-silo privacy-preservingmachine learning (PPML) adopts

Partial Homomorphic Encryption (PHE) for secure data com-

bination and high-quality model training across multiple

organizations (e.g., medical and financial). However, PHE

introduces significant computation and communication over-

heads due to data inflation. Batch optimization is an encour-

aging direction to mitigate the problem by compressing mul-

tiple data into a single ciphertext. While promising, it is

impractical for a large number of cross-silo PPML applica-

tions due to the limited vector operations support and severe

data corruption.

In this paper, we present GeniBatch, a batch compiler

that translates a PPML program with PHE into an efficient

program with batch optimization. GeniBatch adopts a set of

conversion rules to allow PHE programs involving all vector

operations required in cross-silo PPML and ensures end-to-

end result consistency before/after compiling. By proposing

bit-reserving algorithms, GeniBatch avoids bit-overflow for

the correctness of compiled programs and maximizes the

compression ratio. We have integrated GeniBatch into FATE,

a representative cross-silo PPML framework, and provided

SIMD APIs to harness hardware acceleration. Experiments

across six popular applications show that GeniBatch achieves

up to 22.6× speedup and reduces network traffic by 5.4×-
23.8× for generic cross-silo PPML applications.

CCS Concepts: • Security and privacy; • Networks;

Keywords: privacy-preserving machine learning, homomor-

phic encryption, batch compiler
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1 Introduction
Machine learning (ML) has been widely used to increase

productivity in industries such as medicine, finance, rec-

ommendation services, and threat analysis. Data quality is

crucial for training effective ML models, and there is an in-

creasing demand to combine data from different sources.

However, gathering data from multiple organizations for

centralized model training, e.g., patient medical records from

different hospitals [16] and user search histories from differ-

ent internet companies [72], raises privacy concerns and vi-

olates government regulations [6, 26]. To solve this problem,

cross-silo privacy-preserving ML (PPML), such as Federated

Learning [65], offers an appealing solution to connect "data

silos" among organizations. More specifically, a global model

is collaboratively learned by aggregating encrypted interme-

diate results (e.g., gradients/parameters) from multiple data

sources without revealing any original data [10, 19, 22, 64].

In practice, large companies or organizations adopt cross-

silo PPML in critical businesses that require rigorous security

guarantees and high model accuracy. Thus, implementations

of PPML based on differential privacy (DP) are rarely used

since the noise added by DP degrades model accuracy [9, 13].

Instead, Partial Homomorphic Encryption (PHE), notably

Paillier [47], allows direct computation over ciphertexts, thus

enabling lossless implementations of various PPML appli-

cations [4, 15, 17, 25, 28, 38, 46] (§2.1). Although promising,

PHE significantly degrades the performance of PPML. The

reason is data inflation. For example, a 32-bit floating-point

number would expand to an integer with 2048 bits after en-

cryption, causing a 64× data inflation. Such inflation brings

significant computation and communication overhead: (1)

processing 2048-bit operations is much slower than 32-bit

operations in modern CPU architectures [27]; (2) traffic in

transferring ciphertexts is 64× greater than in transferring

plaintexts. Experiments in §2.2 show that performing opera-

tions on large integers (ciphertexts) and transferring them

over wide area networks (WANs) are more than 7.13× and

https://doi.org/10.1145/3627703.3629563
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66× slower than plaintext operations and data transfers, re-

spectively. This motivates us to improve PHE performance

by mitigating the overhead caused by data inflation.

Batching, i.e., embedding multiple plaintexts into a single

ciphertext (denoted as a batch ciphertext), is a promising di-

rection for overcoming the performance degradation caused

by data inflation. The reason is that, by batching 𝑘 plaintexts,

we perform 𝑘 operations simultaneously with one large in-

teger operation, reducing the average computation costs by

𝑘×; meanwhile, the total number of ciphertexts decreases

by 𝑘×, reducing the overhead on data transfer. However,

as revealed in §2.3.2, directly applying it suffers from lim-
ited operations support and severe data corruption: (1) Homo-

morphic operations in PHE only enable vector addition and

scalar multiplication over batch ciphertexts. However, such

operations fail to support many important PPML scenar-

ios (e.g., Vertical LR [28] and Secure XGBoost [17]), where

more complicated operations such as Hadamard product (i.e.,
element-wise product for two vectors) and inner-sum (i.e.,
sum all elements in a vector) are required. (2) Performing op-

erations over batch ciphertexts may result in overflow, which

leads to corrupted computation results and further degrades

model accuracy. The same problems exist in previous batch

techniques [12, 39, 63, 68], thus limiting the applicability of

batching optimization in cross-silo PPML.

To address the above challenges, we propose GeniBatch,

a batch compiler that translates a PHE program with gen-

eral vector operations into an efficient program with batch-

ing (§3). The core idea of GeniBatch is as follows. First, we

observe that the fragments of desired results for a single

Hadamard product or inner-sum operation are packed in

replicated batch ciphertexts. Based on such fragmented infor-

mation, GeniBatch designs a set of conversion rules for orig-

inal PHE programs and translates them to dataflow graphs

over batch ciphertexts. To further optimize dataflow exe-

cution, we design graph rewrite rules that defer relatively

inefficient operations to the end so that they only occur once.

Second, GeniBatch reserves necessary zero-padding bits and

encodes data with necessary sign bits, to prevent overflow

as well as maximize compression ratio by scrutinizing the

bits expansion in dataflow execution. As a result, GeniBatch

enables lossless implementations of general cross-silo PPML

applications with batching and mitigates performance degra-

dation caused by PHE in both computation and communica-

tion.

To integrate GeniBatch into various secure ML frame-

works [1–3], we decouple the implementation of GeniBatch

into User Interfaces and a GeniBatch Core (§4). The User
Interfaces provides a set of NumPy-like APIs with Python.

By using them, users can easily implement vector operations

on encrypted data and leverage batching optimization with

only minor changes to existing programs. The GeniBatch
Core automatically compiles programs with User Interfaces
to dataflow over batch ciphertexts and executes it via ML
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Figure 1. Iteration time breakdowns of Horizontal ResNet50,

VLR, SBT, and CAESAR. The two columns in each set of ex-

periments denote training with encryption (w) and without

encryption (w/o), respectively.

framework APIs in data storage, communication and secure

components. We have integrated GeniBatch into FATE [1],

the widely adopted open-source framework for secure com-

putation in the industry. To further harness state-of-the-

art hardware acceleration for cryptographic operations in

PHE [18], GeniBatch also packs operators and partitions in-

put data to support SIMD (Single Instructions Multiple Data)

executions in parallel.

We extensively evaluate GeniBatch in real-world PPML

scenarios—two geo-distributed participating servers with a

40-core CPU for parallel execution or a supplemental GPU for

cryptographic acceleration. The participating servers collab-

oratively train six popular PPML models: FedAvg-based [43]

ResNet50 [29], DenseNet169 [31], and EfficientNetB0 [52]

for horizontal PPML; Vertical Logistic Regression [28], Se-

cure XGBoost
1
[17] and CAESAR [15] for vertical PPML.

Compared with the implementations in FATE, GeniBatch

achieves promising speedup for all applications: (1) 15.9×
to 20.1× and 1.59× to 3.17× improvements for horizontal

and vertical PPML applications respectively; (2) 19.5× to

22.6× and 1.66× to 1.95× improvements respectively with

GPU acceleration. Note that GeniBatch does not compromise

model accuracy, and it is compatible with various optimiza-

tions such as relaxed synchronization [30, 37, 41] and model

compression [11, 51, 58].

