
Generic and Automatic Address Configuration for Data
Center Networks∗

Kai Chen⋆†, Chuanxiong Guo†, Haitao Wu†, Jing Yuan‡⋆, Zhenqian Feng♯†,
Yan Chen⋆, Songwu Lu§, Wenfei Wu♮†

⋆Northwestern University, †Microsoft Research Asia, ‡Tsinghua University, ♯NUDT, §UCLA, ♮BUAA
⋆{kchen,ychen}@northwestern.edu, †{chguo,hwu,v-zhfe,v-wenfwu}@microsoft.com,

‡yuan-j05@mails.tsinghua.edu.cn, §slu@cs.ucla.edu

ABSTRACT
Data center networks encode locality and topology information into
their server and switch addresses for performance and routing pur-
poses. For this reason, the traditional address configuration protocols
such as DHCP require huge amount of manual input, leaving them
error-prone.

In this paper, we present DAC, a generic and automatic Data cen-
ter Address Configuration system. With an automatically generated
blueprint which defines the connections of servers and switches la-
beled by logical IDs, e.g., IP addresses, DAC first learns the physical
topology labeled by device IDs, e.g., MAC addresses. Then at the
core of DAC is its device-to-logical ID mapping and malfunction de-
tection. DAC makes an innovation in abstracting the device-to-logical
ID mapping to the graph isomorphism problem, and solves it with low
time-complexity by leveraging the attributes of data center network
topologies. Its malfunction detection scheme detects errors such as
device and link failures and miswirings, including the most difficult
case where miswirings do not cause any node degree change.

We have evaluated DAC via simulation, implementation and exper-
iments. Our simulation results show that DAC can accurately find all
the hardest-to-detect malfunctions and can autoconfigure a large data
center with 3.8 million devices in 46 seconds. In our implementa-
tion, we successfully autoconfigure a small 64-server BCube network
within 300 milliseconds and show that DAC is a viable solution for
data center autoconfiguration.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network communica-
tions; C.2.3 [Network Operations]: Network management

General Terms
Algorithms, Design, Performance, Management

Keywords
Data center networks, Address configuration, Graph isomorphism

∗This work was performed when Kai, Zhenqian and Wenfei were
interns at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

1. INTRODUCTION
1.1 Motivation

Mega data centers [1] are being built around the world to pro-
vide various cloud computing services such as Web search, online
social networking, online office and IT infrastructure out-sourcing
for both individual users and organizations. To take the advantage of
economies of scale, it is common for a data center to contain tens or
even hundreds of thousands of servers. The current choice for build-
ing data centers is using commodity servers and Ethernet switches
for hardware and the standard TCP/IP protocol suite for inter-server
communication. This choice provides the best performance to price
trade-off [2]. All the servers are connected via network switches to
form a large distributed system.

Before the servers and switches can provide any useful services,
however, they must be correctly configured. For existing data centers
using the TCP/IP protocol, the configuration includes assigning IP
address to every server. For layer-2 Ethernet, we can use DHCP [3]
for dynamic IP address configuration. But servers in a data center
need more than one IP address in certain address ranges. This is be-
cause for performance and fault tolerance reasons, servers need to
know the locality of other servers. For example, in a distributed file
system [4], a chunk of data is replicated several times, typically three,
to increase reliability. It is better to put the second replica on a server
in the same rack as the original, and the third replica on a server at
another rack. The current practice is to embed locality information
into IP addresses. The address locality can also be used to increase
performance. For example, instead of fetching a piece of data from
a distant server, we can retrieve the same piece of data from a closer
one. This kind of locality based optimization is widely used in data
center applications [4, 5].

The newly proposed data center network (DCN) structures [6–9]
go one step further by encoding their topology information into their
logical IDs. These logical IDs can take the form of IP address (e.g.,
in VL2 [9]), or MAC address (e.g., in Portland [8]), or even newly
invented IDs (e.g., in DCell [6] and BCube [7]). These structures then
leverage the topological information embedded in the logical IDs for
scalable and efficient routing. For example, Portland switches choose
a routing path by exploiting the location information of destination
PMAC. BCube servers build a source routing path by modifying one
digit at one step based on source and destination BCube IDs.

For all the cases above, we need to configure the logical IDs, which
may be IP or MAC addresses or BCube or DCell IDs, for all the
servers and switches. Meanwhile, in the physical topology, all the
devices are identified by their unique device IDs, such as MAC ad-
dresses. A naïve way is to build a static device-to-logical ID mapping
table at the DHCP server. Building such a table is mainly a manual
effort which does not work for the following two reasons. First of

all, the scale of data center is huge. It is not uncommon that a mega
data center can have hundreds of thousands of servers [1]. Secondly,
manual configuration is error-prone. A recent survey from 100 data
center professionals [10] suggested that 57% of the data center out-
ages are caused by human errors. Two more surveys [11, 12] showed
50%-80% of network downtime is due to human configuration er-
rors. In short, “the vast majority of failures in data centers are caused,
triggered or exacerbated by human errors." [13]

1.2 Challenges and Contributions
Automatic address configuration is therefore highly desirable for

data center networks. We envision that a good autoconfiguration sys-
tem will have the following features which also pose challenges for
building such a system.

• Generality. The system needs to be applicable to various network
topologies and addressing schemes.

• Efficiency and scalability. The system should assign a logical ID
to a device quickly and be scalable to a large number of devices.

• Malfunction and error handling. The system must be able to han-
dle various malfunctions such as broken NICs and wires, and hu-
man errors such as miswirings.

• Minimal human intervention. The system should require minimal
manual effort to reduce human errors.

To the best of our knowledge, there are very few existing solutions
and none of them can meet all the requirements above. In this pa-
per, we address these problems by proposing DAC – a generic and
automatic Data center Address Configuration system for all the ex-
isting and future data center networks. To make our solution generic,
we assume that we only have a blueprint of the to-be-configured data
center network, which defines how the servers and switches are con-
nected, and labels each device with a logical ID. The blueprint can be
automatically generated because all the existing data center network
structures are quite regular and can be described either recursively or
iteratively (see [6–9] for examples).

Through a physical network topology learning procedure, DAC
first automatically learns and stores the physical topology of the data
center network into an autoconfiguration manager. Then, we make
the following two key contributions when designing DAC.

First of all, we solve the core problem of autoconfiguration: how to
map the device IDs in the physical topology to the logical IDs in the
blueprint while preserving the topological relationship of these de-
vices? DAC makes an innovation in abstracting the device-to-logical
ID mapping to the graph isomorphism (GI) problem [14] in graph the-
ory. Existing GI solutions are too slow for some large scale data cen-
ter networks. Based on the attributes of data center network topolo-
gies, such as sparsity and symmetry (or asymmetry), we apply graph
theory knowledge to design an optimization algorithm which signif-
icantly speed up the mapping. Specifically, we use three heuristics:
candidate selection via SPLD, candidate pruning via orbit and selec-
tive splitting. The first heuristic is our own. The last two we selected
from previous work [15] and [16] respectively, after finding that they
are quite effective for data center graphs.

Secondly, despite that the malfunction detection problem is NP-
complete and APX-hard1, we design a practical scheme that subtly
exploits the degree regularity in all data center structures to detect the
malfunctions causing device degree change. For the hardest one with
no degree change, we propose a scheme to compare the blueprint
graph and the physical topology graph from multiple anchor points
and correlate malfunctions via majority voting. Evaluation shows that

1A problem is APX-hard if there is no polynomial-time approxima-
tion scheme.

server

switch

(a). Blueprint:

Each node has a logical ID
(b). Physical network topology:

Each device has a device ID

Figure 1: An example of blueprint, and physical topology con-
structed by following the interconnections in blueprint.

our solution is fast and is able to detect all the hardest-to-detect mal-
functions.

We have studied our DAC design via extensive experiments and
simulations. The experimental results show that the time of our device-
to-logical ID mapping scales in proportion to the total number of de-
vices in the networks. Furthermore, our simulation results show that
DAC can autoconfigure a large data center with 3.8 million devices
in 46 seconds. We have also developed and implemented DAC as an
application on a 64-server testbed, where the 64 servers and 16 mini-
switches form a two level BCube [7] network. Our autoconfiguration
protocols automatically and accurately assign BCube logical IDs to
these 64 servers within 300 milliseconds.

The rest of the paper is organized as follows. Section 2 presents the
system overview. Section 3 introduces the device-to-logical ID map-
ping. Section 4 discusses how DAC deals with malfunctions. Sec-
tion 5 and Section 6 evaluate DAC via experiments, simulations and
implementations. Section 7 discusses the related work. Section 8
concludes the paper.

2. SYSTEM OVERVIEW
One important characteristic shared by all data centers is that a

given data center is owned and operated by a single organization.
DAC takes advantage of this property to employ a centralized auto-
configuration manager, which we call DAC manager throughout this
paper. DAC manager deals with all the address configuration intel-
ligences such as physical topology collection, device-to-logical ID
mapping, logical ID dissemination and malfunction detection. In our
design, DAC manager can simply be a server in the physical topology
or can run on a separate control network.

Our centralized design is also inspired by the success of several,
recent large-scale infrastructure deployments. For instance, the data
processing system MapReduce [5] and the modern storage GFS [4]
employ a central master at the scale of tens of thousands of devices.
More recently, Portland [8] leverages a fabric manager to realize a
scalable and efficient layer-2 data center network fabric.

