
c-Through: Part-time Optics in Data Centers

Guohui Wang?, David G. Andersen†, Michael Kaminsky‡, Konstantina Papagiannaki‡,
T. S. Eugene Ng?, Michael A. Kozuch‡, Michael Ryan‡

?Rice University, †Carnegie Mellon University, ‡Intel Labs Pittsburgh

ABSTRACT
Data-intensive applications that operate on large volumes of data
have motivated a fresh look at the design of data center networks.
The first wave of proposals focused on designing pure packet-
switched networks that provide full bisection bandwidth. However,
these proposals significantly increase network complexity in terms
of the number of links and switches required and the restricted
rules to wire them up. On the other hand, optical circuit switching
technology holds a very large bandwidth advantage over packet
switching technology. This fact motivates us to explore how optical
circuit switching technology could benefit a data center network.
In particular, we propose a hybrid packet and circuit switched data
center network architecture (or HyPaC for short) which augments
the traditional hierarchy of packet switches with a high speed, low
complexity, rack-to-rack optical circuit-switched network to sup-
ply high bandwidth to applications. We discuss the fundamental
requirements of this hybrid architecture and their design options. To
demonstrate the potential benefits of the hybrid architecture, we have
built a prototype system called c-Through. c-Through represents a
design point where the responsibility for traffic demand estimation
and traffic demultiplexing resides in end hosts, making it compatible
with existing packet switches. Our emulation experiments show
that the hybrid architecture can provide large benefits to unmodified
popular data center applications at a modest scale. Furthermore, our
experimental experience provides useful insights on the applicability
of the hybrid architecture across a range of deployment scenarios.

Categories and Subject Descriptors
C.2.1[Network Architecture and Design]: Network topology,
Packet switching networks, Circuit switching networks

General Terms
Design, Experimentation, Performance

Keywords
Data center networking, optical circuit switching, hybrid network

1. INTRODUCTION
The rising tide of data-intensive, massive scale cluster computing is
creating new challenges for datacenter networks. In this paper, we
explore the question of integrating optical circuit-switched technolo-
gies into this traditionally packet-switched environment to create a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00

“HyPaC network”—Hybrid Packet and Circuit—asking both how
and when such an approach might prove viable. We ask this question
in the hope of being able to identify a solution that combines the
best of both worlds, exploiting the differing characteristics of opti-
cal and electrical switching: optics provides higher bandwidth, but
suffers slower switching speed. Our results suggest in particular that
data-intensive workloads such as those generated by MapReduce,
Hadoop, or Dryad are sufficiently latency-insensitive that much of
their traffic can be carried on slowly-switching paths. Our results
both raise many questions for future work regarding the design de-
tails for hybrid networks, and motivate the need to answer those
questions by showing that such designs are feasible, exploring the ap-
plication characteristics that render them so, and providing a first-cut
design to exploit them.

To understand these goals, first consider today’s hierarchical,
electrically-switched datacenter networks. They typically place 10–
40 servers in a rack, with an aggregation (“Top of Rack”, or ToR)
switch in each. The ToR switches are the leaves in a tree of Ethernet
switches that connects all of the racks. The bandwidth at the top
of the tree is typically a fraction of the incoming capacity, creating
a bottleneck. In response to this now-well-known limitation, the
research community has begun exploring novel interconnect topolo-
gies to provide high bisection bandwidth using commodity Ethernet
switches—examples include Fat trees [12, 34, 25], DCell [26], and
BCube [27], among a rapidly growing set of alternatives, many
adapted from earlier solutions from the telecom and supercomputing
areas. These new designs provide optimal switching capacity, but
they require a large number of links and switches. For example, a
k-level fat tree used to connect N servers needs at least N× k switch
ports and wires. While research is ongoing in this area, physically
constructing these topologies at present requires complex, structured
wiring, and expanding the networks after construction is challenging.

For many years, optical circuit switching has led electrical packet
switching in high bandwidth transmission. A single optical fiber
can carry hundreds of gigabits per second. However, this capac-
ity must be allocated between a source and a destination at coarse
granularity—much longer than the duration of a single packet trans-
mission. “All-optical” packet switched networks have been a goal as
elusive as they are important; despite numerous innovations, today’s
commodity optical switching technologies require on the order of
milliseconds to establish a new circuit. They provide high band-
width, but cannot provide full bisection bandwidth at the packet
granularity.