2 Background and Motivation
2.1 Privacy-preserving ML
PHE-based PPML. Many ML applications require massive

training data from multiple participants in different regions

and entities. However, due to the increasingly strict lawsuits

and regulations (e.g., GDPR [26]), gathering all the data in

one place to perform centralized training is not always pos-

sible. Privacy-preserving ML (PPML) has been proposed to

train a global model across participants in a decentralized

manner, where participants still hold original data and col-

laboratively aggregate their local intermediate information

1
For Secure XGBoost, the computation of the histogram is more suitable

for the CPU, thus we only evaluate it via 40 cores CPU in parallel.
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Applications Aggregating Function Vector operations over ciphertexts Plaintext
Size (MB)

Ciphertext
Size (MB)

Supported by
Batching PHE

Horizontal PPML FedAvg [[XG ]] =
∑

P [[XP ]] VecAdd, ScalarMul 359 23722

Vertical PPML
VLR [[XG ]] = ( [[XA ]] + [[XB ]] ) · YA VecAdd, HadmrdProd, InnerSum 4 291

SBT [[XG ]] =
∑

P,i [[XPi ]] InnerSum 8 590

CAESAR [[XG ]] = XA · [[XB ]] − c · YA VecAdd, ScalarMul, HadmrdProd, InnerSum 8 528

Table 1. Aggregating functions and the data size before/after encryption in cross-silo PPML applications. The vector operations

over ciphertexts include Vector Addition, Scalar Multiplication, Hadamard Product, and Inner-Sum.

after encryption. PPML has been extensively studied and

widely adopted in cross-device and cross-silo settings. In

the cross-device setting, the participants are a large num-

ber of mobile or IoT terminals with limited computing re-

sources [23, 62, 65]. In contrast, the participants are a few

datacenters belonging to different organizations or compa-

nies in the cross-silo setting [24, 65, 71]. This paper focuses

on the cross-silo setting.

Compared with cross-device PPML, cross-silo PPML rig-

orously requires privacy guarantees and learning accuracy.

Instead of applying differential privacy (DP) [8], most real-

world cross-silo PPML implementations [1–3, 15, 17, 25, 28,

38, 46] adopt Partial Homomorphic Encryption (PHE) to en-

crypt local information and subsequently exchange them be-

tween participants. The reason is that DP ensures privacy by

adding noise but inevitably degrades model accuracy [9, 13],

while PHE allows direct computation over ciphertexts and

thus enables lossless implementations of cross-silo PPML

applications. In addition, PHE is friendly to existing learning

systems as it only requires setting few encryption param-

eters (e.g., cipher key length) and imposes no constraints

for synchronization schemes [68]. Paillier [47] is the most

widely used PHE scheme for cross-silo PPML, which sup-

ports both homomorphic addition (⊕) and multiplication (⊗)
over ciphertexts:

[[𝑢]] ⊕ [[𝑣]] B ( [[𝑢]] × [[𝑣]]) mod 𝑛2 = [[𝑢 + 𝑣]]
𝑢 ⊗ [[𝑣]] B [[𝑣]]𝑢 mod 𝑛2 = [[𝑢 × 𝑣]]

where [[·]] denotes a ciphertext encrypted with Paillier, and

𝑛 denotes the cipher key.

Vector operations with PHE. PPML applications can be

summarized into two categories according to the data dis-

tribution characteristics [65]. As we show in Table 1, they

apply different aggregating functions for decentralized train-

ing and thus require different vector operations with PHE.

• Horizontal PPML: original datasets among participants

share the same feature space but different samples. To per-

form secure aggregation in horizontal PPML, each partici-

pant first computes the local gradients with its own dataset

and encrypts them via PHE. A central server collects en-

crypted local gradients from all participants, sums received

ciphertexts to obtain the global gradients, and sends them

back to each participant for model updating. The aggregating

function is a simple sum or average [43], where the central

server performs vector addition and scalar multiplication

with PHE.

• Vertical PPML: original datasets among participants share

the same set of samples, but each participant only has a

subset of the features. Table 1 shows that the aggregating

functions in vertical PPML vary depending on the specific

ML models and training protocols, such as Vertical Logis-

tic Regression (VLR) [28], Secure XGBoost (SBT) [17] and

CAESAR [15]. In general, four vector operations are in-

volved in vertical PPML: vector addition, scalar multiplica-

tion, Hadamard product
2
, and inner-sum. Participants lever-

age PHE to encrypt local intermediate information and per-

form vector operations over ciphertexts to achieve secure

aggregation.

2.2 Performance Overhead of PHE
Although the PHE cryptosystem easily facilitates PPML ap-

plications, it brings significant overheads in both communi-

cation and computation. To quantify the performance impact

of PHE, we decompose the iteration time of four popular

PPML applications for deep dive, including FedAvg-based

ResNet50 [29], VLR [28], SBT [17] and CAESAR [15]. These

applications are profiled both with and without encryption,

executed on a 40-core CPU in parallel
3
. We use a commercial

dataset from a bank with 1M samples with #100 features, and

the bandwidth between participants is 50Mbps. In general,

PHE causes 71.1×, 8.4×, 2.7×, and 8.9× performance degra-

dation for four applications, respectively. Figure 1 and Table

1 show the results, and we analyze the reasons below:

Data inflation causes computational and communica-
tion overheads. After encrypting with PHE, the size of a

single ciphertext expands to 2048 bits (twice the length of

the cipher key), and the amount of data transfers in an itera-

tion inflates to 23.7GB, 291MB, 590MB, 528MB, respectively.

We observe that performing cryptographic operations over

large integers is 99.89×, 27.73×, 7.13×, and 18.99× slower

than computing over plaintexts (32-bit numbers), while the

data transmission time of inflated ciphertexts is 66.1×, 72.7×,
73.7×, and 66.0× longer than plaintexts, respectively. Such

large overheads rooted in data inflations further extend the

idle time of participating servers by 74.23×, 6.82×, 5.32×, and
12.94×, respectively, which poses challenges to deploying

2
Perform Hadamard product between x and y is equal to (𝑥1𝑦1, 𝑥2𝑦2, . . . )

3
We adopt the implementations of four PPML applications in FATE [4], and

the length of cipher key is 1024 bits.
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Slot 3 Slot 1Slot 2

Non-batch PHE

Batch PHE

32 bits plaintext 2048 bits ciphertext Encrypt

Big integer stitched by multiple plaintexts

Slot 3 Slot 1Slot 2

Decrypt
Bit truncation

Compress by #slots

Figure 2. Encrypt a vector (𝑥1, 𝑥2, 𝑥3) with non-batch PHE

and batch PHE respectively.

PPML for real-world applications, e.g., enlarged deployment

cost due to high server renting fee, etc.
It is not surprising to observe data inflation since the PHE

encryption procedure involves big integer operations. For

example, in Paillier encryption algorithm, an integer𝑚 is

encrypted to 𝑐 by 𝑐 = 𝑔𝑚 × 𝑟𝑛 mod 𝑛2, where 𝑔, 𝑟, 𝑛 are all

large integers (1024 bits in minimum). As a result, the size of

the raw data inflates from 32 bits to 2048 bits. Paillier allows

the bit width of plaintext to vary from 1 to 1024; however,

only 32 bits are used in realistic implementations of PPML. It

indicates an opportunity to mitigate such huge data inflation

by fully utilizing the wasted bit width of plaintexts.

2.3 Boost PHE with Batching

2.3.1 Benefit of batch PHE. To address the performance

degradation caused by data inflation, we first attempt to

directly leverage existing batch strategies [12, 39, 68], i.e.,
batching multiple plaintexts into a single ciphertext. As shown
in Figure 2, instead of encrypting each plaintext separately

(non-batch PHE), plaintexts are firstly stitched into a large

integer and subsequently encrypted into a ciphertext at

once (batch PHE). Theoretically, when encrypting a list of

floating-point numbers with a 1024 bits cipher key, batch

PHE can compress ciphertexts by a maximum of 32× com-

pared to the non-batch PHE. Meanwhile, the computation

overhead on several cryptographic operations e.g., encryp-
tion/decryption and vector addition is also reduced.