As stated in our first design goal, DAC should be a generic solution
for various topologies and addressing schemes. To achieve this, DAC
cannot assume any specific form of structure or addressing scheme in
its design. Considering this, DAC only uses the following two graphs
as its input:

1. Blueprint. Data centers have well-defined structures. Prior to
deploying a real data center, a blueprint (Figure 1a) should be de-
signed to guide the construction of the data center. To make our so-
lution generic, we only require the blueprint to provide the following
minimal information:

• Interconnections between devices. It should define the inter-
connections between devices. Note that though it is possible
for a blueprint to label port numbers and define how the ports
of neighboring devices are connected, DAC does not depend on
such information. DAC only requires the neighbor information
of the devices, contained in any connected graph.

• Logical ID for each device. It should specify a logical ID for
each device2. The encoding of these logical IDs conveys the
topological information of the network structure. These logical
IDs are vital for server communication and routing protocols.

Since data center networks are quite regular and can be described
iteratively or recursively, we can automatically generate the blueprint
using software.

2. Physical network topology. The physical topology (Figure 1b)
is constructed by following the interconnections defined in the blueprint.
In this physical topology, we use the MAC address as a device ID
to uniquely identify a device. For a device with multiple MAC ad-
dresses, we use the lowest one.

In the rest of the paper, we use Gb = (Vb, Eb) to denote the
blueprint graph and Gp = (Vp, Ep) to denote the physical topology
graph. Vb/Vp are the set of nodes (i.e., devices) with logical/device
IDs respectively, and Eb/Ep are the set of edges (i.e., links). Note
that while the blueprint graph Gb is known for any data center, the
physical topology graph Gp is not known until the data center is built
and information collected.

The whole DAC system structure is illustrated in Figure 2. The two
core components of DAC are device-to-logical ID mapping and mal-
function detection and handling. We also have a module to collect the
physical topology, and a module to disseminate the logical IDs to in-
dividual devices after DAC manager finishes the device-to-logical ID
mapping. In what follows, we overview the design of these modules.

1. Physical topology collection. In order to perform logical ID
resolution, we need to know both blueprint Gb and physical topology
Gp. Since Gp is not known readily, DAC requires a communica-
tion channel over the physical network to collect the physical topol-
ogy information. To this end, we propose a Communication channel
Building Protocol (CBP). The channel built from CBP is a layered
spanning tree and the root is DAC manager with level 0, its children
are level 1, so on and so forth.

When the channel is built, the next step is to collect the physical
topology Gp. For this, we introduce a Physical topology Collection
Protocol (PCP). In PCP, the physical topology information, i.e., the
connection information between each node, is propagated bottom-up
from the leaf devices to the root (i.e., DAC manager) layer by layer.
After Gp is collected by DAC manager, we go to the device-to-logical
ID mapping module.

2. Device-to-logical ID mapping. After Gp has been collected,
we come to device-to-logical ID mapping, which is a key component
of DAC. As introduced in Section 1, the challenge is how to have the
mapping reflect the topological relationship of these devices. To this
end, we devise O2, a fast one-to-one mapping engine, to realize this
functionality. We elaborate this fully in Section 3.

3. Logical ID dissemination. When logical IDs for all the de-
vices have been resolved, i.e., the device-to-logical ID mapping table
is achieved, we need to disseminate this information to the whole net-
work. To this end, we introduce a Logical ID Dissemination Protocol
(LDP). In contrast to PCP, in LDP the mapping table is delivered top-
down from DAC manager to the leaf devices, layer by layer. Upon
receipt of such information, a device can easily index its logical ID
according to its device ID. A more detailed explanation of LDP to-
gether with CBP and PCP above is introduced in Section 5.

4. Malfunction detection and handling. DAC needs to automat-
ically detect malfunctions and pinpoint their locations. For this, we
2While most data center structures, like BCube [7], DCell [6], Fi-
conn [17] and Portland [8], use device based logical ID, there also
exist structures, like VL2 [9], that use port based logical ID. For
brevity, in this paper, DAC is introduced and evaluated as the device
based case. It can handle the port based scenario by simply consid-
ering each port as a single device and treating a device with multiple
ports as multiple logical devices.

Physical

topology

collection

Device-to-logical

ID mapping

Malfunction

detection and

handling

Logical ID

dissemination

Figure 2: The DAC system framework with four modules.
introduce a malfunction detection and handling module. In DAC, this
module interacts tightly with the device-to-logical ID mapping mod-
ule because the former one is only triggered by the latter. If there exist
malfunctions in Gp, our O2 engine quickly perceives this by noticing
that the physical topology graph Gp mismatches with the blueprint
graph Gb. Then, the malfunction detection module is immediately
invoked to detect those malfunctioning devices and report them to
network administrators. We describe this module in Section 4.

3. DEVICE-TO-LOGICAL ID MAPPING
In this section, we formally introduce how DAC performs the device-

to-logical ID mapping. We first formulate the mapping using graph
theory. Then, we solve the problem via optimizations designed for
data center structures. Last, we discuss how to do the mapping for
data center expansion.

3.1 Problem Formulation and Solution Overview
As introduced, the challenge here is to do the device-to-logical

mapping such that this mapping reflects the topological relationship
of these devices. Considering we have the blueprint graph Gb =
(Vb, Eb) and the physical topology graph Gp = (Vp, Ep), to meet
the above requirement, we formulate the mapping problem as finding
a one-to-one mapping between nodes in Vp and Vb while preserving
the adjacencies in Ep and Eb. Interestingly, this is actually a variant
of the classical graph isomorphism (GI) problem [14].

DEFINITION 1. Two graphs G1 = (V1, E1) and G2 = (V2, E2)
are isomorphic, denoted by G1

∼= G2, if there is a bijection f : V1 →
V2 such that {u, v} ∈ E1 if, and only if, {f(u), f(v)} ∈ E2, for all
u, v ∈ V1. Such a bijection f is called a graph isomorphism between
G1 and G2.

To the best of our knowledge, we are the first one to introduce the
GI model to data center networks, thus solving the address autocon-
figuration problem. After the problem formulation, the next step is
to solve the GI problem. In the past 20 years, many research efforts
have been made to determine whether the general GI problem is in P
or NP [14]. When the maximum node degree is bounded, polynomial
algorithm with nO(d2) time complexity is known [18], where n is the
number of nodes and d is the maximal node degree.

However, nO(d2) is too slow for our problem since data centers can
have millions of devices [6] and the maximal node degree can be more
than 100 [9]. To this end, we devise O2, a fast one-to-one mapping
engine. As shown in Figure 3, O2 starts with a base algorithm (i.e.,
O2_Base_Mapping()) for general graphs, and upon that we propose
an optimization algorithm (i.e., O2_Mapping()) using three heuris-
tics: candidate selection via SPLD, candidate filtering via orbit and
selective splitting that are specially tailored for the attributes of data
center structures and our real address autoconfiguration application.
In the following, we first introduce some preliminaries together with
the base algorithm, and then introduce the optimization algorithm.

3.2 The Base Algorithm
Preliminaries. Given a graph G = (V,E), a partition of a vertex

set V , e.g., Π = (π0, π1, · · · , πn−1), is a set of disjoint non-empty

O2 Mapping Engine

Output: Device-

to-logical ID

Mapping Table

Input:

Gp and Gb

Pre-computation

Base algorithm

Optimization algorithm

Figure 3: The O2 mapping engine.

subsets of V whose union is V . We call each subset πi(0 ≤ i ≤
n − 1) a cell. In O2, the basic operations on partitions or cells are
“decompose” and “split”.

• Decompose. Given a node v, a cell πi and a partition Π where
v ∈ πi and πi ∈ Π, using v to decompose πi means to replace πi

with {v} and πi \ v in partition Π, where \ is set minus meaning
to remove node v from πi.

• Split. Given two cells πi, πt ∈ Π, using πi to split πt means to
do the following: first, for each node v ∈ πt, we calculate a value
k = η(v, πi) as the number of connections between node v and
nodes in πi where η is called connection function; then, we divide
πt into smaller cells by grouping the nodes with the same k value
together to be a new cell. Moreover, we call πi the inducing cell
and πt the target cell. The target cell should be a non-singleton.

A partition is equitable if no cell can be split by any other cell in
the partition. A partition is discrete if each cell of this partition is a
singleton (i.e., single element). Suppose we use an inducing cell pair
πi
1/π

i
2 to split target cell pair πt

1/π
t
2 respectively, πt

1/π
t
2 are divided

isomorphically by πi
1/π

i
2 if for each value k = 0, 1, 2, · · · , πt

1 has
the same number of nodes with k-connection to πi

1 as πt
2 has to πi

2.
Note that the cells in a partition have their orders. We use paren-

thesis to represent a partition, and each cell is indexed by its order.
For example, Π = (π0, π1, · · · , πn−1) means a partition Π with n
cells and the i-th cell is πi−1. In our mapping algorithm, decom-
position/split operation always works on the corresponding pair of
cells (i.e., two cells with the same order) in two partitions. Further-
more, during these operations, we place the split cells back to the par-
titions in corresponding orders. For example, decomposing πi

1/π
i
2

with v/v′, we replace πi
1 with {v}, πi

1 \ v and πi
2 with {v′}, πi

2 \ v′,
and then place the split cells back to the partitions such that {v} and
{v′} are in the same order, πi

1 \ v and πi
2 \ v′ are in the same order.

