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Abstract—Recent works introduce In-Network Aggregation
(INA) for distributed training (DT), which moves the gradient
summation into network programmable switches. INA can reduce
the traffic volume and accelerate communication in DT jobs.
However, switch memory is a scarce resource, unable to support
massive DT jobs in data centers, and existing INA solutions have
not utilized switch memory to the best extent.

We propose DSA, an Efficient Data-Plane switch memory
Scheduler for in-network Aggregation. DSA introduces preemp-
tion to the switch memory management for INA jobs. In the
data plane, DSA allows gradient tensors with high priority to
preempt the switch aggregators (basic computation unit in INA)
from tensors with low priority, which avoids an aggregator
wasting time in idle. In the control plane, DSA devises a
priority policy which assigns high priority to gradient tensors
that benefit overall job efficiency more, e.g., communication-
intensive jobs. We prototype DSA and experiments show that
DSA can improve the average JCT by up to 1.35× compared
with baseline solutions.

I. INTRODUCTION

To alleviate the communication bottleneck in large-scale
distributed training (DT), e.g., large language model [16],
researchers have recently proposed a new computation and
communication primitive — In-Network Aggregation (INA)
to accelerate the gradient aggregation in DT jobs. In INA,
the switch performs an AllReduce operation to the gradient
streams from multiple workers, and multicasts the aggregation
results back to workers. By reducing the total traffic volume
and freeing up network bandwidth, DSA could effectively
accelerate DT jobs.

In INA, a job’s gradient packets with the same packet
sequence number (PSN) across workers are addressed to the
same basic aggregation unit — aggregator — in the switch
memory, where the aggregator sums the gradient packets up
and returns the result back to workers along with the ACK
packets. The switch memory (i.e., the aggregators) can be
assigned to DT jobs either in an isolated mode or in a shared
mode (Section II-A).

However, a closer look at the switch memory usage mode
in existing solutions reveals that the switch memory is not
utilized to the best extent, and there exists potential to further
improve its utilization as well as the overall job efficiency.
First, the aggregators could be used in a finer granularity, and
perform more aggregation operations. Existing solutions make
an aggregator occupied by all packets with the same PSN
across workers; however, workers may progress differently

in gradient sending, and (possible) straggler workers would
make the aggregator wait for their packets without actually
performing aggregation.

Second, existing memory allocation policies (i.e., isolated
memory or shared memory with First-Come-First-Serve) do
not give preference to “important” tensors, i.e., multidimen-
sional arrays of numerical data, which could benefit the
overall job efficiency more if given more INA resources. For
example, a job with a shorter remaining time or a higher
communication-to-computation ratio should be given priority
over other jobs to finish first.

To this end, we propose a system with Data-plane Switch
memory scheduling for in-network Aggregation, namely DSA,
which introduces preemption to switch memory allocation.
DSA can improve switch memory utilization as well as multi-
job efficiency in INA. In the data plane, DSA’s preemption
mechanism allows an aggregator to process a job’s partial
packets and yield to another job with a higher priority, which
enables finer-grained aggregator usage. In the control plane,
DSA’s preemption policy assigns a tensor priority according
to its contribution to overall job efficiency, which helps “im-
portant” tensors to win the switch aggregator preemption.

DSA overcomes three challenges. First, most existing INA
solutions have exhausted switch pipeline resources (e.g.,
stages, ALUs), and it is challenging to add extra preemption
logic to the packet processing without impacting existing
logic and the consequent goodput. DSA adds an auxiliary
server, called PS, into the architecture to assist the switch in
aggregation and handle various failure cases, without affect-
ing the existing gradient aggregation on the switch pipeline
(Section III).

Second, preemption complicates the correctness guarantee,
causing difficulty in protocol design. Preemption could lead
to one aggregation split on two spots (the switch and the PS),
together with various packet loss possibilities, the protocol
could easily meet with issues of protocol suspension, duplicate
computation, and/or memory leak. DSA devises a reminder
mechanism on the PS, which cooperates with workers’ re-
liability mechanism and the switch deduplication to achieve
all-case correctness (Section IV).

Third, preemption should be carefully tuned. Low-frequency
preemption would cause aggregators to spend more time idle,
and high-frequency preemption would cause aggregators to
spend time thrashing instead of aggregating. To avoid both
cases, DSA designs a priority downgrading method for the979-8-3503-0322-3/23/$31.00 ©2023 IEEE



preemption policy (Section V).
We prototype DSA on a Tofino programmable switch and

in the end-host network stack. We evaluate DSA on a testbed
with one Wedge100 programmable switch and 10 NVIDIA
V100 GPUs, and an NS3 [26] simulator with a 64-node
topology. Experiments show that DSA outperforms state-of-
the-art solutions — SwitchML [46] and ATP [34] — by up to
1.89× and 1.35×, respectively. We also validate and confirm
the effectiveness of the two design intuitions, i.e., preemptive
mechanism and preemption policy, individually.

II. BACKGROUND

A. Analysis of Memory Usage Modes in INA Solutions
INA Preliminaries. A model training algorithm takes an
initial model and a dataset as input, and iteratively computes
a gradient based on the model and the dataset and updates the
model until the model converges. In distributed training where
the model and the dataset can be partitioned or replicated on
multiple workers, an important operation is to sum up tensors
(model or gradient) among workers and return the result
back to the workers, which is called AllReduce. In distributed
training, the communication overhead could bottleneck the
whole system [39], [46], and INA is an effective approach
to accelerate AllReduce as well as the entire job [34], [20].

INA performs AllReduce on recent popular programmable
switches. The programmable switch has a piece of on-chip
SRAM which can store durable cross-packet states, and can
load a user-specified program to operate on the states and
packets. Thus, it provides an opportunity to aggregate multiple
packets as one, and return the result back to the network.