To better illustrate how batching could mitigate the prob-

lem, we demonstrate the difference in communication/com-

putation overhead before/after applying existing batch strate-

gies through a concrete example. We use the following Hori-

zontal ResNet50 [29] as an example (other vertical applica-

tions are hardly implemented with batch PHE and we tem-

porarily ignore the data corruption problem in this example,

which we will discuss in §2.3.2).

Suppose a central server uses FedAvg [43] algorithm to ag-

gregate local parameters from two participants. Each partici-

pant generates a local ResNet50 model with 25M parameters

for each training iteration. To obtain the global parameters,

Slot 3 Slot 2 Slot 1

Decrypt

Decrypt
Slot 3 Slot 2 Slot 1

overflow

Figure 3. Data corruption due to the slot overflow.

participants first encrypt local parameters and send them to

the central server; then, the central server sums all received

ciphertexts and sends them back. In this procedure, encryp-

tion&decryption and homomorphic additions are performed

25M times in participants and central servers respectively.

Meanwhile, each participant must send and receive 25M ci-

phertexts. However, after applying batch PHE, participants

only need to perform 25M/32 encryption&decryption opera-

tions and send&receive 25M/32 ciphertexts, and the central

server only needs to perform 25M/32 homomorphic addi-

tions, which indicates the communication and computation

overheads are both reduced by a factor of 32.

In this paper, we denote a ciphertext encrypted by batch

PHE as batch ciphertext and refer to the bits that store raw

data and results as slots. We use the terms [[𝑎∥𝑏]] and [[2𝑘𝑎+
𝑏]] interchangeably in the rest of this paper to denote a batch

ciphertext that encapsulates two slots (store 𝑎 and 𝑏).

2.3.2 Challenges of batch PHE We believe that a batch

PHE cryptosystem can significantlymitigate the performance

penalties caused by non-batch PHE in general. However, im-

plementing all cross-silo PPML applications with batch PHE

still needs to address two challenges below:

Challenge 1: limited applications due to partial vec-
tor operations support. PHE, e.g. Paillier, only supports

homomorphic addition and multiplication over ciphertexts.

Performing them on batch ciphertexts is shown below:

[[𝑥1∥𝑥2∥...]] ⊕ [[𝑦1∥𝑦2∥ ...]] = [[𝑥1 + 𝑦1∥𝑥2 + 𝑦2∥...]] → [[x + y]]
𝑐 ⊗ [[𝑥1∥𝑥2∥ ...]] = [[𝑐 × 𝑥1∥𝑐 × 𝑥2∥...]] → [[𝑐x]]

where homomorphic addition and multiplication are equiv-

alent to vector addition and scalar multiplication over ci-

phertexts, respectively. However, as we mentioned in §2.1,

PPML applications require four vector operations with PHE,

where Hadamard product and inner-sum are unavailable

after naive batching. It indicates that implementing vertical

PPML applications with batch PHE is not feasible due to the

partial vector operations support. Moreover, it is impossible to

directly switch ciphertexts from batch modes to non-batch

modes to perform unsupported vector operations, as such

a switch requires re-decryption and re-encryption, which

is considered to breach the privacy guarantee in general.

Some previous batch stratagies [12, 39, 63, 68] have explored

performing vector operations over batch ciphertexts with

homomorphic operations, as we mentioned above, but still

do not support Hadamard product and inner-sum.

Challenge 2: data corruption due to the slot overflow.
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Batch ciphertext Replica ciphertexts

Replicate

1

2

3

Figure 4. Realize Hadamard product over batch ciphertexts

by replication, and the desired results are 𝑥1𝑦1, 𝑥2𝑦2 and 𝑥3𝑦3.

Numbers in replica ciphertexts denote the valid slots.

After performing a sequence of operations on a batch cipher-

text, data after decryption may be corrupted due to the slot
overflow. As shown in Figure 3, after multiplying a constant

with a batch ciphertext and decrypting it, bits in slots 1 and

2 are not sufficient to store the results 𝑐𝑥1 and 𝑐𝑥2, which

causes slot overflows and further leads to data corruption.

Once the highest slot overflows, all data in a batch ciphertext

would be completely corrupted. In practice, the slot overflow

frequently occurs in aggregating functions which contain

multiplication or massive additions, e.g., sum operations for

ciphertexts in the previous example of Horizontal ResNet50.

Existing work [68] uses two sign bits to detect overflow

but cannot prevent it for addition, and such an encoding

scheme is ineffective for multiplication, e.g., the MSB (most

significant bit) overflows to a higher slot when performing

addition or multiplication between negative numbers. As

a result, participants in cross-silo PPML applications may

receive corrupted global information after aggregation.

3 GeniBatch
To boost the performance of general cross-silo PPML appli-

cations with batching, we present GeniBatch, a batch com-

piler that addresses the above two challenges. GeniBatch

achieves the following desirable properties: (1) it allows orig-

inal programs to contain four vector operations required

for cross-silo PPML applications, and automatically com-

piles them to executable programs with batch PHE (§3.1);

(2) it prevents slot overflow when performing operations

on batch ciphertexts, enabling lossless implementations of

PPML applications (§3.2); and (3) it further optimizes the

dataflow execution to achieve maximum computational effi-

ciency (§3.3). With GeniBatch, users can implement secure

aggregation as with non-batch PHE, while the performance

overhead due to the data inflation is significantly reduced.

3.1 End-to-end Dataflow with batch PHE
To compile non-batch PHE programs to batch, the primary

target is to handle unsupported vector operations. We ob-

serve that simply replicating a batch ciphertext for #𝑠𝑙𝑜𝑡𝑠

provides opportunities to realize Hadamard product and

inner-sum. For the example of Hadamard product in Fig-

ure 4, after performing replication and homomorphic multi-

plication, desired results (𝑥1𝑦1, 𝑥2𝑦2 and 𝑥3𝑦3) are hidden in

three replica ciphertexts respectively. However, such three

Aggregating function in VLR: 

VecAdd

HadmrdProd

InnerSum

Decryption

Replica

ShiftAdd

: Cihpertext

: Plaintext

: Operators

: Output

Received from other participants

Inserted by
GeniBatch

Inserted by
GeniBatch

Figure 5. The generated end-to-end dataflow over batch

ciphertexts for VLR.

ciphertexts are inconsistent with the original ones, i.e., the
outputs of Hadamard product in the non-batch PHE program

are [[𝑥1𝑦1]], [[𝑥2𝑦2]] and [[𝑥3𝑦3]]). Therefore, directly per-

forming subsequent operations over replica ciphertexts (e.g.,
vector addition or inner-sum) will result in incorrect outputs.

We believe that it is feasible to satisfy end-to-end consis-

tency between original non-batch PHE programs and com-

piled batch PHE programs, by leveraging implicit results

in replica ciphertexts. To achieve it, GeniBatch applies the

following conversion rules to ensure that desired results are

hidden in the output for each vector operation after com-

piling. A compiled batch PHE program is represented via

dataflow, as shown in Figure 5, and we summarize corre-

sponding operators in Table 2.

• Rules for operations in replica mode. For Hadamard prod-

uct and inner-sum, GeniBatch inserts Replica to convert

their inputs to replica ciphertexts and after performing ho-

momorphic operations, each of them stores a fragment of

desired results. For example, in Table 2, the output cipher-

texts of HadmrdProd and InnerSum store 𝑥1𝑦1&𝑥2𝑦2 and

𝑥1 + 𝑥3&𝑥2 + 𝑥4, respectively. Directly merging the replica

ciphertexts after InnerSum (e.g., obtain 𝑥1 +𝑥2 +𝑥3 +𝑥4) will
damage the implicit results in them. For example, merging

fragments of InnerSumwith [[𝑥1 +𝑥3∥n/a]] ⊕ [[n/a∥𝑥2 +𝑥4]]
will damage 𝑥1 +𝑥3 and 𝑥2 +𝑥4. Therefore, GeniBatch inserts

ShiftAdd that consists of shift operations and homomor-

phic additions, enabling addition among replica ciphertexts.