In addition to the above terms, we further have two important terms
used in the optimization algorithm, which are SPLD and orbit.
• SPLD. SPLD is short for Shortest Path Length Distribution, the

SPLD of a node v is the distribution of the distances between this
node and all the other nodes in the graph.

• Orbit. An orbit is a subset of nodes in graph G such that two nodes
u and v are in the same orbit if there exist an automorphism3 of
G that maps u to v [19]. For example, in Gb of Figure 6, l1 to l2
are in the same orbit since there is an automorphism permutation
of Gb, which is (l2 l1 l3 l4 l5 l6 l7 l8), that maps l1 to l2.
Base algorithm. Figure 4 is a base mapping algorithm for general

graphs we summarize from previous literatures. It contains Decom-
position() and Refinement(), and it repeatedly decomposes and refines
(or splits) Πp and Πb until either they both are discrete, or it termi-
nates in the middle finding that Gp and Gb are not isomorphic.

In each level of recursion, we first check if the current partitions Πp

and Πb are discrete. If so, we return true (line 2) and get a one-to-one
mapping by mapping each singleton cell of Πp to the corresponding
singleton cell of Πb. Otherwise, we do Decomposition().

3An automorphism of a graph is a graph isomorphism with itself, i.e.,
a mapping from the vertices of the given graph G back to vertices of
G such that the resulting graph is isomorphic with G.

O2_Base_Mapping(Πp, Πb) /* Initially, Πp = (Vp) and Πb = (Vb). */
1 if (Πp and Πb are both discrete)
2 return true;
3 else
4 select a vertex v ∈ πi

p; /* πi
p is nonsingleton. */

5 foreach vertex v′ ∈ πi
b

6 (Πp, Πb) = Decomposition(Πp, πi
p, v,Πb, π

i
b, v

′);
7 if (Refinement(Πp,Πb) == true)
8 if (O2_Base_Mapping(Πp,Πb) == true)
9 return true;
10 else continue;
11 else continue;
12 return false;

Figure 4: Pseudocode of the generic algorithm for one-to-one
mapping (i.e., graph isomorphism). For clarity, the functions De-
composition() and Refinement() are explained in the context.

In Decomposition(), we first select a pair of corresponding nonsin-
gleton cells πi

p and πi
b, and then select a pair of nodes v ∈ πi

p and v′ ∈
πi
b to decompose πi

p and πi
b respectively (lines 4-6). The partitions

Πp and Πb then become more concrete: Πp = (π0
p, · · · , {v}, πi

p \
v, · · · , πk

p) and Πb = (π0
b , · · · , {v′}, πi

b \ v′, · · · , πk
b). Immediately

after decomposition, we do Refinement() on Πp and Πb (line 7).
In Refinement(), we repeatedly try to use every newly born pair of

cells to split all other corresponding nonsingleton pairs of cells. For
each pair of cells that have been simultaneously divided, we check
whether the two cells are divided isomorphically or not. If not, then
Refinement(Πp, Πb) returns false. Otherwise, if each time the pair
of target cells are isomorphically divided, Refinement(Πp, Πb) will
continue until Πp and Πb are equitable and returns true.

If Refinement(Πp, Πb) returns true, we go one step further of re-
cursion to work on new equitable partitions (line 8). Otherwise, it
means that v′ cannot be mapped to v and we try the next candidate
in πi

b (line 11). If all the candidates in πi
b fail to be mapped to v, we

must backtrack (line 10). Such recursion continues until either both
partitions become discrete, i.e., a one-to-one mapping is found (line
2), or we backtrack to root of the search tree, thus concluding that no
one-to-one mapping exists (line 12).

3.3 The Optimization Algorithm
Compared with general graphs, network topologies of data centers

have the following attributes: 1) They are sparse; 2) They are typi-
cally either highly symmetric like BCube [7] or highly asymmetric
like DCell [6]. In any case, for our address autoconfiguration prob-
lem, the blueprint graph is available in advance which means we can
do some precomputation.

Based on these features, we apply graph theory to design an op-
timization algorithm with three heuristics: candidate selection via
SPLD, candidate filtering via orbit and selective splitting to speedup
the device-to-logical ID mapping. Specifically, we introduce the first
heuristic, and borrow the last two from [15] and [16] respectively,
based on their effectiveness for graphs derived for data centers. Our
experiments in Section 6.2 indicate that we need all these three heuris-
tics to solve our problem and any partial combination of them is slow
for some structures. Figure 5 is the optimization algorithm built on
the base algorithm. In the following, we explain the three heuristics
emphasizing the reasons why they are suitable for data center graphs.

1. Candidate selection via SPLD. We observe that nodes in data
centers have different roles such as switches and servers, and switches
in some data centers like FatTree can be further divided into ToR,
aggregation and core. Hence from this point of view, SPLD can be
helpful by itself to distinguish nodes of different roles. Furthermore,
SPLD can provide even significant improvement for structures like
DCell which are very asymmetric. This is because the SPLDs of
different nodes in DCell are very different. To take advantage of this

l1
l2 l3

l4

l5 l6

l7 l8
d1

d2

d5

d4

d3

d6

d7d8
({d1},{d2d3d4d5d6d7d8})

({l5}, {l1 l2 l3 l4 l6 l7 l8})

({d1},{d2d3d5d7},{d4d6d8})

({l5}, {l1 l2 l7 l8}, {l3 l4 l6})

d1 l5

{d1}

{l5}

d2

l1

d3

l7

{d6}

{l6}

d4

l3

({d1},{d2},{d3},{d5},{d7},{d6},{d4},{d8})

({l5}, {l1}, {l7}, {l8 }, {l2}, {l6}, {l3}, {l4})

(3)

(4)

(7) (9)

{d2d3d5d7}

{l1 l2 l7 l8}

({d1},{d2d3d5d7},{d6},{d4d8})

({l5}, {l1 l2 l7 l8}, {l6}, {l3 l4})

({d1},{d6},{d3d5},{d2d7},{d4d8})

({l5}, {l6}, {l7 l8}, {l1 l2}, {l3 l4})

({d1},{d6},{d2},{d7},{d3d5},{d4d8})

({l5}, {l6}, {l1}, {l2}, {l7 l8}, {l3 l4})

({d1},{d6},{d2},{d7},{d3},{d5},{d4d8})

({l5}, {l6}, {l1}, {l2}, {l7}, {l8}, {l3 l4})

(5) (6)

(8)

Gb Gp

({d1d2d3d4d5d6d7d8})

({l1 l2 l3 l4 l5 l6 l7 l8})

d1

l1
(1)

({d1}, {d2d3d4d5d6d7d8})

({l1}, {l2 l3 l4 l5 l6 l7 l8})

({d1},{d2d3d5d7},{d4d6d8})

({l1}, {l5}, {l2 l3 l4 l6 l7 l8})

{d1}

{l1}

(2)

false

Figure 6: An example of mapping between Gp and Gb. White arrow is decomposition and dark arrow is refinement.

/* pre-compute the SPLDs for all nodes in Gb; */
/* pre-compute all the orbits in Gb; */
O2_Mapping(Πp, Πb) /* Initially, Πp = (Vp) and Πb = (Vb). */
1 if (Πp and Πb are both discrete)
2 return true;
3 else
4 select a vertex v ∈ πi

p; /* πi
p is nonsingleton. */

5 let the candidate node pool cp = πi
b;

6 if (|cp| > th1 && |SPLD(cp)| > th2) /* thresholds */
7 compute SPLD(v) and then delete all nodes from cp

having different SPLDs from SPLD(v);
8 select a vertex v′ ∈ cp;
9 (Πp, Πb) = Decomposition(Πp, πi

p, v,Πb, π
i
b, v

′);
10 bool refineSucceed = true;
11 if (Refinement∗(Πp,Πb) == true)
12 if (O2_Mapping(Πp,Πb) == true)
13 return true;
14 else refineSucceed = false;
15 else refineSucceed = false;
16 delete v′ and all its equivalent nodes from cp;
17 if (!refineSucceed && !empty(cp))
18 goto line 8;
19 return false;

Figure 5: Pseudocode of the optimization algorithm for data cen-
ter graphs. For clarity, Refinement∗() is explained in the context.

property, we propose using SPLD as a more sophisticated signature
to select mapping candidates. That is, when we try to select a node
v′ in Gb as a candidate to be mapped to a node v in Gp, we only
select the v′ from these nodes that have the same SPLD as v. This is
effective because two nodes with different SPLDs cannot be mapped
to each other. However, computing SPLDs for all nodes in a large
graph requires time. Fortunately, in our case, this can be computed
earlier on the blueprint.

In our optimization algorithm, we precompute the SPLDs for all
nodes of Gb beforehand. In lines 6-7, we improve the base algorithm
in this way: if we find the number of candidates (i.e., nodes in cp)
for a node, say v in Gp, to be mapped to is larger than a threshold
th1 (i.e., |cp| > th1) and the number of different SPLDs of them is
larger than a threshold th2 (i.e., |SPLD(cp)| > th2), we compute the
SPLD for v and only select candidates in cp having the same SPLD.
Thresholds th1 and th2 are tuneable. Note that using this heuristic is
a tradeoff: although we can do precomputation on Gb offline, apply-
ing this optimization means that we should compute SPLD(v) online,
which also consumes time. In all our experiments later, we apply this
heuristic on all the structures only once at the first round of mapping.