In INA solutions, the switch memory is organized as an
array of aggregators. All workers would perform an AllReduce
operation on their gradients. Each worker chunks its gradient
into a sequence of packets, and assigns each packet a packet
sequence number (PSN). Workers send their gradient packets
to the switch, and packets with the same PSN are addressed
to the same aggregator, and the aggregator aggregates the
gradient packets to an aggregation result. On completion of
aggregating all workers’ gradient packets, the switch sends an
ACK packet to downstream devices (workers or the PS), where
the ACK packet piggybacks the aggregation result.

With the switch aggregating gradient packet streams as
one, the network carries the aggregation results instead of
the raw gradient packets. The total traffic volume is reduced,
and thus, the AllReduce operation, as well as the whole job,
is accelerated. Experiment results also show that INA can
achieve up to 1.8× speedup, compared to the current best
practice, Ring All-reduce [46].
Synchronous and Statistical INA. We classify existing INA
solutions into two classes — synchronous INA and statistical
INA. In synchronous INA, the switch aggregator array is
divided into isolated regions, and each DT job reserves a
region for its lifetime. Within the region, a packet with PSN
is addressed to an aggregator with the modulo operation:

aggregator.index← PSN%Size+Offset.

SwitchML, PANAMA, and NetReduce[46], [18], [38] are in
this class.

In statistical INA, the switch aggregator array is a shared
pool among all jobs. All jobs reserve aggregators in a decen-
tralized manner. A packet with PSN is addressed to

aggregator.index← Hash(JobID, PSN).

From the perspective of an aggregator, it serves job packets
with First-Come-First-Serve (FCFS). The aggregator would
detect addressing collisions (due to hash collision), and pass
the late-arrived packet to a fallback server. The fallback server
complements the aggregation for addressing failed packets.
ATP [34] is in this class, and INAlloc [59] is in a hybrid
mode of the two classes.
Comparison. Statistical INA could make better use of the
switch resource. Like the debate of constructing computer net-
works in circuit switching or packet switching in the 1970s, the
latter’s statistical time-division multiplexing improves the link
bandwidth utilization. In statistical INA, the gradient packet
reserves the aggregator, and the ACK packet releases the
aggregator; an aggregator is occupied transiently within one
RTT. On the contrary, synchronous INA reserves an aggregator
region for a job’s lifetime; as the training algorithm iteratively
computes and transmits gradients, the switch aggregators are
idle when the job is in the computation phase. When multiple
jobs share the switch aggregator, statistical INA allows the
aggregators to be multiplexed in a fine time granularity, and
thus, acquire a higher resource utilization and a shorter average
job completion time (JCT).

B. Problem Statement
Switch memory is not sufficient to support massive jobs.
Switch memory is a scarce resource. The on-chip SRAM
has to be designed of a small size to maintain high packet
processing speed, e.g., ~10MB for Tofino [1]. In addition,
production networks spare a portion of the switch memory
for network functions such as forwarding table [46], load
balancing [42], firewall [8], etc. In contrast, typical ML models
have a size of hundreds of megabytes, which far exceeds the
limitation of the switch memory.

Present programmable switch memory cannot satisfy the
requirement of massive jobs [54] in production networks.
Theoretically, to support aggregating gradient packets at a
line rate, the switch memory needed for a job equals the
bandwidth-delay product [46], e.g., each job needs ~1MB
switch memory under 100Gbps bandwidth. Therefore INA
can support at most ten jobs, which is insufficient for an
industrial production environment. For example, the trace of
a two-month workload from a GPU cluster with hundreds of
machines in Microsoft [29] shows that there can be a total of
96260 jobs, i.e., about a thousand jobs every day, and half of
them last more than hours.
Existing solutions have not used the switch memory in
the finest time granularity. By the analysis above, statistical
INA uses the switch memory transiently, from the first packet
reserving the aggregator to the ACK packet releasing the
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Figure 1: The aggregator occupation time, training four models
in the cluster in §VII-A.

aggregator. However, switch aggregators still could experience
idle time — the synchronization latency and the round-trip
time between the switch and the PS.

A DT job involves multiple workers, and they may proceed
with different progresses in training and gradient sending.
First, the heterogeneous environments on workers may lead
to their gradient generation not at the same time. Second,
system overheads such as system calls and memory copy on
different servers could fluctuate the gradient sending time and
rate. Third, each worker could obtain different bandwidth in
the network in a multi-tenant cloud environment.

Statistical INA has a fallback PS to handle addressing
collisions, and packets need to experience a round trip between
the switch and the PS. In failure cases, the fallback server is
necessary for correctness guarantee; but in the normal case, the
round trip for successfully aggregated packets unnecessarily
contributes to extra aggregator occupation time.

Figure 1 shows the CDF of the aggregator occupation time
when training four models. The median occupation time is 3-
20ms. In data centers, the typical RTT is less than 50 µs [58],
which is 2-3 orders of magnitude smaller. Thus, the aggregator
is severely underutilized. And the long occupation time is
mainly from the worker synchronization delay, because the
round trip between the switch and the PS is sub-RTT.
Existing solutions have not assigned switch aggregators
to more beneficial tensors. Existing statistical INAs make
the aggregators serve gradient packets in FCFS, implying that
all workloads are of the same importance. Like TCP, FCFS
together with the AIMD (additive-increase-multiplicative-
decrease) congestion control on the host, all jobs would
converge to resource sharing with max-min fairness.