The shift operations can be implemented with homomorphic

multiplication, i.e., [[𝑥 ∥n/a]] B [[𝑥]] ⊗ 2
𝑘
, where 𝑘 denotes

the bit width of a slot.

• Rules for operations in batch mode. As vector addition and

scalar multiplication are available over batch ciphertexts, no

special operations are inserted by GeniBatch. Note that if

vector addition occurs after HadmrdProd and InnerSum,

GeniBatch substitutes it with Replica and ShiftAdd to en-

sure the additions over replica ciphertexts are consistent

with the original vector addition.
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Operator Ciphertext Mode Formula Representation Slot Expansion Bit Expansion

VecAdd Batch mode [[𝑥1 ∥𝑥2 ∥ ...]] ⊕ [[𝑦1 ∥𝑦2 ]] = [[𝑥1 + 𝑦1 ∥𝑥2 + 𝑦2 ]] Null 1

ScalarMul Batch mode 𝑐 ⊗ [[𝑥1 ∥𝑥2 ]] = [[𝑐𝑥1 ∥𝑐𝑥2 ]] Null bits of 𝑐

HadmrdProd Replica mode [[𝑥1 ∥n/a]] ⊗ 𝑦1, [[n/a∥𝑥2 ]] ⊗ 𝑦2 → [[𝑥1𝑦1 ∥n/a]], [[n/a∥𝑥2𝑦2 ]] Null bits of𝑚𝑎𝑥 (𝑦1, 𝑦2 )
InnerSum Replica mode [[𝑥1 ∥n/a]], [[n/a∥𝑥2 ]], [[𝑥3 ∥n/a]], [[n/a∥𝑥4 ]] → [[𝑥1 +𝑥3 ∥n/a]], [[n/a∥𝑥2 +𝑥4 ]] Null ⌈log(num of adds) ⌉

Replica Batch→ Replica mode [[𝑥1 ∥𝑥2 ]] → [[𝑥1 ∥n/a]], [[n/a∥𝑥2 ]] Null Null

ShiftAdd Replica→ Batch mode [[𝑥1 ∥n/a]], [[n/a∥𝑥2 ]] → [[n/a∥𝑥1 + 𝑥2 ∥n/a]] #𝑠𝑙𝑜𝑡𝑠 − 1 ⌈log(num of adds) ⌉

Table 2. GeniBatch operations and corresponding slot & bit expansion, each batch ciphertext is assumed to contain two slots.

HadmrdProd

Replica

Decrypt &
Bit trunaction

ShiftAdd

Shift

Shift

Drop

Input formula: 

Drop Drop Drop

Figure 6. Performing vector dot-production with GeniBatch

operations.

To facilitate the understanding of how GeniBatch sup-

ports all vector operations over batch ciphertexts and prove

the correctness of the compiled program, we show a con-

crete example that performs a dot-product between a batch

ciphertext [[x]] and an unencrypted vector y in Figure 6.

GeniBatch uses a HadmrdProd to multiply the two vectors’

corresponding elements and uses a ShiftAdd to sum up

them. After decryption, the result of dot-product can be ex-

tracted from the valid slot (the third slot). In this case, we

assume that each slot has enough bits to avoid overflow, and

defer the discussion on the allocation of bits for slots to §3.2.

For the compiled dataflow, GeniBatch initially assumes

each encrypted vector (the inputs of the dataflow) has been

batched in one batch ciphertext. Such an assumption may

not be feasible (e.g., batching millions of numbers in one

ciphertext) and we will discuss how to split it to practice in

§3.2. When executing the dataflow, the encryption/decryp-

tion, VecAdd and ScalarMul are performed in batch mode,

which indicates their computational overhead is negligible.

Meanwhile, the communication overhead for exchanging ci-

phertexts is reduced by #𝑠𝑙𝑜𝑡𝑠 . Although the inserted Replica

and ShiftAdd operations incur extra computational over-

head, we will show that the GeniBatch is still more efficient

than non-batch PHE after dataflow optimization in §3.3.

3.2 Batching without Overflow
The reason for slot overflow is bit expansion, which com-

monly occurs in two’s complement operations. For example,

Zero-padding bits Sign bits Data bits

Slot N Slot N-1Slot N+1
1024 bits encoding space

Figure 7. The components of encoded plaintexts and slots,

where −0.25 is encoded into Slot N.

the bit width of multiplying two 32-bit floating-point num-

bers will expand to 64 bits, of which high 32 bits are invalid.

Modern CPUs handle such expanded bits by throwing them

away. However, it is impossible to do so after encryption via

PHE, which means the expanded bits will spread to higher

slots and consequently cause data corruption. As a result,

the only way to prevent slot overflow is to reserve enough

zero-padding bits in advance. GeniBatch achieves it by as-

signing zero bits for each slot before encryption, and we

refer to this process as batch encoding. The design principle

of batch encoding is to maximize the number of slots in each

batch ciphertext (i.e., maximize the compression ratio), in

other words, only to reserve necessary zero bits. In this sec-

tion, we first describe the components of a batch encoding

number (§3.2.1) and then discuss how to assign bits for each

component given a GeniBatch dataflow (§3.2.2).

3.2.1 Components of a Batch Encoding Number Fig-

ure 7 shows the components of a batch encoding number

that encodes −0.25 in Slot N, and we use the term encoding

space to denote its maximum bit width (usually 1024 bits).

Such a batch encoding number is divided into several slots

by bits, and each slot stores an element of input data. Each

slot consists of three parts:

• Data bits. As PHE can only encrypt integers, the input

data is represented with a fixed-point or quantized represen-

tation in practice [1, 68]. Each input data is encoded to an

integer associated with an unencrypted scaling factor (e.g.,
−0.25 is encoded to −32 × 2−7 with 8 bits, where the scaling

factor is 2
−7
). Data bits are used to store the integer part of

an encoded plaintext, where the most significant bit (MSB)

represents the sign of input data.

• Sign bits. GeniBatch encodes the integer part of a fixed-

point or quantized number with two’s complement to rep-

resent both positive and negative numbers. According to

arithmetic operations over 2’s complements, the MSB of data
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Algorithm 1 Bit-reserving

Input:
(𝑂𝑝0, ...,𝑂𝑝𝑛), (𝐷0, ..., 𝐷𝑛): GeniBatch operators and corre-

sponding data inputs.

𝐴𝑐𝑐 : Minimum data precision.

𝑅𝑎𝑛𝑔𝑒: The range of data.

Output: Batch scheme.

1: #data_bits= log
2
(𝑅𝑎𝑛𝑔𝑒/𝐴𝑐𝑐)

2: // Compute slots and bits expansion for each operator.

3: for 𝑖 = 0, 1, . . . , 𝑛 do
4: #extra_slots← SlotsExpansion(𝑂𝑝𝑖 , 𝐷𝑖 )

5: // #res_bits maintains the current bit width after an opera-

tion.

6: #res_bits← BitsExpansion(𝑂𝑝𝑖 , 𝐷𝑖 )

7: end for
8: #sign_bits=#res_bits−#data_bits
9: // Reserve bits of sign expansion

10: for 𝑖 = 0, 1, . . . , 𝑛 do
11: #res_bits← BitsExpansion(𝑃𝑖 , 𝐷𝑖 )

12: end for
13: #pad_bits=#res_bits − #sign_bits − #data_bits

14: return #data_bits, #sign_bits, #pad_bits, #extra_slots

bits should be repeated in all sign bits so that the decoder

can correctly identify the sign of calculation results.

• Zero-padding bits. When performing computations over

batch ciphertexts, the sign bits of each slot would expand to

higher bits according to the two’s complement operations.

Zero-padding bits are used to store the expanded sign bits

and prevent them from overflowing to higher slots.

3.2.2 Batch Scheme Generation The next question is

how to generate a batch scheme that determines the total

number of slots in a batch encoding number and assigns

bit width of data bits, sign bits, and zero-padding bits for

each slot. Such a batch scheme must ensure the sign bits can

only expand to zero-padding bits and the MSB of sign bits

can correctly represent the sign of calculation results after a

sequence of cryptographic operations.