2. Candidate filtering via orbit. It is indicated in [15] that for
v ∈ G and v′ ∈ G′, if v′ cannot be mapped to v, all nodes in the
same orbit as v′ cannot be mapped to v either. We find this the-
ory is naturally suited for solving the GI problem on data centers:
First, some structures such as BCube are highly symmetric, and there
should be many symmetric nodes within these structures that are in
the same orbit. Second, the blueprint graph is available much earlier
than the real address autoconfiguration stage, and we can easily pre-
compute the orbits in the blueprint beforehand using preexisting tools
such as [16, 20].

In Figure 4, the base algorithm tries to map v to every node in πi
b it-

eratively if the current mapping fails which is not effective especially
for highly symmetric data center structures. Observing this, in the op-
timization algorithm, we precompute all the orbits of Gb beforehand.
Then, as shown in lines 16-18, we improve the base algorithm: if we
find a certain node v′ cannot be mapped to v, we skip all the attempts
that try to map v to any other node in the same orbit as v′, because
according to above theory these nodes cannot be mapped to v either.

3. Selective splitting. In the base algorithm, Refinement() tries
to use the inducing cell to split all the other cells. As data center
structures are sparse, it is likely that while there are many cells in
the partition, the majority of them are disjoint with the inducing cell.
Observing this, in line 11, we use Refinement∗() in which we only try
to split the cells that really connect to the inducing cell other than all4.

Furthermore, when splitting a connected cell πt, the base algo-
rithm tries to calculate the number of connections between each node
in πt and the inducing cell, and then divide πt based on these values.
Again, due to sparsity, it is likely that the number of nodes in πt that
really connect to the inducing cell is very small. Observing this, in a
similar way, we speed up by only calculating the number of connec-
tions for the nodes actually connected. The unconnected nodes can
be grouped together directly. Specifically, when splitting πt using
inducing cell πi, we first move the elements in πt with connections
to πi to the left-end of πt and leave all unconnected elements on the
right. Then, we only calculate the k values for the elements on the
left, and group them according to the values.

A Walkthrough Example for O2.
We provide a step by step example of our algorithm in Figure 6.

Gb is labeled by its logical IDs and Gp is labeled by its device IDs.
White arrows mean decomposition and dark arrows mean refinement.
Suppose all orbits in Gb have been calculated beforehand. In this case
they are {{l1 l2 l3 l4}, {l5 l6}, {l7 l8}}.

Initially, all nodes in Gp/Gb are in one cell in partitions Πp/Πb.
Step (1) decomposes original Πp/Πb using d1/l1. Step (2) refines
the current Πp/Πb using inducing cells {d1}/{l1}, but fails due to a
non-isomorphic division. This is because during splitting, {d2 d3 d4
d5 d6 d7 d8} has 4 elements with 1-connection to {d1} and 3 ele-
ments with 0-connection; while {l2 l3 l4 l5 l6 l7 l8} has 1 element
with 1-connection to {l1} and 7 elements with 0-connection. There-
fore, they are not divided isomorphically.

From step (2), we know l1 cannot be mapped to d1. By optimiza-
tion heuristic 2, we skip the candidates l2, l3 and l4 which are in the
same orbit as l1. So in Step (3), we decompose the original Πp/Πb

using d1/l5. Steps (4) refines the current Πp/Πb using {d1}/{l1}.
Specifically, in Πp we find d2, d3, d5 and d7 have 1-connection to
{d1} while the rest do not, and in Πb we find l1, l2, l7 and l8 have

4We achieve this by maintaining an adjacency list which is built once
when the graph is read. In the adjacency list, for each vertex, we keep
the neighboring vertices, so at any point we know the vertices each
vertex is connected to. We also have another data structure that keeps
track of the place where each vertex is located at within the partition.
In this way, we know which cell is connected to the inducing cell.

1-connection to {l5} while the rest do not. So Πp/Πb are isomorphi-
cally divided by {d1}/{l1}. After step (4), since the current partitions
Πp/Πb are not yet equitable, in steps (5) and (6), we continuously use
newly born cells {d2 d3 d5 d7}/{l1 l2 l7 l8} and {d6}/{l6} to further
split other cells until Πp/Πb are equitable.

Steps (7)-(9) decompose the current partitions using d2/l1, d3/l7
and d4/l3 respectively. Since in each of these 3 steps, there is no
cell that can be split by other cells, no division is performed. After
step (9), the two partitions Πp/Πb are discrete and we find a one-to-
one mapping between Gp and Gb by mapping each node in Πp to its
corresponding node in Πb.

Two things should be noted in the above example: First and most
importantly, we do not use optimization heuristic 1 above since we
want to show the case of non-isomorphic division in steps (1)-(2). In
the real O2 mapping, after applying heuristic 1, we will directly go
from step (3) instead of trying to map d1 to l1 as above because they
have different SPLDs. This shows that SPLD is effective in selecting
mapping candidates. Second, although we have not explicitly men-
tioned optimization heuristic 3, in each refinement we only try to split
the connected cells rather than all cells. For example, after step (7),
{d2}/{l1} are newly born, but when it comes to refinement, we do
not try to split {d3 d5}/{l7 l8} or {d4 d8}/{l3 l4} using {d2}/{l1}
because they are disjoint.

3.4 Using O2 for Data Center Expansion
To meet the growth of applications and storage, the scale of a data

center does not remain the same for long [21]. Therefore, address
autoconfiguration for data center expansion is required. Two direct
approaches are either to configure the new part directly, or to con-
figure the entire data center as a whole. However, both approaches
have problems: the first one fails to take into account the connections
between the new part and the old part of the expanded data center;
the second one considers the connections between the new part and
the old part, but it may cause another lethal problem, i.e., the newly
allocated logical IDs are different from the original ones for the same
devices of the old part, messing up existing communications.

To avoid these problems, DAC configures the entire data center
while keeping the logical IDs for the old part unmodified. To achieve
this goal, we still use O2 but need to modify the input. Instead of
putting all the nodes from a graph in one cell as before, we first dif-
ferentiate nodes between the new part and the old part in Gp and
Gb. Since we already have the device-to-logical ID mapping for
the old part, say di → li for 0 ≤ i ≤ k, we explicitly express
such one-to-one mapping in the partitions. In other words, we have
Πp = ({d0}, · · · , {dk}, Tp) and Πb = ({l0}, · · · , {lk}, Tb), all the
nodes for the new part of Gp/Gb are in Tp/Tb respectively. Then,
we refine Πp/Πb until they both are equitable. At last, we enter O2

mapping with the equitable partitions. In this way, we can produce
a device-to-logical ID mapping table for the new part of data center
while keeping the logical IDs for devices of the old part unmodified.

4. MALFUNCTION DETECTION AND HAN-
DLING

As introduced before, the malfunction detection module is trig-
gered when O2 returns false. This “false” indicates the physical topol-
ogy is not the same as the blueprint. In this section, we describe how
DAC handles malfunctions.

4.1 Malfunction Overview
Malfunctions can be caused by hardware and software failures, or

simply human configuration errors. For example, bad or mismatched
network card and cables are common, and miswired or improperly
connected cables are nearly inevitable.

Structure Degrees of switches Degrees of servers

BCube(n, k) n k + 1
FatTree(n) n 1
VL(nr, np) np, (nr + 2) 1
DCell(n, k) n k + 1

Table 1: Degree patterns in BCube, FatTree, VL2 and DCell
structures. n, k, nr, np are the parameters to define these net-
works, they are fixed for a given structure.

We consider and categorize three malfunction types in data centers:
node, link and miswiring. The first type occurs when a given server
or switch breaks down from hardware or software reasons, causing
it to be completely unreachable and disconnected from the network;
the second one occurs when the cable or network card is broken or
not properly plugged in so that the connectivity between devices on
that link is lost; the third one occurs when wired cables are different
from those in the blueprint. These malfunctions may introduce severe
problems and downgrade the performance.

Note that from the physical topology, it is unlikely to clearly dis-
tinguish some failure types, e.g., a crashed server versus completely
malfunctioning interface cards on that server. Our goal is to detect
and further locate all malfunction-related devices, and report the de-
vice information to network administrators, rather than identifying
the malfunction type. We believe our malfunction handling not only
solves this issue for autoconfiguration, but also reduces the deploy-
ment/maintenance costs for real-world large data center deployment.

4.2 Problem Complexity and Challenge
The problem of malfunction detection can be formally described

as follows. Given Gb and Gp, the problem to locate all the malfunc-
tioning parts in the graph Gp is equivalent to obtaining the maximum
common subgraph (MCS) Gmcs of Gb and Gp. Thus, we compare
Gmcs with Gp to find the differences, which are the malfunctioning
parts. All the devices (i.e., servers or switches) related to these parts,
which we call malfunctioning devices, can be detected. However,
it is proven that the MCS problem is NP-complete [22] and APX-
hard [23]. That is, there is no efficient algorithm, especially for large
graphs such as those of data center network topologies. Therefore, we
resort to designing our own algorithms based on the particular proper-
ties of data center structures and our real-world application scenario.
There are two problems we need to address in the following subsec-
tions: 1) detecting the malfunctioning devices by identifying their de-
vice IDs; 2) locating the physical position of a malfunctioning device
with its device ID automatically.

