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ABSTRACT
Most datacenter network (DCN) designs focus on maximizing bi-
section bandwidth rather than minimizing server-to-server latency.
We explore architectural approaches to building low-latency DCNs
and introduce Quartz, a design element consisting of a full mesh
of switches. Quartz can be used to replace portions of either a
hierarchical network or a random network. Our analysis shows
that replacing high port-count core switches with Quartz can sig-
nificantly reduce switching delays, and replacing groups of top-
of-rack and aggregation switches with Quartz can significantly re-
duce congestion-related delays from cross-traffic. We overcome the
complexity of wiring a complete mesh using low-cost optical mul-
tiplexers that enable us to efficiently implement a logical mesh as a
physical ring. We evaluate our performance using both simulations
and a small working prototype. Our evaluation results confirm our
analysis, and demonstrate that it is possible to build low-latency
DCNs using inexpensive commodity elements without significant
concessions to cost, scalability, or wiring complexity.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design ]: Network topology

Keywords
Optical Technologies; WDM; Datacenter; Latency

1. Introduction
Network latency is a critical factor in determining the perfor-

mance of many datacenter-scale, distributed applications. For ex-
ample, in most distributed realtime computation frameworks such
as MPI [24] and Storm [13], network latency manifests as a sub-
stantial component of coordination delay and is therefore on the
critical path. In realtime or interactive applications such as search
engines, social networks, and high frequency financial trading, a
wide-area request may trigger hundreds of message exchanges in-
side a datacenter. For example, in a measurement study from Face-
book, servicing a remote HTTP request can require as many as 88
cache lookups, 35 database lookups, and 392 backend remote pro-
cedure calls [23]. Therefore, there is an urgent, market-driven need
for reducing network latency.
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Figure 1: Backbone DWDM per-bit, per-km cost improvements over
time [20].

Past work on low-latency datacenter networks (DCNs) has pri-
marily focussed on reducing packet processing delays in the OS
network stack [31], network interface card (NIC) [32] and network
switches [3], and avoiding network congestion through bandwidth
reservations [29] or congestion-aware flow scheduling [19, 27, 40,
41, 43]. Combining these techniques can, in theory, result in an
order of magnitude reduction in end-to-end network latency.

However, there are a number of limitations with current tech-
niques. For example, state-of-the-art low-latency cut-through swit-
ches are limited in scale (≤ 64 ports) compared to standard store-
and-forward switches (≤ 1024 ports). Large DCNs must choose to
deploy either standard switches in their core-switching tier or in-
troduce an additional switching tier, which not only increases the
number of switching hops but also creates additional congestion
points.

In this paper, we explore an architectural approach to reducing
network latency that is complementary to previous efforts. Our key
insight is that switching latency is minimized by interconnecting
top-of-rack (ToR) switches with a full mesh instead of a high-port
count core switch or an aggregation layer of switches. Unfortu-
nately, a full mesh topology is a wiring nightmare and does not
scale well. We overcome wiring complexity by exploiting com-
modity photonics in the form of optical wavelength division multi-
plexers (WDMs) to implement a complex O(n2) mesh as a simple
O(n) optical ring. Similar techniques have been used to construct
wide-area optical mesh networks [11, 34]. We show that imple-
menting a full mesh in an optical ring is equally applicable in a dat-
acenter. Using commodity photonics allows our solution, Quartz to
ride the cost reduction curve in WDM equipment, which is driven
by the large-scale roll out of fiber-to-the-home (see Figure 1 [20]).

To deal with the limited scalability of a mesh topology, we en-
vision that Quartz can be used to replace portions of traditional
DCNS:



Component Standard State of Art
OS Network Stack 15µs [36] 1 - 4 µs [31]

NIC 2.5 - 32µs [36] 0.5µs [32]
Switch 6 µs [5] 0.5µs [3]

Congestion 50µs [31]
Table 2: Network latencies of different network components.

• Replacing large top-of-rack (ToR) switches in single-tier net-
works with a single Quartz mesh to reduce latency and allow
incremental upgrades.

• Replacing both ToR and aggregation switches in a standard
3-tier network with a single Quartz tier to significantly re-
duce the impact of cross-traffic.

• Replacing core switches to provide a large-scale, low-latency,
and incrementally upgradable core switching tier.

• Replacing sets of switches in a randomized DCN [37, 38] to
provide lower latency for traffic with strong locality.

We evaluate Quartz through both simulations using a packet-
level simulator and experiments on a working prototype consist-
ing of four switches and six WDM muxes/demuxes. Our results
demonstrate that Quartz can significantly reduce both switching
and queuing latencies on various application workloads. We evalu-
ate the cost of Quartz and show that it is cost competitive for many
deployment scenarios. Moreover, we expect the cost of our solution
to diminish over time as WDM shipping volumes rise.

Overall, our work makes three contributions:

• We present a novel use of commodity photonics in DCNs
to build Quartz, a WDM-based design element for reducing
communication latency.

• We show how Quartz can be used in different topologies to
reduce latency and congestion.

• We evaluate performance using both simulations and a small
working prototype and find that Quartz can reduce latency by
50% in many scenarios.

2. Background and Related Work
This section describes the different sources of network latency

and the previous work to address each source. It also introduces
the optical network technologies used in Quartz.

2.1 Sources of Latency
There are many sources of latency in DCNs (see Table 2 for a

summary). We discuss each in turn.

2.1.1 Network Stack
Packets often need to wait for one or more context switches be-

fore they are received by a user-space application. Techniques such
as kernel bypass and zero-copy processing can reduce this latency.
In recent work, the Chronos [31] system uses these techniques to
significantly reduce the operating system kernel latency for data-
center applications.

2.1.2 Network Interface Cards
Commodity Network Interface Cards (NICs) can introduce tens

of microseconds of latency from performing basic buffering and
packet processing. Recent work shows that by offloading packet
processing to a FPGA and optimizing the communication between
the FPGA and the host processor, NIC latency can be reduced to

hundreds of nanoseconds [32]. Alternatively, RDMA over Infini-
band or Ethernet [28] can reduce latency by eliminating communi-
cation between the NIC and the host processor for certain opera-
tions.