However, in a multi-tenant scenario, certain workloads
could benefit the overall multi-job efficiency more than others.
First, within a model, sending and aggregating its front layers
could benefit more to JCT, because the next-epoch training
(forward propagation) could start immediately on the comple-
tion of the front layer transmission. Second, diverse models
have different communication-to-computation ratios, and allo-
cating the INA resource to communication-dominant models
could reduce the JCT more significantly. Third, inspired by
existing studies on job scheduling [22], [9], [17], prioritizing
jobs with the shortest remaining time reduces the average JCT.
C. Intuition and Challenges
Intuition. We propose to introduce preemption for switch
memory management to improve its overall utilization. Each

Stage 0 1 2 3 4~10 11
Map RAM 13/48 22/48 0/48 11/48 44/48 33/48
Meter ALU 2/4 2/4 0/4 1/4 4/4 3/4

SRAM 16/80 22/80 0/80 18/80 48/80 37/80

Figure 2: Resource usage of ATP on Tofino [2], generated by
P4i, a visualization tool for P4 programming [24]. This figure
shows 3 mostly used types of resource (overall 20 types) on
each of the 12 stages.
tensor is assigned a priority for preemption. In the data plane,
enforcing a preemption mechanism could reduce aggregator
idle time, making an aggregator perform more aggregation
operations. In the control plane, applying a preemption policy
could prioritize tensors that benefit more to the overall job ef-
ficiency. We build a system named DSA— Data-plane Switch
memory scheduler with in-network Aggregation — with these
intuitions.
Challenges. DSA overcomes three challenges. First, the pro-
grammable switch has limited programmability and compu-
tation resources, which causes difficulty in adding the new
preemption function as well as its consequent failure handling.
Existing solutions make in-depth optimization (e.g., resubmit
and recirculate) to pack the switch functions into limited
pipeline stages. Figure 2 shows that ATP almost uses up
all meter-ALU resources of 7 stages (12 stages in all) on
the switch pipeline. Adding DSA’s new preemption function
means to spare pipeline stages and reduce packet payload and
the system goodput; such overhead could cancel out DSA’s
performance gain. DSA makes architectural design: placing
the simple core aggregation function on the switch to max-
imumly use its line-rate processing capability, and attaching
an auxiliary server, named PS, to handle all preemption and
failure cases for correctness (Section III).

Second, preemption makes one aggregation operation pos-
sibly processed at two spots (the switch and the PS), which
causes complex possibilities of protocol suspension, memory
leak, duplicate computation, etc. DSA makes a synthetic
design combining worker reliability, switch deduplication, and
a new PS reminder mechanism, which cooperates to guarantee
correctness. We also make an all-case correctness analysis
(Section IV).

Third, the protocol needs to decide on a proper preemption
frequency. When a preemption occurs, the switch sends the
partial aggregation result in the PS. Too frequent preemptions
will increase in-network traffic volume and impact the perfor-
mance of INA; conservative preemption will cause aggregators
with partial results to wait for straggler packets in idle time,
hurting the aggregator utilization. DSA devises a preemption
policy and priority downgrading method to tune the preemp-
tion frequency (Section V).

III. DSA DESIGN OVERVIEW

A. Architecture

Figure 3 illustrates the architecture of DSA and an example.
DSA is a host-switch codesigned transport layer protocol
to support the AllReduce operation among a job’s multiple
workers. Each worker sends its gradient to the network and
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Figure 3: DSA architecture and an example of preemption.
The solid arrows represent gradient packets, and the dotted
arrows represent the ACK packets.

expects the sum of all workers’ gradients from the network. On
each worker, DSA deploys its own network stack to exchange
gradient with the training application. In the network, DSA
consists of a switch and an auxiliary server to perform the
aggregation operation on workers’ gradient streams. In the
following text, the auxiliary server is called “PS”.

The worker (its DSA network stack) is in charge of ex-
changing gradients and aggregation results with the training
applications, computing the preemption priority, packetizing
tensors and (de)packetizing. A worker chunks its gradient
tensors into a sequence of packets, each with a packet sequence
number (PSN). All workers are initialized with the same PSN
so that packets with the same PSN could be assigned to the
same aggregator at the switch for aggregation. The worker
would receive ACK packets from the switch or the PS, which
not only acknowledges the receipt of the gradient packets but
also piggybacks the aggregation result. The worker assembles
the aggregation results in the ACK packets, and gives it back
to the training application for model update.

The switch is in charge of aggregating gradient packets
with the best effort and preemption. DSA organizes the
switch memory as an aggregator array, where each aggregator
has the format of <JobID_PSN, bitmap, priority,
tensor_values>. Each aggregator can store the same
length of tensor values as a gradient packet’s payload. The
aggregator array is shared among all jobs, and a gradient
packet is addressed to an aggregator by hashing as in statistical
INA.

The PS is in charge of handling failure cases, including
aggregating fallback gradient packets and initiating active
failure correction (i.e., the reminder mechanism in Section IV).
The PS maintains a dictionary to record the intermediate
results. The dictionary stores the mapping of
JobID_PSN: <tensor_value, bitmap, time>,

which handles packets from the switch.

B. Workflow
Initialization. In system initialization, DSA allocates the
aggregator array in the switch. When a DT job is started, it
is assigned a global unique JobID. The job iteratively trains
the model on multiple workers; in each iteration (a.k.a. an
epoch), a worker computes a gradient, all workers perform

an AllReduce operation to sum up their gradients and get the
results, and each worker updates its model and proceeds to
the next iteration. DSA involves in the AllReduce process.

Worker sending gradient packets. In an AllReduce, a worker
chunks its gradient into a sequence of packets, each with its
payload carrying the gradient values and a packet sequence
number PSN. All workers are synchronized with the same
initial PSN. The worker maintains a sliding window to stream
the packets to the network; once it receives ACK packets, it
advances the sliding window to send new packets. In DSA,
the ACK packets piggyback the aggregation results from the
switch or the PS.

Each worker in a job is assigned with a Rank ID to
distinguish them, ranging from 1 to the number of workers
N . The rank ID is also encoded into the packets: the DSA
network stack computes a N -bit bitmap with one bit whose
index equals the rank ID set 1 to indicate the worker.

Each job performs a policy priority calculation locally
(detailed in Section V), and encodes the priority into the
packet header. DSA would enforce aggregator enforcement
among jobs in the switch according to their priority.

Switch and PS aggregating packets “with preemption”.
As a packet arrives at the switch, DSA addresses it to an
aggregator by Hash(JobID, PSN) in the array. If the aggre-
gator is empty, the packet tensor_values, JobID_PSN,
bitmap and the priority are written into the aggregator.
If the aggregator is reserved and its JobID_PSN is the same
with the packet, their bitmaps are further compared (i.e.,
agtr.bitmap ANDing pkt.bitmap): if the comparison
returns 0, indicating that the packet arrives at the aggregator
for the first time, the packet is accumulated to the aggregator;
otherwise, the packet has arrived before, and it should not
participate in the aggregation again. We name the process to
check and avoid duplicate computation deduplication.