4.3 Practical Malfunction Detection Methods
To achieve better performance and easier management, large-scale

data centers are usually designed and constructed according to some
patterns or rules. Such patterns or rules imply two properties of the
data center structures: 1) the nodes in the topologies typically have
regular degrees. For example, we show the degree patterns for sev-
eral well-known data center networks in Table 1; 2) the graphs are
sparse, so that our O2 can quickly determine if two graphs are iso-
morphic. These properties are important for us to detect malfunctions
in data centers. In DAC, the first property is used to detect malfunc-
tioning devices where there are node degree changes, and the second
one serves as a tool in our malfunction detection scheme for the case
where no degree change occurs.

4.3.1 Malfunction with Node Degree Change
For the aforementioned three types of malfunctions, we discuss

them one by one as follows. Our observation is that most of the cases
may cause the change of degree on devices.

Miswiring with degree change

Degree change

Miswiring without degree change

Figure 7: Miswirings with and without degree change.

• Node. If there is a malfunctioning node, the degrees of its
neighboring nodes are decreased by one, and thus it is possi-
ble to identify the malfunction by checking its neighbor nodes.

• Link. If there is a malfunctioning link, the degrees of associ-
ated nodes are decreased by one, making it possible to detect.

• Miswiring. Miswirings are somewhat more complex than the
other two errors. As shown in the left of Figure 7, the mis-
wiring causes its related nodes to increase or decrease their de-
grees and can be detected readily. On the contrary, in the right
of Figure 7, the miswirings of a pair of cables occur coinciden-
tally so that the degree change caused by one miswired cable is
glossed over by another, and thus no node degree change hap-
pens. We discuss this hardest case separately in the following.

Note that for any malfunction caused by the links, i.e., link failure
or miswirings, we report the associated nodes (i.e., malfunctioning
devices) in our malfunction detection.

4.3.2 Malfunction without Node Degree Change
Though in most cases the malfunctions cause detectable node de-

gree change [24], it is still possible to have miswirings with no node
degree change. This case occurs after an administrator has checked
the network and the degree-changing malfunctions have been fixed.
The practical assumptions here are: 1) the number of nodes involved
in such malfunctions is a considerably small amount over all the
nodes; 2) Gp and Gb have the same number of nodes as well as node
degree patterns.

Despite the miswirings, the vast majority part of Gp and Gb are still
the same. We leverage this fact to detect such miswirings. Our basic
idea is that we first find some nodes that are supposed to be symmetric
between Gp and Gb, then use those nodes as anchor points to check
if the subgraphs deduced from them are isomorphic. Through this we
derive the difference between the two graphs, and correlate the mal-
functioning candidates derived from different anchor points to make a
decision. Basically, our scheme has two parts: anchor point selection
and malfunction detection.

To minimize the human intervention, the first challenge is selecting
anchor pairs between the blueprint graph Gb and the physical topol-
ogy graph Gp without human input. Our idea is again to leverage the
SPLD. Considering that the number of nodes involved in miswirings
is small, it is likely that two “symmetric” nodes in two graphs will still
have similar SPLDs. Based on this, we design our heuristics to select
anchor pair points, which is Anchor_Pair_Selection() in Figure 8. In
the algorithm, ∥SPLD(v) − SPLD(v′)∥ is simply the Euclidean dis-
tance. Given that two node with similar SPLDs are not necessarily
a truly symmetric pair, our malfunction detection scheme will take
the potential false positives into account, and handle this issue via
majority voting.

Once the anchor node pairs have been selected, we compare Gb

and Gp from these anchor node pairs and correlate malfunctions via
majority voting. The algorithm for this is Malfunction_Detection() in

/* pre-compute the SPLDs of all nodes in Gb, select one node from each
group of nodes with same SPLDs and store it in Cb */

(Ap, Ab) = Anchor_Pair_Selection(Gp, Gb)
1 Ap = a group of selected anchor points in Gp;
2 foreach v ∈ Ap

3 select a v′ ∈ Cb that minimizes ∥SPLD(v) − SPLD(v′)∥;
4 store v/v′ in Ap/Ab;

Malfunction_Detection(Gp, Gb, Ap, Ab)
5 Define Sx

p (v) as maximal subgraph of Gp with maximal hop length x

from node v where v ∈ Gp, and the same as Sx
b (v

′);
6 foreach pair of nodes v/v′ ∈ Ap/Ab

7 use binary search to find a value x that satisfies O2_Mapping(Sx
p (v),

Sx
b (v

′)) = true and O2_Mapping(Sx+1
p (v), Sx+1

b (v′)) = false;
8 foreach node i ∈ Gp that is x-hop or (x+ 1)-hop away from v
9 counter(i)=counter(i)+1;
10 return a node list sorted by their counter values;

Figure 8: Pseudocode for malfunction detection.
Figure 8. Specifically, given Gp/Gb, Ap/Ab and definition of max-
imal subgraph Sx

p (v) in line 5, for each anchor pair v/v′ ∈ Ap/Ab,
we search the maximal isomorphic subgraph of graphs Gp/Gb with
hop length x from nodes v/v′ respectively. The process to obtain
such subgraph is in line 7. We can use binary search to accelerate
the searching procedure. If we find that Sx

p (v) and Sx
b (v

′) are iso-
morphic while Sx+1

p (v) and Sx+1
b (v′) are not, we assume some mis-

wirings happened between x-hop and (x + 1)-hop away from v and
the nodes in these two hops are suspicious. In line 9, we increase a
counter for each of these nodes to represent this conclusion.

After finishing the detection from all the anchor points, we report a
list to the administrator. The list contains node device IDs and counter
values of each node, ranked in the descending order of the counter
values. Essentially, the larger its counter value, the more likely the
device is miswired. Then the administrator will go through the list
and rectify the miswirings. This process stops when he finds a node
is not really miswired and ignores the rest of nodes on the list.

The accuracy of our scheme depends on the number of anchor
points we selected for detection versus the number of miswirings in
the network. Our experiments suggest that, with a sufficient number
of anchor points, our algorithm can always find all the malfunctions
(i.e., put the miswired devices on top of the output list). According to
the experimental results in Section 6.4, with at most 1.5% of nodes
selected as anchor points we can detect all miswirings on the eval-
uated structures. To be more reliable, we can always conservatively
select a larger percentage of anchor points to start our detection and
most likely we will detect all miswirings (i.e., have all of them on
top of the list). Actually, this can be facilitated by the parallel com-
puting because in our malfunction detection, the calculations from
different anchor points are independent of each other and thus can be
performed in parallel.

After fixing the miswirings, we will run O2 to get the device-to-
logical ID mapping again. Even in the case that not all the miswirings
are on the top of the list and we miss some, O2 will perceive that
quickly. Then we will re-run our detection algorithm until all mis-
wirings are detected and rectified, and O2 can get the correct device-
to-logical ID mapping finally.

4.4 Device Locating
Given a detected malfunctioning device, the next practical question

is how to identify the location of the device given only its device ID
(i.e., MAC). In fact, the device locating procedure is not necessar-
ily achieved by an autoconfiguration algorithm, but also possibly by
some human efforts. In this paper, we argue that it is a practical de-
ployment and maintenance problem in data centers, and thus we seek
a scheme to collect such location information automatically.

Our idea is to sequentially turn on the power of each rack in or-
der to generate a record for the location information. This procedure

is performed only once and the generated record is used by the ad-
ministrator to find a mapping between MAC and rack. It works as
follows: 1) To power on the data center for the first time, the admin-
istrator turns on the power of server racks one by one sequentially.
We require a time interval between powering each rack so we can dif-
ferentiate devices in different racks. The time interval is a tradeoff:
larger values allow easier rack differentiation while smaller values re-
duce boot time cost on all racks. We think by default it should be 10
seconds. 2) In the physical topology collection stage, when reporting
the topology information to DAC manager, each device also piggy-
backs the boot-up time, from when it had been powered on to its first
reporting. 3) When receiving such boot-up time information, DAC
manager groups the devices with similar boot-up times (compared to
the power on time interval between racks). 4) When DAC manager
outputs a malfunctioning device, it also outputs the boot-up time for
that group. Therefore, the administrator can check the rack physical
position accordingly.

To summarize, our malfunction detection and locating designs fo-
cus on how to quickly detect and locate various malfunctions includ-
ing the most difficult miswiring cases. We note that our schemes help
to identify malfunctions, but not repair them. It is our hope that the
detection procedure can help administrators to fix any malfunction
more rapidly during the autoconfiguration stage.

5. IMPLEMENTATION AND EXPERIMENT
In this section, we first introduce the protocols that are used to do

physical topology collection and logical ID dissemination. Then, we
describe our implementation of DAC.

5.1 Communication Protocols
To achieve reliable physical topology collection and logical ID dis-

semination between all devices and DAC manager, we need a com-
munication channel over the network. We note that the classical span-
ning tree protocol (STP) does not fit our scenario: 1) we have a fixed
root - DAC manager, so network-wide broadcast for root selection is
not necessary; 2) the scale of data center networks can be hundreds
of thousands, making it difficult to guarantee reliability and informa-
tion correctness in the network-wide broadcast. Therefore, we pro-
vide a Communication channel Building Protocol (CBP) to set up a
communication channel over a mega-data center network. Moreover,
we introduce two protocols, namely the Physical topology Collection
Protocol (PCP) and the Logical ID Dissemination Protocol (LDP),
to perform the topology information collection and ID dissemination
over that spanning tree built by CBP.