2.1.3 Switch Latency
Switching delay is a significant source of network latency. For

example, the Cisco Catalyst 4948 10 Gigabit Ethernet Switch, which
is commonly used in modern datacenters, has a switching latency of
at least 6µs. In a typical three-tier network architecture, switching
delay can therefore be as high as 30µs. Switching delay can be re-
duced by having fewer network tiers, and adopting low-latency cut-
through switches. Unlike store-and-forward switches, cut-through
switches start to send a frame before fully receiving it. Low-latency
switches, such as the Arista 7100 [3], have a switching delay of ap-
proximately 500 ns. Cut-through switches command only a small
price premium over the same port density store-and-forward swit-
ches [2, 6]. Unfortunately, they are currently limited to 64 ports,
compared to more than 1000 ports for standard switches, and are
therefore mainly used as ToR or aggregation switches.

2.1.4 Congestion
Although current datacenter networks support high bisection ban-

dwidths, bursty traffic can still increase queuing delay over short
time scales adding tens of microseconds to end-to-end latency. Re-
cent work has identified several techniques for reducing network
congestion. For example, DCTCP [19] utilizes Explicit Conges-
tion Notifications (ECN) as congestion signals. However, DCTCP
is only partially effective at reducing congestion delays over time
scales shorter than a few round-trip-times. Recent proposals such
as D2TCP [40] and PDQ [27] use distributed congestion avoidance
algorithms to manage flows at end-hosts and switches respectively.

DeTail [43] reduces network latency by detecting congestion and
selecting alternative uncongested paths to reduce queuing delay.
Deadline Driven Delivery (D3) [41] is deadline-driven protocol wh-
ere the sender requests the amount of bandwidth equal to the total
amount of data divided by the time to the deadline. D3 does not co-
exist with legacy TCP and requires that the user application knows
the size and deadline of each of its flows, which in practice can lead
to significant underutilization.

These protocol-based techniques require significant changes to
the application, are unable to scale to a large number of short flows,
and are limited by the amount of path diversity in the underlying
network topology.

2.1.5 Topology
Topology is a critical factor in determining a network’s equip-

ment and deployment cost, wiring complexity, scalability, and per-
formance characteristics (bisection and end-to-end latency). We
outline the latency characteristics of different topologies next.

Tree Networks: Tree topologies, such as the standard multi-root
tree structure [1] and Fat-Tree [17], organize the network into mul-
tiple switch tiers. Switches in each tier are only connected to swit-
ches in adjacent tiers, with the lowest tier of ToR switches con-
nected to servers. This topology is scalable and, at least for the stan-
dard multi-root tree structure, has relatively low wiring complexity.
However, each tier increases the maximum hop-count by two. The
additional switching tiers also create focal points for congestion be-
cause the path diversity is very low. Even for Fat-Tree, where there
is significant path diversity, congestion due to cross-traffic from dif-
ferent racks is still possible unless every flow is scheduled to use
completely independent paths, which is difficult for short flows.

Server-Centric Networks: DCell [26], BCube [25] and CamCube [16]
are networks that use servers as switches to assist in packet for-
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Figure 3: Quartz switches with n = 8 and k = 6. Each switch is only
physically connected to two nearby switches by an optical cable. Switch 1
and switch 2 are connected using channel λ12. Switch 1 and switch 3 are
connected using wavelength channel λ13.

warding. These are scalable networks with high bisection band-
width and path diversity. However, using servers to perform packet
forwarding can introduce substantial delays in the OS network stack.
Furthermore, server-centric networks can reduce the performance
of computationally-intensive jobs, because high-bandwidth packet
forwarding requires a significant number of CPU cycles [16, 37].

Randomized Networks: SWDC [37] and Jellyfish [38] propose to
randomly connect servers or switches in a datacenter network. Ran-
dom topologies usually have high path diversity and high bisection
bandwidth. However, the worst case network diameter is typically
much larger than a similar size tree network, even if the average
path length is smaller. Randomized networks are also difficult to
deploy and manage as they have very high wiring complexity.

Mesh Networks: Mesh networks directly connect every node to
every other node, where a node can either be a server or a switch.
A full mesh network provides the lowest possible network diame-
ter and eliminates congestion arising from cross-traffic from other
nodes. These properties make mesh networks an attractive option
for low-latency DCNs. However, mesh topologies are rarely used
in DCNs because the O(n2) connections requirement greatly limits
scalability and increases wiring complexity.

2.2 Optical Network Technologies
Our work takes advantage of optical multiplexers and demul-

tiplexers (mux/demux) to reduce the wiring complexity of mesh
networks. An optical mux/demux uses Wavelength Division Multi-
plexing (WDM) to carry multiple network connections using dif-
ferent wavelengths in a single optical cable. Through judicious
selection of wavelengths, it is possible to implement a full mesh
network as a small set of optical rings that share a single physical
ring. Importantly, unlike packet switching approaches, optical mul-
tiplexing and demultiplexing does not introduce additional switch-
ing or queuing latency.

It is also important to distinguish between a WDM and an op-
tical switch. A WDM is a low-cost commodity photonic element
that is deployed at mass-scale to build fiber-to-the-home networks.
Figure 1 (taken from [20]) shows that the cost of DWDMs (Dense
WDMs) have fallen at an exponential rate since 1993. Assum-
ing this trend continues to hold, Quartz will only become more
cost-competitive over time. In contrast, optical switches are com-
plex, low-volume, and expensive to build due to the use of custom
ASICs.

3. Quartz
Quartz is a WDM-ring network that implements a full mesh as a

single physical ring. We now describe it in more detail.
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Figure 4: Quartz ring of size 6. The logical topology is equivalent to a mesh
structure where any two switches are directly connected. By using WDM,
only adjacent switches are connected with a optical fiber.

Each Quartz switch has, in addition to n standard ports, k optical
transceivers1. These devices convert electrical signals to and from
optical signals. Transceivers can be tuned to specific wavelengths
of light. Two transceivers connected by an optical cable must be
tuned to the same wavelength to communicate.

Each switch on a Quartz ring is also associated with an add/drop
multiplexer. The multiplexer portion combines optical signals of
different wavelengths (also called ‘channels’) onto a single mul-
tiplexed optical signal for transmission on a single optical cable.
Conversely, the demultiplexer portion splits a multiplexed optical
signal into its constituent channels, with each channel placed on a
separate optical cable.

Direct connection between switches s and t on the Quartz ring
requires allocating them a dedicated channel denoted λst. More-
over, one of the transceivers on each switch is tuned to this channel.
Switch s uses the demultiplexer to remove (‘drop’) all channels of
the form λ∗s from the ring and to add channels of the formλs∗ to
the ring. Thus implementing a full mesh requires only two physical
cables to connect to each Quartz switch.