If a packet’s JobID_PSN differs from its aggregator’s,
DSA applies preemption to improve switch memory utiliza-
tion. The priority fields of the packet and the aggregator
are compared, and the one with a higher priority is kept in
the switch. If the aggregator wins, the packet is forwarded to
the PS; if the packet wins, the packet and the aggregator’s
contents are swapped, and then the packet is forwarded to the
PS.

The PS maintains a dictionary for each job. The dictio-
nary records the fallback packets from the switch, including
the packets that fail in preemption, and packets that were
evicted. The dictionary uses PSN as the key, and bitmap
and tensor_values as the value. The PS creates an entry
in the dictionary for each new PSN and updates the value with
the fallback packets.

On both the switch and PS, as they proceed with the packet
aggregation, if the bitmap is full, indicating the aggregation
is complete, an ACK packet is constructed and returned to
workers. The ACK packet piggybacks the aggregation result;
as it passes the switch, it is duplicated and multicast to all
workers. On the switch, when the ACK packet is constructed,
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the aggregator is deallocated for future use; on the PS, the
dictionary entry is also deleted after constructing the ACK
packet.

The preemption mechanism could cause “partial aggre-
gated” results in the aggregator, together with packet loss
in an unreliable network, the whole transmission protocol
could experience data missing, data duplication, and protocol
suspension. We make a detailed analysis and design to handle
these cases in Section IV.
Worker receiving ACK packets. The worker would receive
ACK packets which carry the aggregation results. The ACK
packets move the sliding window forward, and the worker
continues to send new gradient packets in the window. The
sending is terminated when all gradient packets are sent
and acknowledged. As the worker receives ACK packets, it
assembles the aggregation results as the aggregated gradient.
At the end of the gradient sending, the assembled aggregated
gradient is returned to the training application for the model
update.
C. Example

Figure 3 exemplifies the preemptive aggregator allocation.
Job 1 has four workers W1, W2, W3, and W4, and Job 2 has
two W5 and W6. gi denotes a packet from Wi; g1~g4 have
the same PSN, and g5 and g6 have the same PSN. Suppose
W3 and W4 are the stragglers in the current epoch. Firstly,
W1 and W2 send the gradient packets to switch ( 1⃝ 2⃝); the
aggregator is empty and is reserved by Job 1, waiting for
the gradient packets from W3 and W4. At this time, Job 2’s
workers W5 and W6 send gradients (suppose g5 and g6 have a
higher priority than g1, g2, g3, and g4). When g5 arrives ( 3⃝),
the switch performs preemption: the switch sends the partial
aggregation result of W1 and W2, i.e., g1 + g2, to the PS and
replaces the aggregator by g5 ( 4⃝). When g6 arrives ( 5⃝), the
aggregation of Job 2 is completed, so the switch multicasts
the ACK back to W5 and W6, carrying g5 + g6, and releases
the aggregator ( 6⃝). When g3 and g4 arrive ( 7⃝ 8⃝), the they
reserve the aggregator again. A timeout at the PS would trigger
the reminder mechanism to fetch the aggregator result to the
PS ( 9⃝). Finally, the PS adds up the two partial aggregation
results of Job 1 (g1 + g2 + g3 + g4) and multicasts the ACK
carrying the complete result to W1, W2, W3, and W4 ( 10⃝).
D. Discussion
Reducing traffic volume. Preemption is able to reduce the
network traffic volume. Each aggregation operation in the
switch reduces one packet in the network. Therefore, to
reduce the traffic volume, we should increase the number of
aggregation operations per unit time. Recall that under non-
preemptive allocation, the aggregator will be idle when it is
waiting for the straggler workers’ gradient packets. During
this period, other gradients colliding at the aggregator will
fall back to the PS, which brings lots of network traffic. With
preemption, we can reduce the times of fallback to the PS by
introducing only several partial aggregation packets.
Congenstion control and handling out-of-order packets.
When multiple jobs share the cluster, they may contend for

network resources, including link capacity and switch memory.
An ideal resource sharing should allow jobs to saturate the
network. Like ATP [34], DSA applies on-switch ECN as
the congestion signal, and Additive-Increase-Multiplicative-
Decrease (AIMD) as the congestion control algorithm. Con-
sidering the 100Gbps link capacity, DSA chooses 60KB as
the initial window size.

Unlike existing solutions, where the ACK packets are gen-
erated from a single spot (e.g., switch [46] or PS [34]), DSA’s
ACK packets can be generated from two spots — the switch
or the PS. Thus, ACK packets may arrive at the worker out
of order. In classical TCP, out-of-order packets would lead to
duplicate ACK; the sender would regard duplicate ACK as a
packet loss and link congestion, and thus, the sender would
decrease its sending window (a.k.a., fast retransmission). In
DSA, however, the out-of-order packets and duplicate ACK
are normal, and is not a signal for congestion. Thus, DSA
chooses to take no actions to change the sliding window size
when observing out-of-order or duplicate ACKs.

IV. HANDLING FAILURE CASES

A. Failure Cases

The interaction between the three endpoints, as well as
the non-ideal network conditions, could cause complex failure
cases in packet aggregation. We name the aggregation oper-
ation on packets with the same PSN in a job an aggregation
task.
Packet Loss. The network could be unreliable. If a gradient
packet is lost before arriving at the switch/PS, the switch/PS
could not complete the aggregation tasks.
Duplicate Computation. If one worker’s gradient is lost, all
workers cannot receive the ACK packet, and may retransmit
their gradient packet. The switch would observe deduplicate
appearance of a packet; the switch must not aggregate the
packet again; otherwise, the aggregation result is incorrect.
Protocol Suspension. Assume the first few packets of task A
are aggregated in a switch aggregator. Then another task B
with a higher priority sends packets to the same aggregator,
and evicts A’s partial results. After task B completes and
deallocates the aggregator, task A’s remaining packets arrive
and reserve the aggregator again. For task A, there are two
partial aggregation results at the PS and the switch, waiting
for each other; workers cannot receive ACK and advance the
window, thus, the protocol suspends.
Memory Leak. If a worker retransmits a packet, and receives
its (delayed) ACK before the retransmitted packet arrives at the
switch. Then the retransmitted packet reserves an aggregator. If
all workers receive the ACK and proceed to send new packets.
The aggregator would be occupied without being released.