Building communication channel. In CBP, each network device
sends Channel Building Messages (CBMs) periodically (with a time-
out interval T), to all of its interfaces. Neighbor nodes are discovered
by receiving CBMs. Each node sends its own CBMs, and does not
relay CBMs received from other nodes. To speed up the information
propagation procedure, a node also sends out a CBM if it observes
changes in neighbor information. A checking interval (c-int) is intro-
duced to reduce the number of CBM messages by limiting the mini-
mal interval between two successive CBMs.

DAC manager sends out its CBM with its level marked as 0, and
its neighbor nodes correspondingly set their levels to 1. This proce-
dure continues until all nodes get their respective levels, representing
the number of hops from that node to DAC manager. A node ran-
domly selects a neighbor node as its parent if that node has the lowest
level among its neighbors, and claims itself as that node’s child by
its next CBM. The communication channel building procedure is fin-
ished once every node has its level and has selected its parent node.
Therefore, the built communication channel is essentially a layered
spanning tree, rooted at DAC manager. We define a leaf node as one

(a)Physical topology and BCube IDs

8-port Gigabit
Ethernet switch

servers

0.0 0.1 0.7

1.0 1.1 1.7

7.0 7.1 7.7
(b)Blueprint graph and BCube IDs

0.0 0.1 0.7

1.0 1.1 1.7

7.0 7.1 7.7

Virtual mesh network

Figure 9: The testbed topology and blueprint.

that has the largest level among its neighbors and no children node. If
a leaf node observes no neighbor updates for a timeout value, 3 ∗ T ,
it enters the next stage, physical topology information collection.

Physical topology collection and logical ID dissemination. Once
the communication channel has been built by CBP, the physical topol-
ogy collection and logical ID dissemination over the communication
channel can be performed by using PCP and LDP. Essentially, the
topology collection is a bottom-up process that starts from leaf de-
vices and blooms up to DAC manager, while the logical ID dissemi-
nation is a top-down style that initiates from DAC manager and flows
down to the leaf devices.

In PCP, each node reports its node device ID and all its neighbors
to its parent node. After receiving all information from its children,
an intermediate node merges them (including its own neighbor in-
formation) and sends them to its parent node. This procedure con-
tinues until DAC manager receives the node and link information of
the whole network, and then it constructs the physical network topol-
ogy. In LDP, the procedure is reverse to PCP. DAC manager sends the
achieved device-to-logical ID mapping information to all its neighbor
nodes, and each intermediate node delivers the information to its chil-
dren. Since a node knows the descendants from each child via PCP,
it can divide the mapping information on a per-child base and de-
liver the more specific mapping information to each child. Note that
the messages exchanged in both PCP and LDP are uni-cast messages
which require acknowledgements for reliability.

5.2 Testbed Setup and Experiment
We designed and implemented DAC as an application over the

Windows network stack. This application implements the modules
described in Section 2: including device-to-logical ID mapping, com-
munication channel building, physical topology collection and logical
ID dissemination. We built a testbed using 64 Dell servers and 16 8-
port DLink DGS-1008D Gigabit Ethernet switches. Each server has
an Intel 2GHz dual-core CPU, 2GB DRAM, 160GB disk and an Intel
Pro/1000PT dual-port Ethernet NIC. Each link works at Gigabit.

The topology of our testbed is a BCube(8,1), it has two dimensions
and 8 servers on each dimension connected by an 8-port Ethernet
switch. Each server uses two ports of its dual-port NIC to form a
BCube network. Figure 9 illustrates the physical testbed topology and
its corresponding blueprint graph. Note that we only programmed our
DAC design on servers, and we did not touch switches in this setup
because these switches cannot be programmed. Thus, the blueprint
graph of our testbed observed at any server should have a degree of
14 instead of 2 as there are 7 neighbors for each dimension. This
server-only setup is designed to demonstrate that DAC works in real-
world systems, not its scalability.

In this setup, our DAC application is developed to automatically
assign the BCube ID for all the 64 servers in the testbed. A server

c-int T CCB timeout TC mapping LD Total
0 30 2.8 90 0.7 89.6 1.3 184.4
10 30 26.5 90 0.4 93.3 1.5 211.7
0 50 2.9 150 0.9 90.8 1.3 245.9
10 50 26.4 150 0.5 97.6 1.2 275.7

Table 2: Time (ms) consumed during autoconfiguration
is selected as DAC manager by setting its level to 0. To inspect the
working process of DAC, we divide DAC into 5 steps and check each
of them: 1) CCB (communication channel building): from DAC man-
ager broadcasts the message with level 0 to the last node in the net-
work gets its level, 2) timeout: there is no change in neighboring
nodes for 3 ∗ T at leaf nodes, 3) TC (physical topology collection):
from the first leaf node sends out its TCM to DAC manager receives
the entire network topology, 4) mapping: device-to-logical ID map-
ping time including the I/O time, 5) LD (logical IDs dissemination):
from DAC manager sends out the mapping information to all the de-
vices get their logical IDs. Table 2 shows the result with different c-int
and T parameters. Note that c-int is to control the number of CBM
messages and T is the timeout value for CBP broadcast, and 3 ∗ T is
for TCM triggering. The experiments show that the total configura-
tion time is mainly dominated by the mapping time and 3 ∗ T , and
c-int can control and reduce the bustiness of CBM messages. In all
the cases, our autoconfiguration process can be done within 300ms.

6. PERFORMANCE EVALUATION
In this section, we evaluate DAC via extensive simulations. We first

introduce the evaluation methodology and then present the results.

6.1 Evaluation Methodology
Structures for evaluation. We evaluate DAC via experiments on

4 well-known data center structures: BCube [7], FatTree [8], VL2 [9]
and DCell [6]. Among these structures, BCube is the most symmetric,
followed by FatTree, VL2, and DCell. DCell is the most asymmetric.
All the structures can be considered as sparse graphs with different
sparsity. VL2 is the sparsest, followed by FatTree, DCell, and BCube.
For each of them, we vary the size as shown in Table 3. Please refer
to these papers for details. Since BCube is specifically designed for a
modular data center (MDC) sealed in shipping containers, the number
of devices in BCube should not be very large. We expect them to be in
the thousands, or at most tens of thousands. For FatTree and VL2, we
intentionally make their sizes to be as large as hundreds of thousands
of nodes. DCell is designed for large data centers. One merit of DCell
is that the number of servers in a DCell scales doubly exponentially
as the level increases. For this reason, we check the performance of
DAC on very large DCell graphs. For example, DCell(6,3) has more
than 3.8 million nodes!

Metrics. There are 3 metrics in our evaluation. First, we measure
the speed of O2 on the above structures, which includes both mapping
from scratch (i.e., for brand-new data centers) and mapping for incre-
mental expansion (i.e., for data center expansion). This metric is used
to show how efficient O2 is as a device-to-logical ID mapping engine.
Then, we estimate the total time DAC takes for a complete autocon-
figuration process. Lacking a large testbed, we employ simulations.
Last, we evaluate the accuracy of DAC in detecting malfunctions via
simulations. All the experiments and simulations are performed on
a Linux sever with an Intel 2.5GHz dual-core CPU with 8G DRAM.
The server runs Red-Hat 4.1.2 with Linux kernel 2.6.18.

6.2 Efficiency of O2 Mapping Engine
Mapping from scratch. We study the performance of O2 to-

gether with the seminal GI tool proposed in [15] called Nauty and
another algorithm proposed in digital design automation field called
Saucy [16]. For Nauty, we use the latest version v2.4. For Saucy,

BCube(n, k) FatTree(n) VL2(nr, np) DCell(n, k)

B(4,4)=2304 F(20)= 2500 V(20,100)= 52650 D(2,3)=2709
B(5,4)=6250 F(40)=18000 V(40,100)= 102650 D(3,3)=32656
B(6,4)=14256 F(60)=58500 V(60,100)= 152650 D(4,3)=221025
B(7,4)=28812 F(80)=136000 V(80,100)= 202650 D(5,3)=1038996
B(8,4)=53248 F(100)= 262500 V(100,100)=252650 D(6,3)=3807349

Table 3: Number of devices in each structure.

it does not calculate the one-to-one mapping nor does the isomor-
phism check between two graphs by default. Instead, it is a tool to
calculate the automorphisms in a graph. We observe that, when in-
putting two graphs as one bigger graph into Saucy, among all the
output automorphisms there exist at least one that maps each node
in one graph to a node in another given that the two graphs are iso-
morphic to each other. To compare with Saucy, we improve its al-
gorithm to check and calculate a one-to-one mapping between two
graphs and call it Saucy+. Essentially, Nauty includes candidate
pruning via orbit, Saucy+ is built on top of Nauty and introduces
selective splitting, and O2 is further built on top of Saucy+ and in-
cludes candidate selection via SPLD, as we show in Table 4.

Figure 10 plots the results for device-to-logical ID mapping. Note
that, we do not include the I/O time for reading graphs into memory.
From the figure, we can see that the mapping time of O2 scales in
proportion to the total number of devices in the network.