Figure 3 shows a small Quartz ring. In this example, switch 1
and switch 2 are directly connected and they communicate using
channel λ12. Switch 1 and switch 3 communicate with each other
using channel λ13. At switch 2, the λ13 channel in the multiplexed
optical signal essentially passes through to switch 3. Therefore,
there is an optical connection between switch 1 and switch 3, even
through they are not physically connected.

Quartz allows for a flexible tradeoff between cost and network
oversubscription. As shown in Figure 3, the switches in Quartz
have two parameters n (# ports to server) and k (# ports to other
switches), where n : k is the server-to-switch ratio, and n+k is the
port density of a switch. A DCN designer can reduce the number of
required switches in the network by increasing the server-to-switch
ratio at the cost of higher network oversubscription.

3.1 Channel Assignment
Note that communication between switch s and switch t in Quartz

requires them to have exclusive ownership of channel λst. If an op-
tical cable could support an infinite number of channels, we could
build an optical ring of arbitrarily large size that supports pairwise
communication between switches. However, current technology
can only multiplex 160 channels in an optical fiber and commodity
Wavelength Division Multiplexers can only support about 80 chan-

1Most 10GigE and all future 40/100GigE ToR switches already
use optical transceivers due to their lower power consumption and
higher signal quality.



nels. Therefore, we need to determine the optimal way to assign
channels such that we can build a ring of size K using the mini-
mum number of channels.

Quartz attempts to assign Λ available channels to each pair of
switches in a ring of size M using two principles: (1) For any
two switches s, t in the ring, there exists an optical path between
them using wavelength λst. (2) For all optical links on the path be-
tween s and t, there is no other channel using the same wavelength
λst. For example, in Figure 4 if switch 1 and switch 3 are using
wavelength λ13, then using λ13 between rack 2 and rack 4 should
be avoided, because λ13 would be used twice on the link between
switch 2 and switch 3.

Given these constraints, the wavelength assignment problem can
be formulated as an Integer Linear Program (ILP) similar to [42].
The ILP problem is known to be NP-Complete. However, for a
small ring, we can still find the optimal solution by ILP. We also
introduce a greedy packing algorithm to calculate the minimum
number of wavelengths needed for building such a ring for larger
ring sizes. The ILP Formulation and our greedy algorithm are as
follows:

Let Cs,t,i denote the clockwise path from s to t using channel
i ∈ {1, ...,Λ} and let Ct,s,i denote the anti-clockwise path. Vari-
able Cs,t,i is set to 1 if channel i is used for communication be-
tween s and t. Each s, t switch pair should use one channel for
their communication on either clockwise or counter-clockwise di-
rection (Eq. 2).

Variable Ls,t,i,m is the indicator variable of whether link m, the
link between switchm and (m+ 1)modM , is using channel i for
the path between switch s and t. We define static value Ps,t,m = 1
if the clockwise path between s and t passes through linkm. If link
m is on the path between switch s and switch t, and wavelength i
is used for their communication Ls,t,i,m. This is guaranteed by Eq.
3.

On each link m, a single channel i should be only used at most
once. We ensure this set of constraints by Eq. 4. To count the total
number of channels used, variable λi is created to show whether
channel i is used in the ring. Eq. 5 makes sure that λi equals 1 if
channel i is used in the ring.

minimize:
∑
i

λi (1)

subject to:

∀s < t,
∑
i

Cs,t,i +
∑
i

Ct,s,i = 1 (2)

∀s, t, i,m, Ls,t,i,m = Ps,t,mCs,t,i (3)

∀m, i,
∑
s,t

Ls,t,i,m ≤ 1 (4)

∀i,
∑

Ls,t,i,m ≤Mλi (5)

∀ variable ∈ {0, 1} (6)

The goal is to minimize the total number of used channels. If the
ILP is solvable, it means all switch pairs can communicate with
each other. The optimization result is the minimum number of
channels required for the given ring size.

3.1.1 Greedy Channel Assignment
We outline a simple, greedy algorithm to solve the channel as-

signment problem. For all the paths between switch pairs (s, t),
they are first sorted by their length. For a ring with M nodes, the
maximum path length between two switches is bM/2c, so there are
bM/2c sets of path lengths. Consider an algorithm with bM/2c it-
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Figure 5: Optimal wavelength assignment

erations, where paths in each set is assigned in one iteration. Our
heuristic is to give priority to long paths to avoid fragmenting the
available channels on the ring. Shorter paths are assigned later be-
cause short path are less constrained on channels that are available
on consecutive links. In each iteration, starting from a random lo-
cation, the channels are greedily assigned to the paths until all paths
are assigned or the channels are used up.

To evaluate the greedy algorithm, we compare the results with
the ILP solution. Figure 5 illustrates the results of this evaluation,
and shows that our greedy heuristic performs nearly as well as the
optimal solution. Furthermore, it shows that the maximum ring
size is 35 since current fiber cables can only support 160 channels
at 10 Gbps. Note that wavelength planning is a one-time event that
is done at design time. Quartz does not need to dynamically reas-
sign wavelengths at runtime. Since we can use a fixed wavelength
plan for all Quartz rings of the same size, wavelength planning and
switch to DWDM cabling can be performed by the device manu-
facturer at the factory. Moreover, our greedy heuristic only requires
seconds to compute on a standard workstation even for a ring size
of 35. Therefore, we believe our greedy algorithm is fast enough
for practical use.

3.2 Scalability
Because of its full mesh structure, the maximum size of a Quartz

network is, in part, limited by the port count of the switches. Using
low-latency 64-port switches, where each switch connects each one
of 32 of its ports to a different switch, this configuration mimics a
1056 (32×33) port switch. This relatively small maximum network
size suggests that Quartz should be used as a component in new
DCN designs, rather than as a replacement for existing DCNs. We
explore using Quartz as a network design element in Section 4.