B. Mechanisms
Except for the memory leak problem is solved by the

“priority downgrading” method in Section V, all other issues
are solved by a combination of the retransmission mechanism
on workers, deduplication mechanism on the switch, and a
reminder mechanism on the PS to handle all-case failures and
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ensure correctness. The essential intuition is that the PS can
work as a data-plane coordinator to fetch data from all parties
(the switch and workers) and correct the error cases.

DSA applies a retransmission mechanism on workers. After
a gradient packet is sent out, as long as its ACK does not
return for a timeout, the gradient packet is retransmitted. After
three retransmissions, the worker sends a special reminder
notification to the PS, which triggers the reminder mechanism
on the PS.

DSA reuses the bitmap in each aggregator for deduplica-
tion. Recall that an aggregator maintains a bitmap to record
the participation of each worker. When one worker’s gradient
packet appears for the first time, its bit in the bitmap is
set 1; when the same packet appears again later, the switch
recognizes the duplicate data, and would not accumulate the
packet payload to the aggregator values. Thus, DSA can
deduplicate repeated gradient packets.

DSA devises a reminder mechanism on the PS. In the
mechanism, the PS sends requests of a PSN to the switch
and all workers, fetching the (possibly partial) aggregation
result on the switch, and the original gradient packets to
the PS; the PS further computes the aggregation result and
sends it as an ACK packet back to workers. The reminder
mechanism can be triggered in two ways: if an entry in the
PS dictionary experiences a timeout without completion, the
PS actively runs the reminder mechanism for the entry’s PSN;
if a worker is stuck without receiving an ACK, the worker
sends a reminder notification to the PS, which triggers the
PS’s reminder mechanism.
Discussion. Compared with the classical TCP, the reminder
mechanism at the PS (receiver) is a new feature specific to
INA. Unlike TCP where the switch just forwards packets
without withholding them, INA protocols have to temporarily
store the intermediate value in the switch “until all packets
are aggregated”, and such a waiting process would cause the
protocol to suspend in progress. Making the PS (receiver) able
to actively fetch intermediate results and the gradient packets
helps the protocol to get rid of the suspension state and make
progress.

C. All-case Analysis
We consider three kinds of aggregation tasks: type-I tasks

do not experience preemption, type-II tasks experience and
win the preemption, and type-III ones experience but lose the
preemption. We analyze the correctness in all three cases with
the above mechanisms.

Type-I and type-II tasks are similar as they occupy the
switch aggregator in their whole life. In the ideal case, all
gradient packets are aggregated at the switch, and the ACK
is generated and multicast to all workers. If one worker’s
gradient packet is lost, the worker (and other workers) would
retransmit the gradient packet; the switch deduplicates packets
and completes the aggregation, and sends the ACK back to
workers.

If all workers’ ACK packets are lost, all workers retransmit
the gradient packets, redoing the aggregation and ACK reply.
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Figure 4: An example of the reminder mechanism. The solid
arrows represent data flow, and the dotted arrows represent
events.

If some workers’ ACK packets are lost but some are not,
the workers missing ACK packets would retransmit their
gradient packets. Unfortunately, these retransmitted packets
can never complete the aggregation (bitmap would never be
full); the workers would experience a timeout and send a
reminder notification to the PS, where the PS’s reminder
mechanism fetches all workers’ gradient packets, completes
the aggregation, and sends the ACK to all workers (including
the failed ones).

Type-III tasks have the most complex possibilities. In the
ideal case without packet loss, the task has a partial result
at the PS (either the first few packets lose preemption or
are evicted to the PS). If the later packets do not win the
preemption, they are forwarded to the PS, and the aggregation
is completed at the PS and the ACK is replied. If the later
packets find that the aggregator is empty (deallocated by the
collided tasks), these packets leave a second partial result
in the switch; in this case, the task entry in the PS would
experience a timeout and trigger the reminder mechanism to
fetch the on-switch result to the PS, and the PS completes the
aggregation and replies the ACK.

Packet loss could happen on any hops of the round-trip
path: worker-switch, switch-PS, and PS-worker. Any packet
loss would cause two possibilities: the PS has a partial result,
and/or some workers do not receive ACK. In the former case,
the PS initiates the reminder mechanism; in the latter case,
the worker notifies the PS to start the reminder mechanism;
with the reminder mechanism, the PS fetches the partial result
from the switch and/or the gradient packets from workers, and
complete the aggregation and replies the ACK.

D. Example
Figure 4 illustrates the reminder mechanism procedures. We

note the first gradient fragment of worker i as gi. g1 arrives at
the switch first; however, due to reasons like address collision
and preemption failure, g1 loses possession of the aggregator
( 1⃝), and arrives at the PS. Then the PS will create an entry
for this gradient packet ( 2⃝). When g2 and g3 arrive at the
switch later ( 3⃝), they may occupy the aggregator and wait
for g1. However, g1 is already at the PS, so the switch cannot
complete the aggregation and release the aggregator by itself.
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Table I: Definitions and notations

Pj(l) the priority of the gradients in layer l for Job j
l layer of the gradients

Tj remaining time of the current epoch for Job j
Lj number of layers in the model of Job j

Commj communication time of one epoch of Job j
Compj computation time of one epoch of Job j

By the reminder mechanism, the PS would detect a timeout
for an entry (setting in §VI)( 4⃝), and send a reminder packet
to the switch, which contains the job ID and PSN ( 5⃝). The
reminder packet fetches the aggregated result, i.e., g2 + g3,
from the switch to the PS ( 6⃝). Then the PS updates the
corresponding entry ( 7⃝). Finally, if the entry bitmap is full (all
“1”s), the PS multicasts this aggregated result to all workers
in an ACK packet ( 8⃝).