Assigning bits for data bits (#data_bits) is straightforward.

Depending on the input data’s range and accuracy, #data_bits

should be larger than log
2
(𝑚𝑎𝑥 −𝑚𝑖𝑛)/𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. For exam-

ple, suppose the input data varies from −1 to 1 and its min-

imum accuracy is 2
−7
, the bit width of data bits should be

larger than 8. To ensure no overflow occurs when executing

the GeniBatch dataflow, we secondly scrutinize the impact of

the GeniBatch operations on the number of slots (#slots) and

the bit width of each slot (#bits), which we have summarized

in Table 2:

• Slot shifting: The operations involving shift will increase

#slots, e.g., ShiftAdd will increase #slots by #slots−1.
• Bit expansion: Performing any arithmetic operation over

batch ciphertexts will expand #bits. For example, #bits

would expand by ⌈log
2
𝑡⌉ for InnerSum, where 𝑡 denotes

the number of homomorphic additions.

Based on the above analysis, a batch scheme can be gen-

erated by scanning GeniBatch dataflow and calculating the

slots&bits expansion for the eventual results. As shown in Al-

gorithm 1, GeniBatch scans all operators in a given dataflow

and sums up the slots&bits expansion by looking up Table

2 (from line 1 to line 7). To ensure that the MSB of results

can correctly represent the sign of the results, GeniBatch

sets the sign bits by replicating the MSB of data bits for

#res_bits−#data_bits times. Note that the sign bits may still

expand to higher after a sequence of cryptographic opera-

tions. Therefore, GeniBatch scans operators again to deter-

mine the width of zero-padding bits (i.e., all bits are set to 0)

to prevent slot overflow (from line 9 to line 13). To prevent

the highest slot from overflowing, GeniBatch reserves extra

slots for slot shifting. Such extra slots are not allowed to

store input data (i.e., all bits in extra slots are set to 0). With

the batch scheme, GeniBatch encodes input data to batch

encoding numbers and subsequently encrypts them to batch

ciphertexts. Executing the GeniBatch dataflow on such batch

ciphertexts will never cause slot overflow.

Take the dataflow of VLR as an example, which we have

mentioned in Figure 5. Suppose the width of data bits is

32 and the encoding space is 1024 bits. After first scanning

the dataflow, GeniBatch gets the width of results as 66 bits,

thus assigning 34 bits for sign bits, where 1, 32 and 1 bits

expansion due to VecAdd, HadmrdProd and ShiftAdd

respectively. Next, GeniBatch secondly scans the dataflow to

assign zero-padding bits as 68 = 1+66+1. Finally, GeniBatch
generates a batch scheme with 32 data bits, 34 sign bits, 68

zero-padding bits, and #𝑠𝑙𝑜𝑡𝑠 − 1 extra slots, which indicates

each batch encoding number can encapsulate 7 slots (com-

pute with ⌊1024/(32 + 34 + 68)⌋) where the lowest four slots
are valid to store plaintexts.

Afterward, GeniBatch will batch-encode all input data

with the same batch scheme, and split dataflow from Fig-

ure 8 (a) to Figure 8 (b). The dataflow splitting procedure is

straightforward (i.e., split each encrypted vector to multiple

batch ciphertexts, and split operators based on vector arith-

metic properties), thus we omit the details. Several scaling
operators are always inserted before each additive operator

(e.g., VecAdd, InnerSum and ShiftAdd) to align the scaling

factors of its inputs. In §3.3 we will discuss how to eliminate

unnecessary scaling operators before dataflow execution.

3.2.3 Correctness Proof for Batch Encoding We first

establish the losslessness of GeniBatch quantization. As-

sume we need to encode a 32-bit (with 23-bit mantissa)

floating-point number 𝑥 in [−𝑎, 𝑎]. GeniBatch will adopt 𝑟 =

log
2
𝑎+24 as the #data_bits and quantize 𝑥 to𝑞𝑥 = ⌊2𝑟−1𝑥/𝑎⌉,

where ⌊·⌉ denotes rounding. We use 𝑠 = 2
𝑟−1/𝑎 to denote the

scaling factor. After dequantization with 𝑥 = 𝑞𝑥/𝑠 , the error
is bounded by |𝑥 − 𝑥 |, smaller than 1/𝑠 = 2

−23
. Therefore,

the quantization error is smaller than the least significant bit
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Aggregating function in VLR: 
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Figure 8. Internal dataflow in GeniBatch.

of the 23-bit mantissa, which proves that no precision loss

during quantization and dequantization.

GeniBatch next simply fills the quantization numbers into

slots, padding sign bits and zero-padding bits. As we men-

tioned in §3.2.2, the slots will not overflow during data pro-

cessing, and the calculation correctness is guaranteed by

two’s complement computation and homomorphic proper-

ties. Thus, GeniBatch is a lossless batch encoding scheme.

3.3 Dataflow Optimization
With the batch scheme, GeniBatch obtains an executable

dataflow over batch ciphertexts, which ensures no overflow

occurs during the execution. However, the dataflow may

not be optimal due to ShiftAdd and unnecessary scaling

operators: (i) shift operations included in ShiftAdd are time-

consuming and cause slots expansion (reduces the overall

compression ratio); (ii) the scaling operators implemented

with homomorphic multiplication are more expensive than

additive operators implemented with homomorphic addition.

In this section, we design graph rewrite rules to optimize

the dataflow (§3.3.1) and further analysis the performance of

dataflow execution compared with non-batch PHE (§3.3.2).

3.3.1 Graph Rewrite Rules The insight of dataflow op-

timization is to reduce the number of ShiftAdd via lazy

operating, so that shift operations are delayed to the end and

only occur once. We observe that a shift operation occurs

when adding two replica ciphertexts in which slots are un-

aligned. Based on it, GeniBatch eliminates shift operations

by succinctly applying the two following graph rewrite rules.

Addition chain reordering. GeniBatch scans subsequent

additive operators (VecAdd, InnerSum and ShiftAdd) from

a replica ciphertext to form an addition chain, which records

all input values that need to sum up. The opportunity to

reduce shift operations is to perform as many additions in

batch mode (VecAdd) as possible by reordering the opera-

tors in the addition chain. To achieve it, GeniBatch rewrites

the subgraph in two steps: (i) groups input values by slots;

and (ii) adds intra-group values with VecAdd and adds inter-

group values with ShiftAdd.

Figure 9 (a) shows an example that applies addition chain

reordering to a subgraph of dataflow. The ShiftAdd is de-

layed until the end and the number of ShiftAdd is reduced,

and thus executing the subgraph would be faster after addi-

tion chain reordering. In practice, such a subgraph frequently

occurs in the histogram construction of SBT [17].

Multiplication passing. GeniBatch applies multiplication

passing to defer a ShiftAdd operator after multiplicative op-

erators (e.g., ScalarMul). Such the graph rewrite rule is used

to extend the addition chain mentioned above, increasing op-

portunities to reduce the ShiftAdd operations. As shown in

Figure 9 (b), each input value of original ShiftAdd (𝑛1.𝑣𝑎𝑙𝑢𝑒

and 𝑛2 .𝑣𝑎𝑙𝑢𝑒) should perform ScalarMul with the corre-

sponding scalar (𝑛3.𝑣𝑎𝑙𝑢𝑒). Afterward, GeniBatch greedily

reduces the ShiftAdd operators by applying addition chain

reordering. In practice, such a subgraph occurs when adopt-

ing gradient optimizers in VLR (e.g., Adam [33] and RM-

Sprop [54]) during the secure aggregation procedure.

GeniBatch applies the above graph rewrite rules to op-

timize the performance of the dataflow execution. In the

meantime, unnecessary scaling operators are also eliminated

by checking the scaling factors of the inputs for each additive

operator. As shown in Figure 8 (c), the ShiftAdd is deferred

to the end, and all scaling operators are removed since all

input data in the dataflow have the same scaling factor after

batch encoding.