Why, therefore, do we believe optical circuit switching is worth
considering in data centers? Because the characteristics of many
data-centric workloads suggest that many data center applications
may not need full bisection bandwidth at the packet granularity.
Recent measurement studies show substantial traffic “concentration”
in data center workloads: In many scientific computing applications

“the bulk of inter-processor communication was bounded in degree

and changed very slowly” [14]. Microsoft researchers measured the
traffic characteristics of production data centers, finding “evidence
of ON-OFF traffic behavior” [16] and “only a few ToRs are hot and
most of their traffic goes to a few other ToRs” [29]. As we expand
upon later, these patterns and others require high bandwidth, but the
concentration of traffic makes it more suited to a network in which
at any time, only a subset of the paths are accelerated.

In this work, our goal is to develop an architecture that can ex-
ploit these more fundamental differences between packet-switched
electrical networks and circuit-switched optical networks (or, more
generally, any circuit-switched technology with a bandwidth advan-
tage) in the context of a modern datacenter. We only give a brief
discussion of the relative cost of these networks: we believe it is a
question that follows those that we ask in this paper about feasibility
and the technical requirements to their use.1 Parallel work [22]
provides a more detailed discussion on the cost issue. This paper
presents a first effort exploring this design space and makes the
following contributions:

(1) We present a hybrid packet and circuit switched data center
network architecture (or HyPaC for short) that augments a traditional
electrical packet switch hierarchy with a second, high-speed rack-
to-rack circuit-switched optical network. The optical network is
reconfigured relatively slowly compared to the per-packet electrical
switches, connecting at any point in time each rack to exactly one
other rack. As a result, pairs of racks experience transient high
capacity links, and the set of racks that are paired changes over
time based upon traffic demand. Among numerous design choices
that realize the HyPaC architecture, we present a prototype system
called c-Through in which the responsibility for traffic demand
estimation and traffic demultiplexing resides in end hosts, making it
compatible with existing packet switches. In order to make the best
use of the transient high capacity optical circuits, c-Through recruits
servers to buffer traffic so as to collect sufficient volumes for high
speed transmission. Traffic buffering is done by enlarging individual
socket buffer limits so as to do it without introducing head-of-line
blocking or extra delay. By performing this buffering in-kernel, we
explore the benefits of the HyPaC architecture without substantial
application modification. Experiments with a c-Through prototype
on an emulated testbed show that optical circuits can be integrated
efficiently with traditional Ethernet and TCP/IP based protocols.
While we emphasize that there are many other ways that optical
circuit switching might be used to enhance data center networks, the
c-Through design shows that the general approach is feasible, even
without modifying applications or Ethernet switches.

(2) By experimenting with different kinds of applications over
the c-Through prototype, we provide insight into how the HyPaC
architecture applies to several usage scenarios. We find that HyPaC
can benefit many kinds of applications, but particularly those with
bulk transfer components, skewed traffic patterns, and loose synchro-
nization. We provide guidelines on how to maximize the benefits of
the HyPaC architecture in large scale data centers.

The rest of this paper is organized as follows: Section 2 provides
background on optical technologies. We discuss the HyPaC archi-
tecture and present the c-Through system design in Section 3 and
Section 4. We evaluate the system and application performance on
c-Through prototype in Section 5 and Section 6. Section 7 discusses
the applicability and scalability of the HyPaC architecture. We
introduce the related work in Section 8 and conclude in Section 9.

1This question also falls outside our bailiwick: Price is very sensitive to volume and
market conditions that may change drastically if optical technologies were to become
widely deployed in the datacenter.

2. OPTICS: PRO AND CON
Optical circuit switching can provide substantially higher bandwidth
than electrical packet switching. Today’s fastest switches and routers
are limited to roughly 40Gb/s per port; in contrast, 100Gb/s optical
links have been developed [8], and WDM techniques can multiplex
terabits/s onto a single fiber in the lab [9]. Today’s market already
offers 320x320 optical circuit switches with 40Gb/s transceivers [1].
The cost it pays is requiring about 20ms to switch to a new mapping
of input ports to output ports. In contrast, the CRS-1 router from
Cisco supports only sixteen 40Gb/s line cards in a full-rack unit—
but, of course, provides packet-granularity switching.