V. PREEMPTION POLICY

Priority setting. DSA’s preemption policy tries to assign a
high priority to tensors which could contribute more to the
overall job efficiency and help them to win the preemption
in the switch. A tensor’s priority is assigned based on three
heuristics1.

First, within one model, in the gradient computation (i.e.,
backward propagation), the gradient’s front layers are gen-
erated lastly, but they would be used first in the next
epoch. Thus, prioritizing the transmission of model front
layers helps them to complete more quickly, and start the
next epoch earlier. Second, different models have different
communication-to-computation skewness in training, and pri-
oritizing communication-intensive models could make trans-
mission time reduction more significant. Third, based on
classical scheduling policy studies [22], [9], [17], prioritizing
jobs whose current epoch has the shortest remaining time
could reduce the average JCT.

Using the notations in Table I, a tensor’s priority can be
computed as follows

Pj(l) =
1

Tj
× Lj

l
× Commj

Compj
. (1)

The three factors are multiplied instead of linearly combined,
since they have different units and ranges. In the runtime, Tj ,
Commj , and Compj are measured with the model training.
Priority downgrading. To avoid an aggregator being occupied
for a long time, DSA applies a priority downgrading method2

at the switch. If an addressing collision happens and the
packet fails to preempt, the aggregator’s priority is halved,
i.e., shifting one bit to the right. When a high-priority task
reserves an aggregator for a long time, it has more chance to
meet with collisions; each collision causes the task priority to
downgrade, and eventually, the task yields the aggregator to a
newer task.

1These heuristics provide a fundamental basis for priority setting in tensor
transmission. However, they represent an initial attempt to address this
complex problem. Future work could explore more sophisticated methods.

2Ideally, We can add a timer to each aggregator and set a timeout to avoid
long occupations. However, the limited programming resource of P4 switches
prevents it, instead, we apply the priority downgrading.
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Figure 5: End-to-end DNN training quality. Batch size is 32.

VI. IMPLEMENTATION

DSA host network stack is built on the Raw Ethernet
Programming of Mellanox [3] with 4000+ lines of code (LoC)
in C++. And the DSA switch logic has 3000+ LoC in P4 on an
Intel/Barefoot Tofino switch. We elaborate on two mechanisms
in the implementation.
Packet swapping for aggregator replacement. When a
packet preempts the aggregator, it evicts the aggregator value
to the PS. This process is implemented by a packet swapping
method. On the Tofino switch, the aggregator array is declared
as a switch register array, but the Tofino P4 language only
allows one-time memory read and write by a single instruction
read_and_modify. The instruction can swap the packet
payload with the aggregator tensor_values. But the meta-
data fields, i.e., priority and JobID_PSN, need to be
read first, checked to decide preemption, and then written,
which does not fit in the instruction. DSA performs resubmit
operation on the packet, putting it back to the beginning of
the ingress pipeline, and thus these fields can be written in
the second pass. Although resubmit consumes switch internal
bandwidth, it only occurs in preemption.
Settings of the reminder mechanism. Both the worker and
the PS are configured with timeout for failure handling. The
timeout is updated by an Exponentially Weighted Moving
Average (EWMA) in the runtime based on measurement (like
that in TCP [31]). On the worker side, the timeout is based on
the RTT measurement (the time between a gradient sending
and its ACK arriving). On the PS, the timeout is based
on the measurement of an entry setup and its aggregation
completion. To avoid spurious reminders, DSA forces the
minimum timeout to be 1ms.

VII. EVALUATION

We evaluate DSA on the testbed and by simulation. The key
findings are as follows:

• DSA’s acceleration does not hurt model accuracy in
testbed experiments, and the convergence time is im-
proved by 1.27×/1.15× compared to BytePS/ATP.

• DSA outperforms INA solutions (SwitchML and ATP)
and vanilla BytePS in training speed in all cases on the
testbed, including large model training such as BERT.

• DSA improves JCT by up to 1.89×/1.35× compared to
SwitchML/ATP in large-scale simulation.

• Both the preemption mechanism and the policy take effect
in accelerating INA; the former improves switch memory
utilization by up to 2.27×, and the latter improves JCT
by up to 1.16× compared with the baselines.
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Figure 7: Aggregation throughout in AllReduce.

A. Testbed Experiments
We integrate DSA into BytePS [30], a DNN training frame-

work, and evaluate its end-to-end performance on a small-
scale testbed. We also use microbenchmarks to evaluate the
communication speedup.

1) Settings: Testbed. Our testbed consists of 5 physical
GPU servers, each with 2 V100 GPUs, 40 CPU cores (Intel
Xeon Gold 5115), 128GB memory, 2 Mellanox ConnectX5
100Gbps NICs, and one Edgecore Wedge100BF-32X switch.
Each server has two 100Gbps links connecting to the switch.
To scale up our testbed, we further divide one physical server
into two separated docker containers, each with 1 GPU, 20
CPU cores, 64GB memory, and a 100Gbps virtual NIC.
Models and Workloads. We train representative DNN mod-
els, including ResNet50 [25], and VGG16 [50] (tested in
ATP [34], using Cifar100 dataset [33]), and DeepLight, LSTM,
BERT, VGG19, UGATIT, and NCF (tested in SwitchML [46]).
We also run an AllReduce benchmark to measure the aggrega-
tion throughput, where each worker repeatedly sends fixed-size
tensors and receives the result.
Baselines and Metrics. We compare DSA against ATP,
SwitchML, and vanilla BytePS (NtoN RDMA mode). To make
a fair comparison, all solutions are integrated into BytePS [30],
and all systems enable the NIC feature of TSO and MP-
QP. The packet size of ATP and DSA is 306B, and that
of SwitchML is 180B. When running multiple jobs with
SwitchML, we isolate the switch memory evenly among jobs.