3.3.2 Performance Analysis Asmentioned in §3.1, Geni-

Batch inserts additional Replica and ShiftAdd in dataflow,

incurring extra computational overhead. In this section, we
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Figure 9. Two graph rewrite rules in GeniBatch: (a) applying
addition chain reordering and (b) applying multiplication

passing.

show that after applying dataflow optimization, the extra

overhead is negligible and the performance of dataflow exe-

cution is more efficient than non-batch PHE. Before analysis,

we assume the input encrypted/unencrypted vector includes

𝑛 elements and #slots in a batch ciphertext is𝑚.

• Operations on batch mode. Encryption/decryption, VecAdd
and ScalarMul are performed over batch ciphertexts, thus

only 𝑛/𝑚 homomorphic operations are involved in Geni-

Batch while 𝑛 operations in non-batch PHE. Therefore, such

operations in GeniBatch are always more efficient than non-

batch PHE.

• Operations on replica mode. HadmrdProd and InnerSum

are performed over replica ciphertexts. In this case, Geni-

Batch involves the same number of homomorphic operations

as non-batch PHE, e.g. performing 𝑛 homomorphic multipli-

cations when conducting HadmrdProd.

• Replica and ShiftAdd. Replica and ShiftAdd both occur

once after optimization, which incurs𝑚 ciphertext replica-

tion and𝑚 − 1 homomorphic additions&multiplications. As

𝑚 is much smaller than 𝑛, e.g.,𝑚 = 6, 𝑛 = 10
6
in VLR, the

overhead of these operations is negligible.

4 Implementation
Integrated with secure ML framework. We have fully

integrated GeniBatch into FATE (v1.8) [1] as a boosting en-

gine. Note that GeniBatch can also be applied to other secure

ML frameworks, e.g., FedLearner [2], TF Encrypted [3], etc.
GeniBatch consists of User Interfaces and GeniBatch Core,
and the overall architecture and workflow of it are shown

in Figure 10. To facilitate GeniBatch usage, User Interfaces
provides a set of Numpy-like APIs and original GeniBatch

operations with Python (e.g., matrix addition, dot-product,

etc.) and users can easily leverage them to enable aggregating

functions by writing a program with them. The GeniBatch

Core consists of Compiler, Batch Encoder, Executor, and

Manager. The Compiler is responsible for translating a pro-

gram with User Interfaces into an executable dataflow

NumPy-like APIsGeniBatch Operators

User algorithm

VecAdd Matrix AdditionInnerSum

ScalarMul HadmrdProd Matrix Multiplication

CompilerBatch Encoder

Manager

DAGs of GeniBatch
Operations

Operation
Executor

Secure ML Framework Components

GeniBatch Core

Paillier & Hardware
Acceleration APIsCommunication APIsData Storage

Figure 10. Overall architecture and workflow of GeniBatch.

graph, as mentioned in §3.3. Afterward, the Batch Encoder

generates a batch scheme with Algorithm 1 and encodes or

batch encodes all input data with the batch scheme. The ele-

ments of encrypted vectors are batched into multiple batch

encoding numbers, and the elements of unencrypted vec-

tors are encoded to two’s complement representation with

the #sign_bits and #data_bits in the batch scheme. Geni-

Batch implements operations over batch ciphertexts based

on homomorphic additions and multiplications, which are

supported by most secure ML frameworks or third-party

libraries. To facilitate usage, all operations are encapsulated

into a set of Executors, where each Executor interacts with

the underlying secure ML framework or third-party libraries

to call the corresponding homomorphic operations. For ex-

ample, VecAdd can be implemented by calling the Paillier-

Add operation in FATE. Finally, the Manager is in charge

of executing dataflow by calling Executors in sequence and

exchanging results between participants via communication

APIs in underlying frameworks (i.e., the federated APIs in

FATE).

Parallel execution. GeniBatch utilizesmultiprocessmodule

of Python3 to achieve parallelization in CPUs and utilizes the

implementation of HAFLO [18] (a set of Paillier operations

accelerated with GPUs) to achieve parallelization in GPUs.

The Manager classifies the dependencies between two opera-

tors into two types: single dependency, where #parent of an

operator is one; and multi-dependency, where #parent of an

operator is more than one. The Manager packs the operators

with single dependencies into a single task and executes it

in parallel by partitioning data inputs. For operators with

multi-dependencies, the Manager first merges the results

in parent nodes, and subsequently re-partitions inputs and

starts the next task in parallel. In the graph of Figure 8(c), the

operators are packed into two tasks based on dependencies.

The Manager partitions the inputs of each task and calls the
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executors in parallel via multiprocess for CPUs or HAFLO
APIs for GPUs.

5 Evaluation
In this section, we evaluate GeniBatch with 6 real-world

PPML applications involving geo-distributed datacenters

(§5.1). First, we demonstrate that GeniBatch boosts end-to-

end performances of various PPML applications by up to

22.6× (§5.2). Second, we deep dive into GeniBatch to inves-

tigate the impact of each design component on the perfor-

mance improvement (§5.3). Finally, we present the scalability

of GeniBatch (§5.3.5).

All GeniBatch and benchmarking application codes are avail-

able at: https://github.com/Huangxy-Minel/GeniBatch.

5.1 Methodology
Testbed Setup. We consider PPML applications with two

participants and a central orchestrating server if required. To

evaluate the scalability of the proposed system, we involve

more participants, as described in §5.3.5. Each participant is

equipped with an Intel Xeon Gold 5218R CPU, 256GB RAM,

and an NVIDIA GeForce RTX 3090 GPU. Since participants

exchange encrypted information over WANs in practical

geo-distributed settings, we use tc qdisc [7] to restrict the

sending bandwidth between participants to 50Mbps. We de-

ploy FATE v1.8 as the underlying secure ML framework.

Benchmarking Applications. We evaluate GeniBatch with

six benchmarks. For horizontal PPML applications, we choose

FedAvg [43] algorithm with three representative models,

ResNet50 [29], DenseNet169 [31], and EfficientNetB0 [52],

training them with CIFAR10 [34] dataset. For vertical PPML

applications, we choose three popular algorithms, Vertical

Logistic Regression (VLR) [28], Secure XGBoost (SBT) [17],

and CAESAR [15], training them with SUSY [14] dataset

(100% dense, 5M samples and 18 features) and a synthetic

dataset (100% dense, 1M samples and 100 features). We adopt

the Paillier cryptosystem [47] with 1024-bit keys as the PHE

scheme for secure aggregation. Participants train models in

parallel under two settings: (1) over a 40-core CPU (denoted

as the CPU setting); and (2) using a GPU to accelerate cryp-

tographic operations (i.e., Paillier encryption/decryption and

homomorphic computations), while plaintext computations

(e.g., compute local gradients/parameters) are still executed

on a 40-core CPU (referred to as the GPU setting).

Baselines. For the CPU setting, we use the non-batch Paillier

implementation in FATE as the baseline. For the GPU setting,

we use the HAFLO [18] implementation (also implemented

on FATE) as the baseline. We also compare GeniBatch to the

ideal plaintext learning (i.e., plain distributed learning where

no encryption is involved, over CPU setting) and the state-

of-the-art BatchCrypt [68]. Since BatchCrypt introduces loss

quantization while GeniBatch does not, we impose the same

Metric ResNet50 VLR with SUSY

Naive BatchCrypt GeniBatch Naive BatchCrypt GeniBatch

Time 156.4 218.3 217.9 235.9 284.3 414.4

Acc 0.621 0.626 0.649 0.513 0.524 0.746

Table 3. Iteration Time(s) and Accuracy of Naive batching,
BatchCrypt, and GeniBatch.

quantization precision (i.e., 23 bits accuracy for floating-point
numbers) on both to ensure a fair comparison.

Metrics: In this study, we present the average iteration time

and model accuracy for 50 epochs (in horizontal applica-

tions) or 20 iterations (in vertical applications). Note that we

employ the Area Under the ROC Curve (AUC) for vertical

applications as the default accuracy metric.