Slow switching is a lasting challenge for optical networking, and
affects all commercially available technologies. MEMS (Micro-
Electro-Mechanical Systems) optical switches reconfigure by physi-
cally rotating mirror arrays that redirect carrier laser beams to create
connections between input and output ports. The reconfiguration
time for such devices is a few milliseconds.2 Tunable lasers com-
bined with an Arrayed Waveguide Grating Router (AWGR) can
potentially provide faster switching. Tunable lasers can switch chan-
nels in tens of nanoseconds, with a significant caveat: “dark tuning”.
To avoid spilling garbage into the network during switching, the
laser must be optically isolated from the network. With the practical
constraints involved, the best switching speeds available today are
still in the 1 to 10ms range [17]. Tunable lasers will likely switch
more rapidly in the future, which would likely improve the perfor-
mance provided by a system such as c-Through, but, of course, such
improvements over time must also be balanced against the increased
number of packets per second transmitted on the links.

Optics has traditionally been viewed as more expensive than its
electrical counterparts, but this gap has been narrowing over time,
particularly as newer Ethernet standards require increasingly heavy
and expensive cables (such as CX4) for high bandwidth over even
modest distances. For example, the price of optical transceivers has
dropped more than 90 percent in the last decade [28], and the price
of MEMS optical switches has dropped to a few hundred dollars
per port [6]. Even at recent prices, the cost of optical networking
components is comparable with existing solutions. For example, it
has been estimated that constructing a BCube with 2048 servers costs
around $92k for switches and NICs and requires 8192 wires [27].
Today, MEMS switches are mostly aimed at the low-volume, high-
margin test and measurement market, but even so, using a MEMS
switch to connect 52 48-port switches, each switch connecting 40
servers, would cost approximately $110k at most (On an 80-port
MEMS optical switch, each port costs $200-$700, single 10Gbit
optical transceiver modules cost under $350, and 48-port switches
cost under $700). We expect the cost of these switches would drop
substantially were they to be used in commodity settings, and the cost
of the transceivers drops continuously. The increasing bandwidth
demand and dropping prices of optical devices make optical circuits
a viable choice for high bandwidth transmission in data centers.

3. HYPAC NETWORK REQUIREMENTS
Figure 1 depicts the HyPaC configuration we use in the rest of this
paper: The packet-switched network (top) uses a traditional hierar-
chy of Ethernet switches arranged in a tree. The circuit-switched
network (bottom) connects the top-of-rack switches. Optically con-
necting racks instead of nodes reduces the number of (still expensive)
optical components required, but can potentially still provide high

2e.g., opneti’s 1x8 MEMS switch requires 2ms typical, 5ms max to switch with multi-
mode fiber. http://www.opneti.com/right/1x8switch.htm

http://www.opneti.com/right/1x8switch.htm

Servers

ToR

switch

Aggregate

switch

Core

switch

Electrical

Network

Optical

Network

Reconfigurable

optical paths

Figure 1: HyPaC network architecture

System requirements

Control plane 1. Estimating cross-rack traffic demands
2. Managing circuit configuration

Data plane 1. De-multiplexing traffic in dual-path network
2. Maximizing the utilization of circuits when

available (optimization)

Table 1: Fundamental requirements of HyPaC architecture.

capacity because a single optical path can handle tens of servers
sending at full capacity over conventional gigabit Ethernet links.

The circuit-switched network can only provide a matching on the
graph of racks: Each rack can have at most one high-bandwidth
connection to another rack at a time. The switch can be reconfig-
ured to match different racks at a later time; as noted earlier, this
reconfiguration takes a few milliseconds, during which time the fast
paths are unusable. To ensure that latency sensitive applications can
make progress, HyPaC retains the packet-switched network. Any
node can therefore talk to any other node at any time over potentially
over-subscribed packet-switched links.

For the circuits to provide benefits, the traffic must be “pair-
wise concentrated”—there must exist pairs of racks with high band-
width demands between them and lower demand to others. Fortu-
nately, such concentration has been observed by numerous prior
studies [14, 16, 29]. This concentration exists for several reasons:
time-varying traffic, biased distributions, and—our focus in later
sections—amenability to batching. First, applications whose traffic
demands vary over time (e.g. hitting other bottlenecks, multi-phase
operation) can contribute to a non-uniform traffic matrix. Second,
other applications have intrinsic communication skew in which most
nodes only communicate with a small number of partners. This
limited out-degree leads to concentrated communication. Finally,
latency-insensitive applications such as MapReduce-style computa-
tions may be amenable to batched data delivery: instead of sending
data to destinations in a fine-grained manner (e.g., 1, 2, 3, 2, 3, 1,
2), sufficient buffering can be provided to batch this delivery (1, 1,
2, 2, 2, 3, 3). These patterns do not require arbitrary full-bisection
capacity.