For deployment scenarios where a larger Quartz network is nec-
essary, one can increase the size of the network by connecting each
server to more than one ToR switch. For example, for a configu-
ration where (1) each server has two NICs, (2) there are two top-
of-rack switches in each rack, (3) each server is connected to both
switches in its rack, and (4) each rack has a direct connection to
every other rack, the longest path between any two servers is still
two switches. This configuration can support up to 2080 (32× 65)
ports at the cost of an additional switch per rack, and a second opti-
cal ring since wavelength restrictions limit the number of switches
per ring to 35. In theory, even larger Quartz networks can be con-
structed by adding more switches per rack and more optical rings.
However, we believe this approach to scalability is cost prohibitive
in practice. For most deployment scenarios that require more than
1056 ports, Quartz should instead be used as a component in a large
DCN.

3.3 Insertion Loss
Although an optical hop between switches does not introduce

any discernible amount of latency, it does degrade the optical signal



due to insertion loss from the WDMs. Quartz compensates for this
signal degradation by adding pump laser-based signal amplifiers as
needed between optical hops.

To determine the feasibility of this approach, we evaluate the
cost of adding signal amplifiers in a 24-node Quartz ring. In this
example, we use 10Gbps DWDM transceivers [7], and 80 channel
DWDMs [8]. The transceiver has a maximum output power of 4
dBm and a receiver sensitivity of -15 dBm. A typical 80 channel
DWDM has an insertion loss of 6 dB. Therefore, the number of
DWDMs that a channel can pass through without amplification is:

(4dBm− (−15dBm))/6dB = 3.17

In this configuration, we need to add a signal amplifier [12] af-
ter every sequence of three DWDMs. Since each optical hop in
the ring requires traversing two DWDMs, we need one amplifier
for every two switches. This only increases the cost of a 24-node
Quartz ring by three percent. To avoid overloading the amplifiers
and transceivers, we also need to add optical attenuators to the ring.
However, attenuators [10] are simple passive devices that do not
meaningfully affect the cost of the network.

3.4 Routing in Quartz
We now discuss the integration of Quartz into link layer address-

ing and routing. A naïve approach to routing in Quartz would be
to treat all servers as being in the same L2 Ethernet network. How-
ever, because Ethernet creates a single spanning tree to determine
the forwarding path of packets, it can only utilize a small frac-
tion of the links in the network. To utilize all direct paths between
switches, we advocate using ECMP routing in the Quartz’s mesh.
Since there is a single shortest path between any pair of switches in
a full mesh, ECMP always selects the direct one-hop path, which
minimizes hop count and interference from cross-traffic.

A possible problem with only using the direct paths in Quartz
is the amount of bandwidth oversubscription between each pair of
switches. In a Quartz configuration using 64-port switches where
32 ports from each switch are connected to servers, there is a 32:1
oversubscription between racks, which can be a problem for certain
workloads. However, workloads that spread traffic across differ-
ent racks, such as standard scatter/gather workloads in large-scale
computational platforms such as MPI [24] and MapReduce [21],
are unaffected by this kind of independent, rack-to-rack bandwidth
oversubscription.

For workloads that concentrate traffic between two racks, one
can significantly reduce rack-to-rack oversubscription by using Val-
iant Load Balancing (VLB) [22,33] to make use of two-hop routes.
We configure each switch to send k fraction of the traffic through
the n − 2 two-hop paths and the remaining fraction through the
direct path. For instance, if there is a large amount of traffic from
rack 6 to rack 3 in Figure 7(b), VLB will send k fraction of this
traffic through Rack 1, 2, 4, and 5 over two-hop paths. The param-
eter k can be adaptive depending on the traffic characteristics. We
provide a detailed bandwidth analysis of Quartz and different tree
topologies in Section 5.1. Quartz not only reduces transmission
delay, it also reduces queuing delay by reducing congestion due to
cross-traffic. We evaluate the impact of cross-traffic on latency in
Section 6.1.

3.5 Fault Tolerance
Rings are well known to be less fault tolerant than a multi-rooted

tree: two link failures in a ring partition the network. However,
by using multiple physical optical fibers to interconnect switches
and multi-hop paths, we can significantly reduce the likelihood of
partitioning the network. For example, if a Quartz network with 33
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Figure 6: The top graph shows the percentage of bandwidth loss from bro-
ken fibre links with different ring sizes. The bottom figure shows the proba-
bility of network partitioning. With two rings, four link failures can partition
the network at a very low probability of 0.0024.

switches requires 137 channels, we can use two 80-channel WDM
muxes/demuxes instead of a single mux/demux at each switch. In
this configuration, there will be two optical links between any two
nearby racks, forming two optical rings, and link failures are less
likely to partition the network. Of course, this resilience comes at
an additional cost.

Since combinatorial analysis of multi-hop path reachability is
complex, we use simulations to evaluate the performance of Quartz
with one to four physical rings under random link failures. Figure 6
shows the average bandwidth loss and probability of the network
partitioning in a 33-switch Quartz network. The top figure shows
the percentage of aggregate bandwidth loss. With only one ring, a
physical optical link failure results in a 20% reduction of the net-
work bandwidth. Using 4 rings, the average bandwidth reduction
is only 6%. The network partition probability for two or more link
failures in a single-link network is more than 90%. Surprisingly, by
adding a single additional physical ring, the probability of the net-
work partitioning is less than 0.24% even when four physical links
fail at the same time.

4. Quartz as a Design Element
A Quartz mesh has low latency, high path diversity with VLB,

and the same wiring complexity as ring networks. Yet its scalability
is limited by the size of low-latency cut-through switches. A Quartz
network built using 64-port switches and a single switch per rack
provides 1056 server ports, which, as a DCN, is only sufficient for
small datacenters.

Larger datacenters can instead use Quartz as a design element
to, for instance, replace portions of their DCNs in order to reduce
switching or congestion delays for traffic between servers in nearby
racks. In the following sections, we explore using Quartz in the
edge as a replacement for both the ToR and aggregation tiers in



Datacenter Size Network Utilization Sample Topologies Latency Reduction using Quartz Cost/Server

Small (500 Servers)
Low

Two-tier tree
33%

$589
Single Quartz ring $633

High
Two-tier tree

50%
$589

Single Quartz ring $633

Medium (10K Servers)
Low

Three-tier tree
20%

$544
Quartz in edge $612

High
Three-tier tree

40%
$544

Quartz in edge $612

Large (100K Servers)
Low

Three-tier tree
70%

$525
Quartz in core $525

High
Three-tier tree

74%
$525

Quartz in edge and core $614

Table 8: Approximate cost and latency comparison. Costs include all the hardware expenses except servers. Costs of Quartz include a single ring of switches.