5.2 End-to-End Evaluation
We first evaluate the end-to-end performance of GeniBatch

with 6 PPML applications. Our findings show that GeniBatch

significantly enhances the end-to-end performance of all

studied PPML applications, resulting in a speedup ranging

from 1.59 to 22.6×.
GeniBatch vs. Plain and Non-batch baselines. We re-

port the average iteration time, speedup, and accuracy for

all benchmarks, with and without GeniBatch in Table 4. As

HAFLO does not support SBT, the performance of SBT on

GPU is not available. We make the following observations:

• For horizontal PPML, we observe consistent and significant

speedups achieved by GeniBatch (15.9-22.6×) for all three
models. For vertical PPML, although less significant, Geni-

Batch also boosts the end-to-end performance by 1.59-4.25×.
These end-to-end speedups demonstrate that GeniBatch is

effective and versatile for general PPML applications.

• GeniBatch achieves similar speedups under both CPU and

GPU settings, which demonstrates the compatibility of Geni-

Batch with different hardware supports.

•GeniBatch achieves identical accuracy as the plain learning
and non-batch PHE baselines. It indicates that GeniBatch is a

lossless technique and will not affect the model convergence,

corresponding to the analysis in §3.2.3.

• The speedups vary significantly across different appli-

cations. For instance, while GeniBatch yields about 20×
speedup in horizontal PPML, it only provides an average

of 2.7× in vertical PPML. Additionally, vertical PPML appli-

cations exhibit varying degrees of improvement, ranging

from 1.59-4.25×. We will delve into the variations in §5.3.

GeniBatch vs. Other batch techniques. We compare Geni-

Batch to the naive batching [12, 39] (discussed in §2.3) and

BatchCrypt with ResNet50 and VLR, as shown in Table 3.

For the horizontal cases, GeniBatch achieves the same it-

eration time as BatchCrypt since they employ an identical

batch scheme (i.e., 2 bits for zero-padding bits and 1 bit for

sign bits). There is a slight degradation in accuracy because

BatchCrypt clips parameters into a fixed range and the naive
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Dataset Application Plain CPU Setting GPU Setting Accuracy
(All methods)

Non-batch GeniBatch Non-batch GeniBatch
Time Time Time vs. Plain vs. Non-batch Time Time vs. Plain vs. Non-batch

CIFAR10

ResNet50 61.6 4378 217.9 ↓3.53× ↑20.1× 3133 138.5 ↓2.24× ↑22.6× 0.649

DenseNet169 35.8 2313 131.2 ↓3.66× ↑17.6× 1663 75.6 ↓2.11× ↑22.0× 0.716

EfficientNetB0 15.3 798.8 50.2 ↓3.29× ↑15.9× 566.2 29.1 ↓1.91× ↑19.5× 0.889

SUSY

VLR 132.5 1268 414.4 ↓3.13× ↑3.06× 742.8 277.0 ↓1.71× ↑3.27× 0.746

SBT 451.8 1608 677.7 ↓1.50× ↑2.37× - - - - 0.855

CAESAR 190.1 2548 598.8 ↓3.15× ↑4.25× 901.6 297.4 ↓1.56× ↑3.03× 0.728

Synthesis

VLR 56.5 475.7 206.8 ↓3.66× ↑2.30× 223.9 114.9 ↓2.03× ↑1.94× 0.782

SBT 163.1 435.2 274.2 ↓1.68× ↑1.59× - - - - 0.849

CAESAR 98.4 870.5 281.8 ↓2.86× ↑3.08× 273.0 164.0 ↓1.66× ↑1.66× 0.754

Table 4. Iteration time(s), speedup, and accuracy of GeniBatch compared to non-batch and plain distributed baselines. GeniBatch

achieves the same accuracy as other baselines.

batching results in overflows. For the vertical cases, forced

using naive batching or BatchCrypt results in a significant

degradation in accuracy, as predicted in our analysis in §2.3.2.

5.3 Performance Breakdown
In this section, we deep dive into GeniBatch to (1) show the

effectiveness of each design component, and (2) analyze how

GeniBatch accelerates different PPML applications. We first

analyze how the batch encoding scheme (§3.2) affects the

compression ratio and hence mitigates the communication

overhead. Second, we analyze how the designed operations

for batch ciphertexts (§3.1) mitigate the computation over-

head for different vector operations under a fixed compres-

sion ratio (i.e., the minimal ratio in experiments for six PPML

applications). Finally, we analyze how the graph rewrite rules

(§3.3) optimize GeniBatch dataflow execution and improve

the overall performance. To balance the computation and

communication ratio for vertical cases, we adopt the syn-

thetic dataset as default.

5.3.1 Communication Speedup by Batch Scheme We

first analyze how the batch encoding scheme reduces commu-

nication traffic under different vector operations. As shown

in §3.2.1 and Table 2, different vector operations trigger dif-

ferent bits/slots expansions, which in turn determines the

number of slots in each batch ciphertext, i.e., the compres-

sion ratio. We show the compression ratio, both in theory

and in practice, with different numbers of homomorphic ad-

ditions and multiplications in Figure 11, from which make

the following observations.

• The compression ratio is not highly sensitive to the number

of homomorphic additions. For example, with one homomor-

phic multiplication, the compression ratio decays from 8 to 6

after 10
6
additions. The observation corresponds with Table

2 that 𝑡 additions expand the number of bits by log 𝑡 .

• The compression ratio is sensitive to the number of multi-

plications. For example, with 10
6
additions, the compression

ratio drops from about 15 to 6 after performing once homo-

morphic multiplication. The observation corresponds with

Table 2 that a multiplication (ScalarMul andHadmrdProd)

100 101 102 103 104 105 106 107

Number of additions
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Figure 11. Compression ratio of GeniBatch varies with the

number of homomorphic additions. In practice, the bit width

of each slot should be multiples of 8.

with a 𝑛 bits number expands result bits by 𝑛. However, as up

to 1 multiplication is used in the studied PPML applications,

GeniBatch can still deliver a promising compression ratio in

practice (over 6×).
Next, we proceed to analyze how GeniBatch achieves com-

munication speedups in real-world PPML applications. Fig-

ure 12 illustrates the traffic size per iteration for all the PPML

applications studied and shows that the traffic size is reduced

by about 24× for horizontal PPML applications and 6-7× for

vertical PPML applications. With GeniBatch, the total traffic

size substantially approaches plain learning. As horizontal

PPML does not involve multiplications while vertical PPML

requires 1 multiplication (Table 1), the difference in traffic

drops well corresponds with Figure 11. The difference in

traffic reductions partially explains the performance varia-

tions observed in Table 4, as communication cost is a major

component in the end-to-end iteration time (Figure 1).

5.3.2 Computation Speedup by GeniBatch Operations
In this section, we analyze the effectiveness of all Geni-

Batch operations, including encryption/decryption, VecAdd,

ScalarMul, HadmrdProd, and InnerSum. We fix the com-

pression ratio to 6, select the CPUs as hardware, and report

the elapsed time per 1 million operations with and with-

out (w/o) GeniBatch in Figure 13. We make the following

observations.

• For operations in the batch mode, e.g., encryption/decryp-
tion, VecAdd, ScalarMul, GeniBatch delivers a speedup
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Figure 12. Normalized traffic size (MB) per iteration, where RN, DN, EN denote

ResNet50, DenseNet169 and EfficientNetB0, respectively.
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Figure 13. Normalized execution time (s)

of 1 million encryption, decryption and

vector operations.

similar to the compression ratio, i.e. 6 in this case. The result

corresponds with the analysis in §3.3.2 that operations in

the batch mode are accelerated by 𝑚 times if each batch

ciphertext contains𝑚 slots.