3.1 System Requirement
Table 1 summarizes functions needed for a generic HyPaC-style
network. In the control plane, effective use of the circuit-switched
paths requires determining rack-to-rack traffic demands and timely
circuit reconfiguration to match these demands.

In the data plane, a HyPaC network has two properties: First,
when a circuit is established between two racks, there exist two paths
between them—the circuit-switched link and the always-present
packet-switched path. Second, when the circuits are reconfigured,
the network topology changes. Reconfiguration in a large data center
causes hundreds of simultaneous link up/down events, a level of
dynamism much higher than usually found in data centers. A HyPaC
network therefore requires traffic control mechanisms to dynamically
de-multiplex traffic onto the circuit or packet switched network,
as appropriate. Finally, if applications do not send traffic rapidly
enough to fill the circuit-switched paths when they become available,
a HyPaC design may need to implement additional mechanisms,
such as extra batching, to allow them to do so.

3.2 Design Choices and Trade-offs
These system requirements can be achieved on either end-hosts or
switches. For designs on end-hosts, the system components can be
at different software layers (e.g, applications layer or kernel layer).

Traffic demand estimation: One simple choice is to let applica-
tions explicitly indicate their demands. Applications have the most
accurate information about their demands, but this design requires
modifying applications. As we discuss in Section 4, our c-Through
design estimates traffic demand by increasing the per-connection
socket buffer sizes and observing end-host buffer occupancy at run-
time. This design requires additional kernel memory for buffering,
but is transparent to applications and does not require switch changes.
The Helios design [22], in contrast, estimates traffic demands at
switches by borrowing from Hedera [13] an iterative algorithm to
estimate traffic demands from flow information.

Traffic demultiplexing: Traditional Ethernet mechanisms han-
dle multiple paths poorly. Spanning tree, for example, will block
either the circuit-switched or the packet-switched network instead
of allowing each to be used concurrently. The major design choice
in traffic demultiplexing is between emerging link-layer routing pro-
tocols [33, 30, 25, 34, 10] and partition-based approaches that view
the two networks as separate.

The advantage of a routing-based design is that, by treating the
circuit and packet-switched networks as a single network, it oper-
ates transparently to hosts and applications. Its drawback is that it
requires switch modification, and most existing routing protocols im-
pose a relatively long convergence time when the topology changes.
For example, in link state routing protocols, re-convergence follow-
ing hundreds of simultaneous link changes could require seconds or
even minutes [15]. To be viable, routing-based designs may require
further work in rapidly converging routing protocols.

A second option, and the one we choose for c-Through, is to
isolate the two networks and to de-multiplex traffic at either the
end-hosts or at the ToR switches. We discuss our particular design
choice further in Section 4. The advantage of separating the net-
works is that rapid circuit reconfiguration does not destabilize the
packet-switched network. Its drawback is a potential increase in
configuration complexity.

Circuit utilization optimizing, if necessary, can be similarly ac-
complished in several ways. An application-integrated approach
could signal to applications to increase their transmission rate when
the circuits are available; the application-transparent mechanism
we choose for c-Through is to buffer additional data in TCP socket
buffers, relying on TCP to ramp up quickly when bandwidth be-
comes available. Such buffering could also be accomplished in the
ToR switches.

Kai
Highlight

In the remainder of this paper, we do not attempt to cover all of
the possible design choices for constructing a HyPaC network. The
following section introduces the c-Through design, which represents
one set of choices, and demonstrates that the HyPaC architecture
can be feasibly implemented in today’s datacenters without the need
to modify switches or applications.

4. C-THROUGH DESIGN AND IMPLE-
MENTATION

c-Through3 is a HyPaC network design that recruits end-hosts to
perform traffic monitoring, and uses a partition approach to separate
the circuit (optical) and packet (electrical) networks. c-Through ad-
dresses all the architectural requirements outlined in Table 1. In our
current testbed, we emulate a circuit switch’s connectivity properties
with a conventional packet switch. We therefore omit the implemen-
tation details on how the c-Through control software interfaces with
a commercial circuit switch. However, existing interfaces for circuit
configuration should be usable easily.