Rack1 Rack2 

Rack6 Rack3 

Rack5 Rack4 

Port Switch (a) (b) 

Rack1 Rack2 

Rack6 Rack3 

Rack5 Rack4 

Figure 7: A flat mesh network where ToR switches are directly connected.
(a) direct routing (b) two-hop routing.

a 3-tier tree network, in the core tier as a replacement for large,
high-latency core switches, and in randomized networks to reduce
switching and congestion delays for traffic with strong locality.

4.1 Quartz in the Edge
Current DCNs typically employ either a 2 or 3-tier tree topol-

ogy [17]. Figure 15(a) illustrates a 3-tier tree network in which each
ToR switch in the edge tier is connected to one or more switches
in the aggregation tier, each of which is in turn connected to the
switches in the core tier. Although a 3-tier tree network is highly
scalable and easy to deploy, it has significant switching and queu-
ing delays due to its high hop count and the congestion points in
its top two tiers. Furthermore, because of the low path diversity in
tree topologies, applications running in a 3-tier tree network cannot
avoid congestion points even when they are generating traffic with
strong locality (i.e., between nearby racks).

We can significantly reduce the latency of a 3-tier tree network
by replacing a portion of the edge and aggregation tiers with a
Quartz tier, as illustrated in Figure 15(c). This configuration re-
duces the maximum hop count from five to three and the number
of congestion points by effectively eliminating a tier from the net-
work. Moreover, unlike in a 2-tier tree network, localized traf-
fic that span multiple racks can be grouped into a single Quartz
ring and can therefore avoid the large switching delay of the core
switch. The full connectivity of the Quartz network also provides
more freedom for application specific locality optimizations, which
is important given that most datacenter traffic patterns show strong
locality [30].

4.2 Quartz in the Core
Large DCNs that connect hundreds of thousands of servers re-

quire core switches with port count in excess of a thousand ports

because of the need to interconnect several hundred aggregation
switches. These switches are based on slower but more scalable
store-and-forward designs, and have switching latencies that are an
order of magnitude more than low-latency cut-through switches.
Furthermore, they are generally very expensive, with a significant
portion of the cost being the large chassis that connects the switch
line cards. Therefore, although these switches provide modular
scalability, the large upfront cost of the chassis means incorrect
growth prediction is very costly.

To avoid the high latency and poor price scalability of current
core switches, we explore a configuration that replaces core switches
with Quartz, as illustrated in Figure 15(b). A Quartz network using
low-latency switches has significantly lower switching delays than
core switches. It also does not require an expensive upfront invest-
ment; switches and WDMs can be added as needed. A potential
problem with replacing core switches with Quartz is that, unlike
core switches, Quartz does not offer full bisection bandwidth. We
evaluate the impact of this limitation using a pathological traffic
pattern in Section 7.2.

4.3 Quartz in Random Topology Networks
Random topology networks, such as Jellyfish [38] and SWDC [37],

offer an exciting new design point in DCNs. However, without any
network structure, it is difficult for applications running in random
topology networks to take advantage of traffic locality. Further-
more, much like mesh networks, random topology networks have
high wiring complexity, which limits their scale.

To address these issues, we propose an alternative design to Jel-
lyfish that, instead of creating a random graph of switches, cre-
ates a random graph of Quartz networks. This configuration en-
ables applications to take advantage of traffic locality in the same
way as we discussed in Section 4.1. Furthermore, by grouping
nearby switches together into a Quartz network before connect-
ing the Quartz networks together into a random graph, this config-
uration reduces the number of random connections and therefore
greatly simplifies the DCN’s wiring complexity.

4.4 Configurator
Datacenter providers must balance the gain from reducing end-

to-end latency with the cost of using low-latency hardware. Un-
fortunately, as we have discussed earlier, latency arises from nu-
merous factors, including datacenter size, network topology, traffic
load, and switch type. Therefore, it is possible to only give approx-
imate guidelines regarding the gain from introducing low-latency
components into a DCN.

We make a ‘best-effort’ attempt to quantify the cost-benefit trade-
off of using Quartz in Table 8, which summarizes the cost of using



Quartz in various network configurations. We consider different
datacenter sizes, ranging from 500 servers to 100,000 servers. For
all of the tree-based configurations, we use cut-through switches [4]
in the edge and aggregation tiers, and high-port density store-and-
forward switches [9] in the core tier. We also use commercially
available amplifiers [12], DWDMs [8], and transceivers [7]. To
simplify the evaluation, the prices include all the hardware ex-
penses except for the cost of the servers.

We take into account (at a very high level) the network utiliza-
tion of a datacenter; we consider when the network’s utilization
is ‘high,’ which corresponds to a mean link utilization of 70%,
and ‘low,’ which corresponds to a mean link utilization of 50%.
We also investigate various network topologies including a two-
tier tree, three-tier tree, a single Quartz ring, and the use of Quartz
in the edge or core layer (or both). We present the approximate
packet latency reduction from using Quartz based on our simula-
tion results in Section 7 and the cost per server for these various
network configurations.

We first analyse the use of Quartz for small datacenters, which
have approximately 500 servers. We observe that the use of Quartz
increases the cost per server by 7% compared to a two-tier tree
structure. However, we can achieve a latency reduction of at least
33% in an environment with low network utilization and more than
50% with high network utilization.

In the case for medium-sized datacenters, which consists of 10,000
servers, we find that the use of Quartz increases the cost of the dat-
acenter by 13% and reduces the datacenter’s latency by 20% with
low traffic, and more than 40% with high traffic. The cost of using
Quartz is higher in a medium-sized datacenter than a small-sized
datacenter because of the larger size of the Quartz ring needed to
serve more servers; thus, more optical hardware is required.

Finally, we consider a large datacenter that contains 100,000
servers. We find that using Quartz at the core layer does not in-
crease cost per server since the three-tier tree requires a high port
density switch. As high port density switches are also expensive,
their cost is similar to the optical hardware that is found in a Quartz
ring. By replacing high port density switches with Quartz rings,
we see a 70% improvement in latency with low traffic. We also
consider the use of Quartz at the both edge and core layer in an
environment with high network utilization. We see that the cost
increases by 17% and latency is reduced by more than 74%.