• GeniBatch accelerates operations in the non-batch mode,

i.e. HadmrdProd and InnerSum by 1.2× and 2.0× respec-

tively. As discussed in §3.1, operations in the non-batchmode

require additional overheads caused by Replica and Shif-

tAdd, which accounts for the less significant improvements

compared to those in the batch mode. However, following

the analysis in §3.3.2, GeniBatch is still provably better than

non-batch PHE with the dataflow optimization. Therefore,

the results on HadmrdProd and InnerSum still complies

with our analysis.

5.3.3 Decomposition of End-to-end Iteration Time
As detailed in §5.2, the improvements exhibit variation across

different PPML applications. In this section, we probe into

the reasons underlying the variation. We select two appli-

cations, ResNet50 in horizontal PPML and VLR in vertical

PPML, and decompose the iteration time on both parties into

two parts: cryptographic operation and idle time (wherein

parties wait for the intermediate results from other parties)

and plot the decomposition results in Figure 14. Our analysis

is as follows.

GeniBatch for horizontal PPML. GeniBatch achieves sig-

nificant speedups (over 20×) in horizontal applications (Fig-

ures 14a and 14b) for two reasons. First, no multiplicative

operators are required, enabling a high compression ratio

(Figure 11) and a significant advantage in communication.

Second, the cryptographic operations involved are Encryp-

t/Decrypt, VecAdd, and ScalarMul, all of which can be

operated in the batch mode with a speedup similar to the

compression ratio (25×).
GeniBatch for Vertical PPML.We take VLR (Figures 14c

and 14d) as an example to analyze why GeniBatch is not as

effective on vertical PPML compared to horizontal PPML.

The reasons are two-fold. On the one hand, multiplicative

operators (i.e., HadmrdProd) are involved in VLR, resulting

in a lower compression ratio (6 compared to 25 shown in

Figure 11) and less improvement in communication. On the

other hand, HadmrdProd occupies the majority of compu-

tation time, on which GeniBatch fails to accelerate as much

as operators in batch mode (Figure 13).

Speedup variation across PPML applications. The vari-
ation in speedup can be attributed to two factors: (a) the

compression ratio, which depends on the number of homo-

morphic operations; and (b) the percentage of communi-

cation and operations in batch mode. GeniBatch speedups

approach the compression ratio as the percentage increases.

Therefore, GeniBatch is more effective in horizontal PPML

(compressed 25× and the percentage is over 95% ) and is

relatively less effective in vertical PPML (compressed 6-7×
and the percentage is around 70%). In vertical PPML, the

percentage also varies with the dataset (traffic size increases

with sample size ) thus GeniBatch performs better on SUSY

(5M samples) than the synthetic dataset (1M samples).

5.3.4 Effectiveness of Dataflow Optimization Next,

we analyze how the dataflow optimization in §3.3 improves

the end-to-end performance of real-world PPML applica-

tions. As discussed in §3.3, the dataflow optimization primar-

ily reduces the number of ShiftAdd operations involved

in replica modes. Therefore, horizontal PPML applications,

where batch mode operations (ScalarMul and VectorAdd)

suffice, do not require dataflow optimization. We select two

representative vertical PPML applications, VLR and SBT, and

report their average iteration time with and without dataflow

optimization in Table 5. As observed, the dataflow optimiza-

tion is effective for both VLR and SBT, delivering additional

speedups of 0.9× and 0.4×, respectively.

Non-batch PHE GeniBatch w/o optimization GeniBatch

VLR 475.7 (-) 332.0 (1.43×) 206.8 (2.30×)

SBT 435.1 (-) 367.2 (1.18×) 274.2 (1.58×)

Table 5. Iteration time (Speedup) of GeniBatch with and

without dataflow optimization on VLR and SBT.

5.3.5 Scalability Finally, we evaluate the scalability of

GeniBatch by increasing participants to 4, 8 and 16. We se-

lect two representative PPML applications, ResNet50 with

CIFAR10 for horizontal and VLR with SUSY for vertical. To

be specific, we divide the original dataset randomly and

assign each participant one copy. For example, each party

randomly owns 25,000 samples of the CIFAR10 in ResNet50

and 9 features of the SUSY in VLR.
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Figure 15. The speedups of GeniBatch with 2, 4, 8, and 16

participants.

We report the average speedups and compression ratio

of GeniBatch (compared to non-batch PHE) in Figure 15

and observe that the speedups increase with #participants.

The reason we have mentioned in §5.3.3: the percentage of

communication and batch-mode operation increases with

#participants, leading to the gradual approach of speedups

towards the compression ratio. In the VLR setting, the com-

pression ratio decreases from six to five, which affects the

maximum theoretical speedup. However, this degradation is

logarithmic, as shown in Figure 11. The next degradation oc-

curs when the number of participants reaches 1024, whereas

more than 4 participants rarely occur in vertical PPML.

6 Related Work
Basic technologies for PPML. In §2.1, we have discussed

PHE [47] and DP [8] as the dominant building blocks for

PPML applications. Besides, Secret Sharing (SS) [21, 45],

Oblivious Transfer (OT) [49], and Fully Homomorphic En-

cryption (FHE) [20] are also applicable in PPML. For example,

SecureNN [55] and Falcon [56] applied three-party and four-

party SS protocols to enable secure neural network training;

MiniONN [40] and GAZELLE [32] leveraged OT or combined

OTwith HE to construct privacy-preserving model inference

frameworks; Sphinx [53] proposed a new FHE-with-DP pro-

tocol for secure online learning. However, SS, OT, and FHE

are not efficient enough for geo-distributed PPML (which

involves multiple datacenters) due to their high communica-

tion overhead and computation complexity [50, 70], while

DP incurs model accuracy loss as we described on §2.1. This

motivates us to focus on PHE optimizations in this work.

Batch optimizations for HE. In addition to batch opti-

mization [12, 39, 63, 68] discussed in §2.3.2, VF2Boost [25]

packs ciphertexts with batching after computation, does not

support subsequent cryptographic operations; vector opera-

tions over ciphertexts in Gazelle [32] and SEAL [5] are not

applicable, as their underlying cryptosystem is FHE which

is inconsistent with PHE in mathematical properties.

Computing optimizations for PHE. To address the high

computational complexity of PHE, several works have at-

tempted to fully utilize multi-core CPUs [44], GPUs [18] and

FPGAs [66, 69] to accelerate HE computation. GeniBatch is

orthogonal to these works and we have implemented Geni-

Batch atop HAFLO (GPU-based acceleration) to further im-

prove the performance of PPML.

Framework optimizations for ML QSGD [11] and Tern-

grad [59] leverage quantization to compress gradients with

lower bits to reduce network traffic for distributed ML; how-

ever, they cannot address data inflation in PHE as quan-

tized numbers still expand to large numbers after encryp-

tion. Works for model compression [51, 58] which reduces

communication overhead with sparsification or sketching,

and works for relaxed synchronization [30, 37, 41] which

reduces communication frequency with stale information

are orthogonal to our work. GeniBatch can be integrated

with the above works as it imposes no constraints on input

data and synchronization schemes.

Network optimizations for ML. Distributed ML can boost

its performance via various domain-specific network opti-

mizations, both intra-datacenter [36, 42, 48, 60] and inter-

datacenter [35, 67]. For instance, DSA [57] utilized in-network

devices (i.e. P4 switches) to accelerate parameter aggrega-

tion; [67] proposed a new congestion control protocol for

cross-datacenter networks, reducing network latency. Since

GeniBatch is a bit-level optimization that does not change

packet headers, it can be easily integrated into the above

network devices and protocols.

7 Conclusion
This paper presented GeniBatch, a batch compiler that trans-

lates a PHE program with general vector operations into a

cross-silo PPML program with batching optimization. Geni-

Batch includes a Numpy-like frontend that can be used to

write advanced programs with little programming effort

and includes an optimizing compiler that generates correct

and efficient dataflow of PPML applications. Extensive ex-

periments have shown that GeniBatch is a viable solution

to improve end-to-end performance for various cross-silo

PPML applications from 1.59× to 22.6×.
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