4.1 Managing Optical Paths
Traffic measurement: c-Through estimates rack-to-rack traffic de-
mands in an application-transparent manner by increasing the per-
connection socket buffer limit and observing per-connection buffer
occupancy at runtime. This approach has two benefits: First, an ap-
plication with a lot of data to send will fill its socket buffer, allowing
us to identify paths with high demand. Second, as discussed below,
it serves as the basis for optimizing use of the circuits.

The use of TCP socket buffers ensures that data is queued on a per-
flow basis, thus avoiding head-of-line blocking between concurrent
flows. A low-bandwidth, latency-sensitive control flow will therefore
not experience high latency due to high-bandwidth data flows.

We buffer at end hosts, not switches, so that the system scales
well with increasing node count (DRAM at the end hosts is relatively
cheap and more available than on the ToR switches). Each server
computes for each destination rack the total number of bytes waiting
in socket buffers and reports these per-destination-rack demands to
the optical manager.
Utilization optimization: Optical circuits take time to set up and
tear down. c-Through buffers data in the hosts’ socket buffers so that
it can batch traffic and fill the optical link when it is available. As
we show in Section 5, buffering a few tens to hundreds of megabytes
of data at end hosts increases network utilization and application
performance. The end-host TCP can ramp up to fill the increased
available bandwidth quickly after the network has been reconfigured.
Optical configuration manager: The optical configuration man-
ager collects traffic measurements, determines how optical paths
should be configured, issues configuration directives to the switches,
and informs hosts which paths are optically connected. The initial
design of this component is a small, central manager attached to the
optical switch (equivalent to a router control plane).

Given the cross-rack traffic matrix, the optical manager must
determine how to connect the server racks by optical paths in order
to maximize the amount of traffic offloaded to the optical network.
This can be formulated as a maximum weight perfect matching
problem. The cross rack traffic matrix is a graph G = (E,V). V
is the vertex set in which each vertex represents one rack and E is
the edge set. The weight of an edge e, w(e), is the traffic volume

3A conjunction of c, the speed of light, and “cut-through”.

between the racks. A matching M in G is a set of pairwise non-
adjacent edges. That is, no two edges share a common vertex.
A perfect matching is a matching that matches all vertices of the
graph. From this formulation, the optical configuration is a perfect
matching with the maximum aggregated weight. The solution can
be computed in polynomial time by Edmonds’ algorithm [20]. As
we previously reported, Edmonds’ algorithm is fast [39], computing
the configuration of 1000 racks within a few hundred milliseconds.4

4.2 Traffic De-multiplexing
VLAN based network isolation: c-Through solves the traffic de-
multiplexing problem by using VLAN-based routing (similar ideas
using different mechanisms have been used to leverage multiple
paths in Ethernet networks [37, 41]). c-Through assigns ToR
switches two different VLANs that logically isolate the optical net-
work from the electrical network. VLAN-s handles packets destined
for the packet-switched electrical network, and VLAN-c handles
packets going directly to one other rack via the optical path. In
c-Through, the end-host is responsible for tagging packets with the
appropriate VLAN ID, for ease of deployment.

In this topology, observe that the topology of VLAN-s (packet-
switched) does not change frequently, but that of VLAN-c could
change a few times per second. Rapid reconfiguration is challenging
for many Ethernet control protocols, such as spanning tree or other
protocols with long convergence time [21]. Therefore, spanning tree
protocol should be disabled in VLAN-c and c-Through guarantees
that the optical network is loop-free (by construction, it can provide
only a matching). However, either existing or future protocols can
still be used to manage the hierarchical electrical network.

Other designs are certainly viable depending on the technological
constraints of the implementer: we do not believe that end-host
VLAN selection is the only, or even the best, way to accomplish
this goal in the long term. Our focus is more on demonstrating
the fundamental feasibility of HyPaC networks for datacenters. Fu-
ture advances in routing protocols and programmable switches (e.g.,
Click or OpenFlow) could provide a transparent, switch-based mech-
anism for traffic demultiplexing.

Traffic de-multiplexing on hosts: Each host runs a management
daemon that informs the kernel about the inter-rack connectivity.
The kernel then de-multiplexes traffic to the optical and electrical
paths appropriately. As shown in Figure 2, each server controls
its outgoing traffic using a per-rack output traffic scheduler. When
TCP/IP transmits a packet, it goes to a destination-rack classifier,
and is placed into a small (several packets) queue. Based upon their
destination rack, the packets are then assigned either to the electrical
or optical VLAN output queue (this queue is small—approximately
the size of the Ethernet output buffer). Broadcast/multicast packets
are always scheduled over the electrical network.