To summarize, we realize that it is impossible to give exact cost-
benefit tradeoffs due to the numerous sources of network latency.
We demonstrate however that (a) Quartz can be used as a design
element in many different standard DCNs (b) the additional (one-
time) cost due to introducing Quartz is fairly small and (c) in all
cases, using Quartz significantly reduces end-to-end latency.

5. Analysis
We analyze the properties of five representative network topolo-

gies (2-tier tree, Fat-Tree [17], BCube [25], Jellyfish [38] and mesh)
and determine their suitability as a low-latency network design el-
ement. In this analysis, we configure each topology to mimic a
single switch with approximately 1000 ports. We compute the path
diversity of each topology using the metric defined in [39]. Note
that Jellyfish’s path diversity depends on both the chosen routing
algorithm (k-shortest-path or ECMP) and the number of switch-to-
switch links. We define wiring complexity as the number of cross-
rack links. Table 9 shows a summary of their key properties.

Out of the five network topologies, the 2-tier tree structure re-
quires the fewest switches to provide 1k usable ports and therefore
has the lowest relative equipment cost. It is also the simplest struc-
ture to wire; each ToR switch only has a small constant number of
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Figure 10: Normalized throughput for three different traffic patterns

connections to each of the second tier switches. However, as estab-
lished by previous work [17], providing high bisection bandwidth
in a tree network requires high port count second tier switches that
are both expensive and, more importantly, have high latency. This
problem, combined with its low path diversity, which can result
in significant congestive delays, make 2-tier tree networks a poor
choice for a low-latency design element.

By increasing path diversity, Fat-Tree, BCube, and Jellyfish have
lower congestive delays and offer significantly more bisection band-
width than 2-tier tree networks without requiring high port count
switches. Fat-tree is the most expensive of the three structures,
but provides full bisection bandwidth without requiring server-side
packet switching. BCube’s use of server-side packet switching re-
sults in the highest latency of the five topologies. All three systems
have relatively high wiring complexity.

Finally, a mesh network offers the highest path diversity, lowest
hop count and latency when using direct routing, and relatively high
bisection bandwidth when using indirect routing with VLB. It also
has relatively high wiring complexity, but by implementing it using
a WDM ring, the wiring complexity can be simplified to be as low
as a 2-tier tree network.

5.1 Bisection Bandwidth
Given Quartz’s high path diversity, it is difficult to analytically

calculate its bisection bandwidth. Instead, we use simulations to
compare the aggregate throughput of a Quartz network using both
one- and two-hop paths to that of an ideal (full bisection bandwidth)
network for typical DCN workloads. We also compare Quartz’s
throughput with reduced capacity networks with 1/2 and 1/4 bisec-
tion bandwidth. We use the following common datacenter commu-
nication patterns in our comparison:

1. Random Permutation Traffic. Each server sends traffic to
one randomly selected server, while at the same time, it re-
ceives traffic from a different randomly selected server.

2. Incast Traffic. Each server receives traffic from 10 servers at
random locations of the network, which simulates the shuffle
stage in a MapReduce workload.

3. Rack Level Shuffle Traffic. Servers in a rack send traffic
to servers in several different racks. This represents traffic
when the administrator is trying to balance the load between
racks through VM migration. This load pattern is common
in elastic datacenters, where servers are turned off at off peak
hours.

Figure 10 shows the normalized throughput for three traffic pat-
terns. The normalized throughput equals to 1 if every server can
send traffic at its full rate. For random permutation traffic and
incast traffic, Quartz throughput is about 90% of a full bisection
bandwidth network. For rack level shuffle traffic, the normalized



Network Latency without Congestion # of 64-port Switches Wiring Complexity Path Diversity
2-Tier Tree 1.5µs (3 Switch Hops) 17 16 1

Fat-Tree 1.5µs (3 Switch Hops) 48 1024 32
BCube 16µs (2 Switch Hops & 1 Server Hop) 32 960 2

Jellyfish 1.5µs (3 Switch Hops) 24 240 ≤32

Mesh 1.0µs (2 Switch Hops) 33 528 3232 (with WDMs)
Table 9: Summary of different network structures with 1k servers

Figure 11: Quartz with 4 switches, connected by WDMs

throughput is about 0.75. We conclude that Quartz’s bisection band-
width is less than full bisection bandwidth but greater than 1/2 bi-
section bandwidth. Overall, Quartz provides significantly higher
throughput than the other oversubscribed network topologies for
all three traffic patterns.

6. Prototype
In this section, we validate the Quartz design by building a small

prototype, and determine the relative performance difference be-
tween Quartz and a 2-tier tree in a simple cross-traffic experiment.
Our prototype consists of 4 commodity switches and 8 servers, as
illustrated in Figure 11. Three of the switches are Nortel 5510-48T,
and the fourth is a Cisco Catalyst 4948. All four are 1 Gbps man-
aged switches with 48 ports. Figure 12(a) shows the logical con-
nectivity between the switches. By using WDM muxes/demuxes,
we can simplify the network cabling to Figure 12(b), where there
are only optical links between nearby switches in a ring. The net-
work has 8 servers in total and 4 links between any bisection of the
network, which means it can provide full bisection bandwidth. Our
prototype has 12 CWDM SFP transceivers which support 1.25Gbps
bidirectional communications. Among the transceivers, 8 of them
use the 1470nm wavelength band, 2 of them use the 1490nm band,
and the remaining 2 use the 1510nm band. We also use 4-channel
CWDM muxes/demuxes in our prototype to multiplex different
channels into one optical fibre cable. Signal amplifiers are unnec-
essary in this small testbed. We actually need to use attenuators to
protect the receivers from overloading.

Each server is equipped with a 1 Gbps Intel Pro/1000 GT Desk-
top Adapter and is running Ubuntu 11.10 without any low-latency
OS or network stack changes. In order to isolate the impact of
the network architecture on latency, we present relative rather than
absolute performance results while maintaining the same software
and hardware configurations throughout our experiments.

To precisely control the traffic paths in our experiments, we use
the technique introduced in SPAIN [35] to expose alternative net-
work paths to the application. We create 4 virtual interfaces on
each server, where each virtual interface sends traffic using a spe-
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Figure 12: Topology of our testbed.
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Figure 13: Traffic flows of cross-traffic experiment

cific VLAN and the spanning trees for the VLANs are rooted at
different switches. Therefore, an application can select a direct
two-hop path or a specific indirect three-hop path by sending data
on the corresponding virtual interface.