The results in Figure 10 clearly demonstrate that O2 is faster than
both Nauty and Saucy+ on all the evaluated structures. O2 can
perform the mapping for all the structures within 10 seconds. More
specifically, for BCube(8,4), O2 can finish the mapping in less than
1.5 seconds; for FatTree(100) and VL2(100, 100), O2 needs 4.16 and
1.07 seconds respectively; for DCell(6,3) with 3.8+ million nodes,
O2 needs only 8.88 seconds. This finding is not surprising since O2

improves over Saucy+ and Nauty. Note that Nauty does not show
up in the figures of FatTree, VL2, and DCell, because its run-time for
any graph bigger than DCell(3,3), FatTree(40) and VL2(20,100) is
too long (i.e., days) to fit into the figures nicely.

To better understand why O2 performs best, we assess the relative
effectiveness of the three heuristics used in the algorithms on popular
data center structures. We make the following three observations.

First, we find that candidate pruning via orbit is very efficient
for symmetric structures. For example, Nauty needs only 0.07 for
BCube(4,4) with 2034 devices, whereas it requires 312 seconds for
FatTree(20) with 2500 devices. Another example is that while it only
takes less than 8 seconds to perform the mapping for BCube(8,4) with
53248 devices, it fails to obtain the result for either FatTree(40) with
58500 devices or VL2(20,100) with 52650 devices within 24 hours.
One factor contributing to this effect is that BCube is more symmetric
than either FatTree or VL2 structure.

Second, our experiments suggest that selective splitting introduced
in Saucy should be more efficient for sparse graphs. For exam-
ple, VL2(100,100) and FatTree(100) have similar numbers of devices
(250000+), but VL2 needs only 6.33 seconds whereas FatTree needs
18.50 seconds. This is because VL2(100,100) is sparser than Fat-
Tree(100). We have checked the average node degree of these two
structures. The average degree for VL2(100,100) is approximately
1.03. Compared with VL2(100,100), FatTree(100) has an average
node degree of 2.86, more than 2 times denser.

Finally, when candidate selection via SPLD is further introduced
in O2 to work together with the above two heuristics, it exhibits dif-
ferent performance gains on different structures. SPLD works best
for asymmetric graphs. For example, compared with Saucy+, O2,
which has the SPLD heuristic, improves the time from 2.97 to 1.31
seconds (or 2.27 times) for BCube(8,4), from 18.5 to 4.16 seconds
(or 4.34 times) for FatTree(100), from 6.33 to 1.07 seconds (or 5.92
times) for VL2(100,100), whereas it reduces the time from 44603 to

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6

7

8
BCube(n=4...8,k=4)

Number of devices

C
P

U
 ti

m
e

(s
)

O
2

Saucy+
Nauty

0 0.5 1 1.5 2 2.5 3

x 10
5

0

5

10

15

20
FatTree(n=20...100)

Number of devices

C
P

U
 ti

m
e

(s
)

O
2

Saucy+

0.5 1 1.5 2 2.5 3

x 10
5

0

1

2

3

4

5

6

7
VL2(n

r
=20...100, n

p
=100)

Number of devices

C
P

U
 ti

m
e

(s
)

O
2

Saucy+

10
3

10
4

10
5

10
6

10
7

10
−4

10
−2

10
0

10
2

10
4

10
6

DCell(n=2...6, k=3)

Number of devices (log−scale)

C
P

U
 ti

m
e

(s
)

(lo
g−

sc
al

e)

O
2

Saucy+

Figure 10: The speed of O2 one-to-one mapping on BCube, FatTree, VL2 and DCell structures, and its comparison with Nauty and
Saucy+. Note that we do not include the performance curves of Nauty on DCell, FatTree and VL2 structures because the run-time of
Nauty on all the graphs bigger than DCell(3,3), FatTree(40) and VL2(20,100) respectively is more than one day. Furthermore, we use
log-log scale to clearly show the performance of both O2 and Saucy+ on DCell.

Nauty Saucy+ O2

Candidate pruning via orbit
√ √ √

Selective splitting
√ √

Candidate selection via SPLD
√

Table 4: Heuristics applied in different algorithms.

8.88 seconds (or 5011 times) for DCell(6,3)! This is because the more
asymmetric a graph is, the more likely that the SPLDs of two nodes
will be different. In our case, BCube is the most symmetric structure
since all the switches are interchangeable, whereas DCell is the most
asymmetric one since there are only two automorphisms for a DCell.

We have also checked other combinations of the heuristics, includ-
ing selective splitting, candidate pruning via orbit plus candidate se-
lection via SPLD, and selective splitting plus candidate selection via
SPLD. We omit the details due to space constraints. The results of
all these combinations confirm the above observations: candidate
pruning via orbit is efficient for symmetric graphs, selective split-
ting works well for sparse graphs, and candidate selection via SPLD
improves both heuristics and has remarkable performance gain for
asymmetric graphs such as DCell.

Mapping for Incremental Expansion. For the evaluation of O2

on incremental expansion, we choose one expansion scenario for each
structure. Since BCube and DCell are recursively defined, we expand
them by increasing the level. For FatTree and VL2, we expand them
by increasing the number of servers in each rack. The results are listed
in Table 5. We find that all the mappings can be done efficiently. For

Old data center Expanded data center #Increased devices Time(s)

BCube(8,3) BCube(8,4) 47104 0.190
partial complete 125000 0.270FatTree(100) FatTree(100)
VL2(50,100) VL2(100,100) 125000 0.240
DCell(6,2) DCell(6,3) 3805242 7.514

Table 5: CPU time of mapping for data center expansion.
BCube, we extend BCube(8,3) to BCube(8,4) and finish the mapping
in 0.19 second; For FatTree, we expand partial FatTree(100), where
each edge switch connects to 25 servers, to complete FatTree(100),
where each edge switch connects to 50 servers, and take 0.47 second
for mapping; For VL2, we expand VL2(50,100) to VL2(100,100) and
spend 0.24 second; For DCell, we extend DCell(6,2) to DCell(6,3)
and use 7.514 seconds. Finally, we check and verify that O2 keeps
logical IDs for old devices unmodified.

6.3 Estimated Time Cost on Autoconfiguration
Recall that, in Section 5, we have evaluated the time cost of DAC

on our BCube(8,1) testbed. In this section, we estimate this time on
large data centers via simulations. We use the same parameters c-int
(checking interval) and T (timeout for CBP broadcast) as in the im-
plementation, and set c-int as 10ms and T 50ms. We estimate the
time cost for each of the five phases, i.e., CCB, timeout, TC, map-
ping and LD, as described in Section 5. In the simulations, device ID
is a 48-bit MAC address and logical ID is set to 32 bits, like an IP

30(0.2%) 60(0.4%) 90(0.6%) 120(0.8%) 150(1.0%) 180(1.2%)
0

5

10

15

20

Number of anchor points

M
al

fu
nc

tio
n

de
te

ct
ed

BCube

150(0.3%) 200(0.4%) 250(0.5%) 300(0.6%) 350(0.7%) 400(0.8%)
0

5

10

15

20

Number of anchor points

M
al

fu
nc

tio
n

de
te

ct
ed

VL2

60(0.33%) 70(0.39%) 80(0.44%) 90(0.5%) 100(0.56%) 110(0.61%)
0

5

10

15

20

Number of anchor points

M
al

fu
nc

tio
n

de
te

ct
ed

FatTree

100(0.3%) 200(0.6%) 300(0.9%) 400(1.2%) 500(1.5%) 600(1.8%)
0

5

10

15

20

Number of anchor points

M
al

fu
nc

tio
n

de
te

ct
ed

DCell

Figure 11: Number of malfunctioning devices detected with increased number(percent) of selected anchor points.

CCB timeout TC mapping LD Total
BCube(4,4) 120 150 10 20 10 310
BCube(8,4) 120 150 10 1710 10 2000
FatTree(20) 80 150 6 20 6 262
FatTree(100) 80 150 17.6 5950 26 6223.6
VL2(20,100) 80 150 7.5 360 9.2 606.7
VL2(100,100) 80 150 17.1 1760 25.2 2032.3

DCell(2,3) 170 150 15 3 15 353
DCell(6,3) 250 150 82.8 44970 125.3 45578.1

Table 6: Estimated time (ms) of autoconfiguration.

address. We assume all the links are 1G/s and all communications
use the full link speed. For each structure, we choose the smallest
and largest graphs in Table 3 for evaluation. The results are shown
in Table 6. From the table, we find that, except DCell(6,3), the auto-
configuration can be finished in less than 10 seconds. We also find
that, for big topologies like BCube(8,4), DCell(6,3), FatTree(100)
and VL2(100,100), the mapping time dominates the entire autocon-
figuration time. DCell(6,3) takes the longest time, nearly 45 seconds,
to do the mapping. While the CPU time for the mapping is only 8.88
seconds, the memory I/O time is 36.09 seconds. Here we use more
powerful Linux servers than what we used in the implementation, so
the mapping here is relatively faster than that in Section 5.