We use epoch-to-accuracy (ETA) and time-to-accuracy
(TTA) to measure the training quality, and the aggregation
throughput, i.e., worker receiving throughput, to measure the
training speed.

2) Performance: Training Quality. In Figure 5(a), each
experiment runs a single job with 8 workers training ResNet50.
Considering the small scale of our testbed, we limit the switch
memory (aggregators) to 1MB. We observe that the curve of
DSA is similar to BytePS’s, and they converge to the same
accuracy. Thus, DSA’s acceleration does not affect the training
accuracy.

In Figure 5(b), each experiment runs 2 DNN models,
ResNet50 and VGG16, each with 4 workers. And DSA and

ATP have one extra PS for each job. DSA reaches 75%
top-5 accuracy 1.15× and 1.27× faster than the ATP and
BytePS in VGG16 training. DSA only slightly outperforms
the baselines (< 1.01×) when training ResNet50, because
ResNet50 is computation-intensive, which is consistent with
the observations in ATP [34].
Training Speed. In Figure 6, each experiment runs two identi-
cal jobs concurrently, each with 5 workers. DSA outperforms
SwitchML and ATP in all cases; specifically, when training
BERT, a widely-used large model, DSA achieves a training
speedup of 76% and 33% compared to SwitchML and ATP,
respectively.
Throughput Gain. In AllReduce benchmarking, we configure
two settings: the first is to fix the number of jobs to 4 and
vary the tensor size, and the second is to fix the tensor size
to 4MB and vary the number of jobs. We use the first 8
containers {w1 ∼ w8} to be the workers and the remaining 2
to be the PSes {p1, p2}. All jobs with the odd ID are located
on {w1 ∼ w4, p1}, and other jobs are on {w5 ∼ w8, p2}.
Figure 7 shows the results. DSA outperforms SwitchML and
ATP by up to 1.33× and 1.76×, respectively. We also observe
that all INA solutions’ speedup is more significant with larger
tensor sizes and fewer concurrent jobs.
B. Simulations on Large-scale Jobs and Networks

Considering the limited scale of our testbed, here we
evaluate DSA at a large scale with NS3 [26] simulation as
a supplement.

1) Settings: Topology. We set up a star topology, where
one switch connects to 64 servers, each with a 100Gbps link.
The base RTT is 10 µs. The switch spares 5MB memory for
INA. We use the same packet size (306Byte) as the setting of
ATP [34].
Training Behavior in Simulation. Our simulation considers
the communication and computation overlapping [56] of DNN
training. For simplicity, we assume that all DNNs have only
two layers with the same size, and each layer is evenly divided
into two tensor partitions [44]. Since the backward propagation
(BP) starts to compute the gradients from the back layer, we
assume that the first tensor partition of the second layer is
transmitted first, followed by the first layer, and finally, the
second tensor partition of the second layer. When a worker
receives all aggregation results of the first layer, it can directly
start the computation of the first layer in the next epoch. In
contrast, the computation of the second layer must wait for
the computation completion of the first layer and the arrival
of the second layer’s aggregation results.
Workloads. We assume two types of DNNs; the first one
(A) is communication-intensive with a tensor partition size of
4MB and a computation time of 0.32ms per layer (theoretical
communication time: computation time = 2:1). The second one
(B) is computation-intensive with a tensor partition size of
2MB and a computation time of 0.64ms per layer (theoretical
communication time: computation time = 1:2).
Baselines and Metrics. We still use ATP and SwitchML as the
baselines. We measure job completion time (JCT) to evaluate
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the system efficiency, where a job is defined as a one-epoch
training — computing a gradient, AllReducing gradients, and
updating the model.

Parameter Settings. 1) Job placement: we assume no over-
lapping usage of servers among different jobs, and each server
contains at most one worker. 2) Job start time: to reflect
the real situation, we avoid all DNN jobs starting at exactly
the same time; here, we use a random variable t as the
job start time, where t ∼ U(0, 1ms). 3) Computation speed
variance: Considering the different computation speeds of
different workers, we add a jitter j on the sending side, where
j ∼ U(0, 300 µs), which is approximate to the computation
time of a tensor partition. 4) Parameter server: For ATP and
DSA, a parameter server is required for each job. Without loss
of generality, we add 8 extra servers as the PSes for the 8-
job and 64-worker case. 5) Priority setting: we calculate the
priority according to the formula in §V. Since our DNNs have
two layers, all Lj is 2. The l can be 1 or 2 according to
which layer. For DNN A, the Commj

Compj
= 2, for DNN B, the

Commj

Compj
= 0.5. We use the remaining time of the current epoch

to estimate Tj .
2) Performance: We run two groups of simulations. In the

first group, we fix the number of workers in each job to be 8,
and change the number of jobs. In the second group, we fix
the number of jobs to be 8, and vary the number of workers
in each job (each job has the same number of workers). We
conduct three simulations in each group: all jobs are DNN A;
all jobs are B; the ratio of A to B is 1:1.

Speedup with different numbers of jobs. Figure 8 shows
the JCT with different numbers of jobs. DSA outperforms
SwitchML and ATP by up to 1.89× and 1.35×. We also
observe that the speedup of DSA becomes more significant
with more jobs. This result is consistent with our testbed.

Speedup with different numbers of workers. Figure 9 shows
the JCT for different INA solutions with different numbers
of workers. DSA outperforms SwitchML and ATP in all
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Figure 10: [Simulation] Switch memory utilization.

JC
T 

(m
s)

0

1

2

3

4

INA solution
ATP Straw1 Straw2 DSA

(a) DNN A
JC

T 
(m

s)

0

1

2

3

4

INA solution
ATP Straw1 Straw2 DSA

(b) A:B = 1:1

Figure 11: [Simulation] Speedup of preemption policy.

cases. DSA obtains more improvement over ATP with more
workers. This result matches the expectation because with
more workers, the synchronization cost of aggregation will
increase. Thus preemption can obtain more performance gain.