6.1 Impact of Cross-Traffic
We evaluate the performance of Quartz and a 2-tier tree topology

using a cross-traffic workload. In order to ensure a fair comparison,
we use the prototype described in Section 6 for evaluating Quartz,
and rewired the switches from the Quartz prototype into a 2-tier
tree (1 aggregation and 3 ToR switches) to perform our 2-tier tree
experiments. Each ToR switch is connected to two servers and we
use six total servers in our experiments.
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Figure 15: Simulated network topologies. Jellyfish and Quartz in Jellyfish topologies are not shown..

Our cross-traffic workload consists of a “Hello World” RPC writ-
ten in Apache Thrift [14] between two servers (Rsrc andRdst) con-
nected to different ToR switches (S2 and S3), which represents a
latency sensitive flow, and additional bursty traffic generated using
Nuttcp [15] from three servers connected to S1 and S2 to a server
connected to S3. Figure 13 illustrates the topologies and the dif-
ferent flows. Note that we only use direct paths and we do not use
the servers connected to S4 in this experiment. To minimize OS
scheduling related uncertainties, each server is only involved with
one flow. The RPC application executes 10, 000 RPC calls one at
a time for each experiment, and the bursty cross-traffic consist of
20 packet bursts that are separated by idle intervals, the duration
of which is selected to meet a target bandwidth. The bursty traffic
from the three servers are not synchronized. We perform 100 runs
of each experiment and show the 95% confidence interval as error
bars.

Figure 14 shows that, as we increase the cross-traffic from 0
to 200 Mbps (0 to 20% of the link bandwidth), the RPC latency
rapidly increases for the tree topology due to congestion. At 200
Mbps, the RPC latency for the tree topology increases by more than
70% compared to its latency without cross-traffic. In contrast, the
RPC latency is unaffected by cross-traffic with Quartz. These re-
sults corroborate with our analysis in Section 5, and demonstrate
the impact of the network topology on reducing network conges-
tion from cross-traffic.

7. Simulation Study
In order to evaluate the performance of Quartz and other topolo-

gies at scale, we implemented our own packet-level discrete event
network simulator that we tailored to our specific requirements. We
have performed extensive validation testing of our simulator to en-
sure that it produces correct results that match queuing theory. We
make the simplifying assumptions that servers send 400-byte pack-
ets according to a Poisson process. We model two state-of-the-art
switches in our simulator:

• Cisco Nexus 7000 core switch (CCS)

• Arista 7150 ultra low latency switch (ULL)

The specifications of these switches are summarized in Table 16.
In our simulated architectures, we use ULL for both ToR switches
and aggregation switches, and CCS as core switches. We use ULL
exclusively in Quartz. Each simulated Quartz ring consists of four
switches; the size of the ring does not affect performance and only
affects the size of the DCN. We implement the following network
architectures in our simulator:

1. Three-tier Tree (Figure 15(a)): A basic three-tier tree struc-
ture with each ToR switch connected to two aggregation switches
over 40Gbps links, and each aggregation switch connected to
two core switches over 40Gbps links.

2. Quartz in Core (Figure 15(b)): Each core switch is re-
placed with a Quartz ring. The aggregation switches connect
to the Quartz ring over 40 Gbps links.

3. Quartz in Edge (Figure 15(c)): The ToR and aggregation
switches are replaced with Quartz rings. Servers connect to
the Quartz rings using 10 Gbps links, and the Quartz rings
connect to the core switches using 40 Gbps links.

4. Quartz in Edge and Core (Figure 15(d)): Both core and
edge layers are replaced with Quartz rings.

5. Jellyfish: A random topology consisting of 16 ULL, with
each switch dedicating four 10 Gbps links to connect to other
switches.

6. Quartz in Jellyfish: A random topology consisting of four
Quartz rings, with each Quartz ring dedicating a total of four
10 Gbps links to connect to switches in the other rings.

7.1 Results
We evaluate the performance of the different topologies using

three common traffic patterns:

• Scatter: One host is the sender and the others are receivers.
The sender concurrently sends a flow of packets to the re-
ceivers.



Switch Latency Port Count
Cisco Nexus 7000 (CCS) 6 us 768 10Gbps or

192 40Gbps
Arista 7150S-64 (ULL) 380 ns 64 10Gbps or

16 40Gbps
Table 16: Specifications of switches used in our simulations.

• Gather: One host is the receiver and the others are senders.
The senders concurrently send a flow of packets to the re-
ceiver.

• Scatter/Gather: One host sends packets to all the other hosts,
then all the receivers send back reply packets to the sender.

These traffic patterns are representative of latency sensitive traf-
fic found in social networks and web search [19], and are also com-
mon in high-performance computing applications, with MPI [24]
providing both scatter and gather functions as part of its API. With
these workloads, we are primarily interested in determining the im-
pact of cross-traffic on latency, where cross-traffic is generated by
running multiple instances of these traffic patterns at the same time.
Note that we do not show Quartz using ECMP and VLB separately.
This is because there is negligible performance difference between
the two protocols when using these traffic patterns.

Figure 17 shows the average latency of each scatter, gather, or
scatter/gather operation in which the senders and receivers are ran-
domly distributed across servers in the network. Both the scatter
and the gather workloads show that the three-tier tree introduces
significant latency even with only a single task where there is min-
imal congestion. Most of this latency is from the high-latency core
switch. There is also an approximately linear increase in latency
with additional tasks for the three-tier tree. Performing both scatter
and gather exacerbates the problem with the three-tier tree exhibit-
ing both a higher linear increase in latency with additional tasks,
and a substantial jump in latency going from three to four tasks.
This latency jump is due to link saturation from an oversubscribed
link.

Using Quartz in the edge reduces the absolute latency compared
to the three-tier tree even with only one task. This is due to the
additional paths between servers in the same ring that avoid the
core switch. More importantly, latency is mostly unaffected by
adding additional scatter or gather tasks, which can be attributed
to the high path diversity of the Quartz ring. Introducing additional
scatter/gather task does increase the latency of Quartz in the edge,
although at a lower rate than the three-tier tree.

As we had expected, the main performance benefit from using
Quartz in the core is a reduction in the absolute latency of the core
tier. There is more than a three microsecond reduction in latency
by replacing the core switches in a three-tier tree with Quartz rings.

Using Quartz in both the edge and core reduces latency by nearly
half compared to the three-tier tree. The latency reduction comes
from a combination of a reduction in hop-count, and a significantly
lower latency core tier.