6.4 Results for Malfunction Detection
Since malfunctions with degree change can be detected readily, in

this section we focus on simulations on the miswirings where there
is no degree change. We evaluate the accuracy of our algorithm pro-
posed in Figure 8 in detecting such malfunction. Our simulations
are performed on all 4 structures. For each one, we select a moder-
ate size with tens of thousands of devices for evaluation, specifically,
they are BCube(6,4), FatTree(40), VL2(20,100) and DCell(3,3). As
we know, miswirings without degree change are exceedingly rare and
every such case requires at least 4 miswired devices. So in our simu-
lations, we randomly create 5 groups of such miswirings with a total
of 20 miswired nodes. In the output of our algorithm, we check how
many miswired nodes we have detected versus the number (or per-
cent) of anchor points we have selected. We say a miswired node is
detected only if there is no normal node above it in the counter list.
This is because the administrators will rectify the miswirings accord-
ing to our list sequentially and stop once they come to a node that is
not really miswired.

Figure 11 demonstrates the results. It clearly shows that the number
of detected malfunctions is increased with the number of selected an-
chor points. In our experiments on all structure, we can detect all the
malfunctions with at most 1.5% of nodes selected as anchor points.

Interestingly, we find the counter values of good nodes and those of
bad nodes are well separated, i.e., there is a clear drop in the sorted
counter value list. We also find that for different structures, we need
different numbers of anchor points in order to detect all 20 miswired
devices. For example, in DCell we require as many as 500 pairs of
nodes as anchor points to detect all the malfuctions; and in VL2, we
need 350 pairs of nodes to detect them all. However, in BCube and
FatTree, we only need 150 and 100 anchor points, respectively, to
detect all malfunctions. One reason for the difference is that our se-
lected DCell and VL2 networks are larger than BCube and FatTree.
Another reason is that different structures can result in different false
positives in Anchor_Pair_Selection().

At last, it is worth mentioning that the above malfunction detection
has been done efficiently. In the worst case, we used 809.36 seconds
to detect all the 20 malfunctioning devices in DCell from 500 anchor
points. Furthermore, as mentioned before, the calculations starting
from different anchor points are independent of each other, and can
be performed in parallel for further acceleration.

7. RELATED WORK
In this section, we review the work related to DAC. The differences

between DAC and other schemes in related areas such as Ethernet
and IP networks are caused by different design goals for different
scenarios.

Data Center Networking. Portland [8] is perhaps the most related
work to DAC. It uses a distributed location discovery protocol (LDP)
for PMAC (physical MAC) address assignment. LDP leverages the
multi-rooted tree topology property for switches to decide their lev-
els, since only edge switches directly connect to servers. DAC differs
from Portland in several aspects: 1) DAC can be applied to arbitrary
network topologies whereas LDP only works for multi-rooted tree.
2) DAC follows a centralized design because centralized design sig-
nificantly simplifies the protocol design in distributed systems, and
further, data centers are operated by a single entity.

Plug-and-play in Ethernet. Standing as one of the most widely
used networking technologies, Ethernet has the beautiful property
of “plug-and-play”. It is essentially another notion of autoconfigu-
ration in that each host in an Ethernet possesses a persistent MAC
address and Ethernet bridges automatically learn host addresses dur-
ing communication. Flat addressing simplifies the handling of topol-
ogy dynamics and host mobility with no human input to reassign ad-
dresses. However, it suffers from scalability problems. Many efforts,
such as [25–27], have been made towards a scalable bridge architec-
ture. More recently, SEATTLE [28] proposes to distribute ARP state
among switches using a one-hop DHT and makes dramatic advances
toward a plug-and-play Ethernet. However, it still cannot well sup-

port large data centers since: 1)switch state grows with end-hosts; 2)
routing needs all-to-all broadcast; 3) forwarding loop still exists [8].

Autoconfiguration in IP networks. Autoconfiguration protocols
for traditional IP networks can be divided into stateless and state-
ful approaches. In stateful protocols, a central server is employed to
record state information about IP addresses that have already been as-
signed. When a new host joins, the severs allocate a new, unused IP
to the host to avoid conflict. DHCP [3] is a representative protocol for
this category. Autoconfiguration in stateless approaches does not rely
on a central sever. A new node proposes an IP address for itself and
verifies its uniqueness using a duplicate address detection procedure.
For example, a node broadcasts its proposed address to the network,
if it does not receive any message showing the address has been oc-
cupied, it successfully obtains that address. Examples include IPv6
stateless address autoconfiguration protocol [29] and IETF Zeroconf
protocol [30]. However, neither of them can solve the autoconfigu-
ration problem in new data centers where addresses contain locality
and topology information.

8. CONCLUSION
In this paper, we have designed, evaluated and implemented DAC,

a generic and automatic Data center Address Configuration system.
To the best of our knowledge, this is the first work in address auto-
configuration for generic data center networks. At the core of DAC
is its device-to-logical ID mapping and malfunction detection. DAC
has made an innovation in abstracting the device-to-logical ID map-
ping to the graph isomorphism problem, and solved it in low time-
complexity by leveraging the sparsity and symmetry (or asymmetry)
of data center structures. The DAC malfunction detection scheme is
able to detect various errors, including the most difficult case where
miswirings do not cause any node degree change.

Our simulation results show that DAC can accurately find all the
hardest-to-detect malfunctions and can autoconfigure a large data cen-
ter with 3.8 million devices in 46 seconds. In our implementation on
a 64-server BCube testbed, DAC has used less than 300 milliseconds
to successfully autoconfigure all the servers. Our implementation ex-
perience and experiments show that DAC is a viable solution for data
center network autoconfiguration.

Acknowledgments
We thank Geoffry Nordlund, Wei Shen, and Yaohui Xu for telling
us how IP addresses are assigned within MSRA research data center;
Guohan Lu for testbed setup; Junfeng Zhou for his help on educating
us the operation and miswiring issues in large commercial data cen-
ters; Xi Chen for helpful discussion on the complexity of the general
graph isomorphism problem. We thank the anonymous reviewers for
their constructive comments and our shepherd Michael Mitzenmacher
for his insightful and detailed feedback and suggestions, which im-
prove the content and presentation of this paper.

9. REFERENCES
[1] R. H. Katz, “Tech Titans Building Boom,” IEEE SPECTRUM,

Feb 2009.
[2] L. Barroso, J. Dean, and U. Hölzle, “Web Search for a Planet:

The Google Cluster Architecture,” IEEE Micro, March 2003.
[3] R. Droms, “ Dynamic Host Configuration Protocol,” RFC

2131, March 1997.
[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File

System,” in SOSP, 2003.
[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” in OSDI, 2004.

[6] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A
Scalable and Fault Tolerant Network Structure for Data
Centers,” in SIGCOMM, 2008.

[7] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu, “BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers,” in SIGCOMM, 2009.

[8] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand:
A Scalable Fault-Tolerant Layer 2 Data Center Network
Fabric,” in SIGCOMM, 2009.

[9] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz,
P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible Data
Center Network,” in SIGCOMM, 2009.

[10] [Online]. Available: http://royal.pingdom.com/2007/10/30/
human-errors-most-common-reason-for-data-center-outages/

[11] Z. Kerravala, “As the value of enterprise networks escalates, so
does the need for configuration management,” The Yankee
Group, Jan 2004.

[12] Juniper, “What is behind network downtime?” 2008.
[13] [Online]. Available: http://searchdatacenter.techtarget.com/

news/column/0,294698,sid80_gci1148903,00.html
[14] “Graph isomorphism problem,”

http://en.wikipedia.org/wiki/Graph_isomorphism_problem.
[15] B. D. McKay, “Practical graph isomorphism,” in Congressus

Numerantium, 1981.
[16] P. T. Darga, K. A. Sakallah, and I. L. Markov, “Faster

Symmetry Discovery using Sparsity of Symmetries,” in 45st
Design Automation Conference, 2008.

[17] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu, “FiConn:
Using Backup Port for Server Interconnection in Data
Centers,” in Infocom, 2009.

[18] E. M. Luks, “Isomorphism of graphs of bounded valence can
be tested in polynomial time,” in Journal of Computer and
System Sciences, 1982.

[19] “Graph automorphism,”
http://en.wikipedia.org/wiki/Graph_automorphism.

[20] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov,
“Exploiting Structure in Symmetry Generation for CNF,” in
41st Design Automation Conference, 2004.

[21] “Data Center Network Overview,” Extreme Networks, 2009.
[22] “Maximum common subgraph problem,”

http://en.wikipedia.org/wiki/Maximum_common_subgraph
_isomorphism_problem.

[23] V. Kann, “On the approximability of the maximum common
subgraph problem,” Annual Symposium on Theoretical Aspects
of Computer Science, 1992.

[24] “Personal communications with opeartor of a large enterprise
data center,” 2009.

[25] T. Rodeheffer, C. Thekkath, and D. Anderson, “SmartBridge:
A scalable bridge architecture,” in SIGCOMM, 2000.

[26] A. Myers, E. Ng, and H. Zhang, “Rethinking the service
model: scaling Ethernet to a million nodes,” in HotNets, 2004.

[27] R. Perlman, “Rbridges: Transparent routing,” in Infocom, 2004.
[28] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: a

scalable ethernet architecture for large enterprises,” in
SIGCOMM, 2008.

[29] S. Thomson and T. Narten, “IPv6 Stateless Address
Autoconfiguration,” Expired Internet Draft, December 1998.

[30] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic
configuration of IPv4 link-local addresses,” IETF Draft, 2003.