C. Validating Individual Methods
Preemption Mechanism. We simulate 8 jobs, each with 8
workers, and other settings are the same with §VII-B. We de-
fine the switch memory utilization as the aggregation through-
put over the link capacity 100Gbps. In the multi-job scenario,
we calculate the average utilization of all jobs. Figure 10
shows switch memory utilization measured on two types of
DNNs. DSA outperforms SwitchML and ATP by 2.27× and
1.45× for DNN A. The numbers for DNN B are 1.9× and
1.28×. We observe more improvement on communication-
intensive models, i.e., DNN A, which is consistent with the
testbed experiment.
Preemption Policy. We make two strawman preemption INA
solutions: the first one always does preemption upon hash
collision; the second one has a 50-50 chance to perform
preemption. We compare DSA with these two solutions and
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ATP by simulation. There are 8 jobs, each with 8 workers.
Other settings are in §VII-B. Figure 11 shows the average
JCT under two settings: 1) all jobs are DNN A; 2) DNN
A and DNN B each have 4 jobs. DSA, Straw1, and Straw2
outperform ATP by 1.35×, 1.19×, and 1.19× for DNN A. For
the mixed-models setting, the numbers are 1.22×, 1.05×, and
1.05×. DSA performs better than the strawman solutions and
shows more improvement with a mixed-model setting. The
results prove that DSA benefits from the preemption policy.
Performance in Lossy Networks We evaluate the loss recov-
ery mechanism of DSA by artificially dropping packets. We
choose ATP [34] and a modified SwitchML [46] (using the
same timeout and congestion control mechanism of ATP) as
the baselines. To reflect the combined effect of preemption
and packet loss, we run two concurrent jobs, each with four
workers. We train VGG16 on Cifar100. Figure 12(a) shows
the impact of packet drop on one worker, and Figure 12(b)
shows that on the PS (note that SwitchML does not use a PS,
so we only compare DSA with ATP). We observe that DSA is
resilient to packet loss and provides a training speed close to
ATP. We also measure the ratio of each packet loss type, i.e,
corresponding to which aggregation tasks (§IV-C). For packet
loss at one work, the ratio is around 8:1:1, for the packet loss
at the PS, it is 5:1:1. The observations are 1) The ratio of each
aggregation task is independent of loss rate. 2) The ratios of
type-II and type-III tasks are almost the same. 3) Packet loss
at the PS brings more impact to the preemption tasks.

VIII. RELATED WORK

Synchronous INA solutions. Synchronous INA isolates
switch memory for individual jobs. Since model training
iteratively computes and transmits gradients, synchronous INA
causes switch memory to be idle when the host is computing.
DSA is in the scope of statistical INA, which avoids this disad-
vantage. SHARP [20], [19] supports layer-4 aggregation with
ASIC in InfiniBand switches. SwitchML [46] builds single-job
INA on the Tofino switch. DAIET [45] implements a proof-of-
concept on the Tofino switch to show INA’s performance gain
instead of an end-to-end system. Camdoop [11], NetAgg [41],
and MLFabric [51] propose to add a high-performance server
as the midpoint to aggregate data streams. Parameter Hub [39]
proposes to use a cluster of servers to replace the endpoint
parameter server. iSwitch [36], PANAMA[18], and NetRe-
duce [38] propose INA acceleration for DT jobs on FPGA.
Flare [35] gives a RISC-V-specific INA design. Klenk et al.
simulate an INA design on switches for NVIDIA intra-GPU

NVLink network [32]. Faraj et al. mentioned AllReduce is
performed by “fast math units” on the network in IBM Blue
Gene/P supercomputer [14]. INA is also proposed in wireless
networks [7], [48], but the solutions target the single-job
scenario.
Statistical INA solutions. Statistical INA makes all jobs
share the switch memory. Switch aggregators are reserved
and released in a finer time granularity, which improves the
switch memory utilization. DSA proposes a preemptive switch
memory usage mode, which could further refine the aggrega-
tor usage granularity and improve the utilization. ATP [34]
makes jobs share a pool of aggregators. INAlloc [59] allows
a hybrid memory usage mode, which jointly considers job
deadline guarantee and overall efficiency. GRID [13] considers
the switch processing capacity limitation and distributes the
aggregation workloads on the network-wide switches.
Other DT acceleration solutions. The following solutions
also accelerate DT jobs. They either reduce the transmission
time or allocate resources to jobs, and they are complementary
with INA and DSA. General network acceleration [4], [55],
[60], [6], [5] can speedup DNN communication. TicTac [23],
Poseidon [56], P3 [28], and ByteScheduler [44] overlap the
communication time with computation time in model training.
OmniReduce [15], AdaGrad [47], and DGC [37] reduce traffic
volume by methods like quantization and compression. Gos-
sipGraD [12] and Sip-ML [49] improve transmission rate by
InfiniBand or optical networks. BlueConnect [10], Blink [52],
AFS [27], and PLink [40] make topology-aware job manage-
ment and allocate network bandwidth to jobs. Gandiva [53],
Tiresias [21], SLAQ [57] schedule GPU resources to jobs.
Optimus [43] considers job placement to balance GPU and
bandwidth usage among jobs.

IX. CONCLUSION

In this paper, we proposed DSA to accelerate DT jobs
with shared INA in a cluster. DSA introduces preemption into
the memory management, and improves the switch memory
utilization as well as the overall job efficiency. In the data
plane, DSA applies a preemption mechanism to use the switch
aggregators in a finer time granularity, avoiding aggregator idle
time. In the control plane, DSA devises a preemption policy
to assign high priority to gradient tensors that benefit more to
the overall job efficiency. In addition, DSA designs a reminder
mechanism that handles various failure cases in the protocol.
DSA prototype and experiment results show that DSA can
outperform the state-of-the-art INAs (ATP and SwitchML) by
up to 1.89× and 1.35× respectively in terms of average JCT.
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