Jellyfish and Quartz in Jellyfish perform almost identically for
these traffic patterns. Therefore, we omit the Quartz in Jellyfish
line to improve the clarity of the graphs. These random networks
exhibit low latency due to their relatively low average path length
and high path diversity. They have a similar response to an increase
in cross-traffic as Quartz in the core, with a slightly lower absolute
latency. However, these results are, in part, due to the small sim-
ulated network size. For networks that are one or two orders of
magnitude larger, we would expect a small increase in path length
that would increase the absolute latency by a few microseconds. In
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Figure 17: Average latency comparison for global traffic pattern. This
graph is best viewed in colour.

contrast, the other network topologies can support these larger net-
work sizes without an increase to their path lengths. Furthermore,
Jellyfish’s random topology is especially well-suited for handling
globally distributed traffic patterns. Therefore, we next look at traf-
fic patterns that exhibit strong locality.

Figure 18 shows the average latency of a local task, that is, a task
that only performs scatter, gather, or scatter/gather operations be-
tween servers in nearby racks. There is only one local task per ex-
periment; the remaining tasks are have randomly distributed senders
and receivers and are used to generate cross-traffic. The three-tier
tree has significantly lower latency as the local task traffic does not
have to traverse the core tier. However, it still exhibits a linear in-
crease in latency with additional tasks.

Jellyfish has the highest latency for these traffic patterns because
it is unable to take advantage of the traffic locality. Note that in our
experiments, the local task performs scatter, gather, operations to
fewer targets than the non-local tasks. This accounts for the slight
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Figure 18: Average latency comparison for localized traffic pattern. This
graph is best viewed in colour.

reduction in latency for Jellyfish’s local task compared to its non-
local tasks.

By using Quartz in the edge or as part of Jellyfish, there is a
significant reduction in latency for the local task. Traffic from the
local task remain within the Quartz ring, and because of Quartz’s
high path diversity, these topologies are mostly unaffected by cross-
traffic. We only see an increase in latency when increasing the
number of scatter/gather tasks.

7.2 Pathological Traffic Pattern
Replacing a core switch with a Quartz ring significantly reduces

latency and, for smaller networks with plans for growth, avoids the
upfront cost of purchasing a large, expensive, and mostly empty
core switch chassis. However, a Quartz ring does not provide full
bisection bandwidth, which can impact performance for certain
workloads. In this section, we compare the performance of a non-
blocking core switch to that of using Quartz in the core. We use
a simple pathological traffic pattern that, when used on Quartz,
sends multiple flows of traffic from different ports on switch S1 to
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Figure 19: Pathological traffic pattern.
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multiple receivers connected to switch S2, which stresses switch-
to-switch bandwidth. Our Quartz ring consists of four 40GbE
switches logically connected as shown in Figure 19(a) and we use
a standard non-blocking core switch as shown in Figure 19(b) for
comparison.

Figure 20 shows the packet latency of these flows as we increase
the aggregate flow bandwidth. As expected, the non-blocking core
switch is unaffected by the competing flows, but introduces a sig-
nificant amount of switch latency because of its store-and-forward
design. Using Quartz in the core with ECMP routing, which only
uses direct paths, offers significantly lower latency than the core
switch until it saturates the link bandwidth between the source and
destination switch. Beyond saturation, the packet latency of these
flows becomes unbounded. Using Quartz in the core with VLB
routing, which uses both direct and indirect paths, the latency is
essentially equivalent to using ECMP routing for the low traffic
experiments. Even with 50 Gbps aggregate traffic, there is no no-
ticeable increase in packet latency when performing VLB routing.

8. Discussion
Our work is motivated by the requirements of latency-sensitive

applications in DCNs. Existing approaches to reduce latency are
primarily based on protocol changes, such as using explicit con-
gestion signals to reduce the number of dropped packets [19, 43],
perform network-wide flow scheduling [18], or offer strict resource
reservations [29]. Instead, we make the observation that, similar to
optical mesh networks in the wide area, commodity WDMs allow
an O(n2) mesh to be implemented as an O(n) physical ring in a
datacenter.

This observation could not be put into practice earlier due to the
high cost of optical WDMs. However, due to the recent large-scale
rollout of fiber-to-the-home, optical part costs have been dropping
exponentially, making their use feasible as replacements for elec-
tronic switches. Although Quartz still carries a price premium over
traditional DCNs, we expect the price difference will diminish as
WDM shipping volumes continue to rise. Some DCN operators



may prefer to invest the price premium into higher bisection band-
width instead of lower network latency. However, for applica-
tions that require ultra low latency, our analysis shows that there
is no cost-effective alternative that can realistically be deployed in
a modern datacenter. More importantly, we believe our work paves
the way for future innovative architectures that integrate low-cost
commodity WDM hardware into DCNs.

The main limitation of a WDM mesh ring is its limited scala-
bility. We have turned this limitation into an advantage by making
Quartz a design element that can replace portions of current DCNs.
Quartz, by design, is completely backwards compatible with exist-
ing DCNs. It can be incrementally deployed as needed to cut la-
tency in portions of DCNs, or to allow incremental deployment of
a core switch. Moreover, if port count of low-latency cut-through
switches increase, Quartz becomes more scalable.

9. Conclusions
Drawing on the requirements of latency-sensitive applications

such as high-performance computing, we present an architectural
approach to latency reduction. Our key breakthrough is to present
Quartz, a logical O(n2) mesh implemented as a physical O(n) ring
using inexpensive commodity Wavelength Division Multiplexers.
Although current port counts of low-latency switches limit the scale
of a single Quartz network, we demonstrate that Quartz can be
used to incrementally replace latency-sensitive portions of standard
DCN topologies to cut end-to-end latency between 33% to 50%.

Compared to existing topologies, Quartz has three advantages:
(a) least possible hop count, so minimal latency (b) elimination of
queuing latency due to cross traffic and (c) if necessary, the ability
to use two-hop paths to achieve high bisection bandwidths, at the
expense of slightly higher latency. Quartz is completely legacy-
compatible: its benefits can be obtained without having to replace
current DCNs.

We have evaluated our ideas using analysis, simulations, and a
small prototype. We find that Quartz can significantly reduce la-
tency. In particular, we found that using Quartz in both the core
and edge can reduce latency by 50% in typical scenarios.
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