In this design, c-Through must give higher transmission prior-
ity to the optically-connected destinations than to the electrically-
connected destinations. It does so using a weighted round-robin
policy to assign weight 0.9 to the per-rack queue that is currently op-
tically connected, and splits the remaining 0.1 weight among the non-
optically-connected links. Because the policy is work-conserving
and most traffic is running over TCP, this simple approach works
well to ensure that both the optical and electrical networks are highly
utilized and no flow is starved.

4At larger scales or if switching times drop drastically, faster but slightly heuristic
algorithms such as iSLIP could be used [32].

Management

Daemon

Network Interface

Per-rack

Output

Traffic

Scheduler

VLAN#1 VLAN#2

Sockets with

enlarged

buffer limits

tc

netstat

Optical

Manager

Optical

network

config

De-MUX

Dst-rack

Classifier

stats

config

traffic

Applications

TCP/IP Stack

Figure 2: The structure of the optical management system

4.3 c-Through System Implementation
c-Through implements traffic measurement and control in-kernel
to make the system transparent to applications and easy to deploy.
Figure 2 shows the architecture of the optical management system.

Two VLAN interfaces are configured on the physical NIC con-
nected to the ToR switch. All packets sent through a VLAN interface
are tagged with the associated VLAN number. As illustrated in Fig-
ure 2, packets going through interface VLAN#1 are tagged with
VLAN#1, and forwarded via electrical paths by the ToR switch;
packets sent out on interface VLAN#2 are tagged with VLAN#2
and forwarded via optical paths. Each server is configured with two
virtual interfaces, bonded through a bonding driver. This approach
is therefore transparent to the upper layers of the stack—the two
virtual interfaces have the same MAC and IP addresses.

c-Through buffers traffic by enlarging the TCP socket buffer
limits, allowing applications to push more data into the kernel. We
use netstat to extract the buffered data sizes of all sockets and then
sum them based on the destination rack.

In practice, the memory consumption from enlarged socket buffer
limits is moderate. The buffers need not be huge in order to infer de-
mand and to batch traffic for optical transfer: our results in Section 6
show that limiting the TCP send buffer to 100 MB provides good
performance for many applications. Furthermore, the limit is not a
lower bound: only as much memory is consumed as the application
generates data to fill the socket buffer. The applications we observed
do not generate unbounded amounts of outstanding data. For the
data intensive applications we have tried, such as VM migration,
MapReduce and MPI FFT, the total memory consumption of all
socket buffers on each server rarely goes beyond 200MB.

A user-space management daemon on each node reads socket
statistics using netstat and reports them to the central configuration
manager. The statistics report how much traffic is buffered for each
destination rack, permitting the optical configuration manager to
assign an optimal configuration of the optical paths. To reduce the
amount of traffic sent to the centralized manager, servers only report
traffic statistics when the queue size is larger than a threshold and the
queue size variation exceeds a second threshold. We empirically set
both thresholds to 1MB. Since optical paths are configured for appli-
cations with high bandwidth demands, omitting a small amount of
buffered data will not significantly impact the configuration decision.

When a new configuration is computed, the manager sends recon-
figuration commands to the optical switches and notifies the server
daemons about the new configuration. The notification messages

Rack A

1Gbps switch

- server

M

VLAN #2:

Optical

VLAN #1:

Electrical

1Gbps switch

Rack B Rack C Rack D

- switch

M
- manager

4x1Gbps

trunk links

Figure 3: The logical testbed topology.
1Gbps

Switch

Rack A

region

Rack B

region

Rack C

region
Rack D

region

1 Gbps

Switch

M

: VLAN A_loc, A_elec,

G_opt tagged

: VLAN A_elec

untagged

: VLAN B_loc, B_elec,

G_opt tagged

: VLAN B_elec

untagged

: VLAN C_loc, C_elec,

G_opt tagged

: VLAN C_elec

untagged

: VLAN D_loc, D_elec,

G_opt tagged

: VLAN D_elec

untagged

Figure 4: The physical testbed configuration.

can be multicast to reduce overhead. The management daemon
notifies the per-destination-rack output queue scheduler about the
new optical path using tc (a Linux tool for configuring the kernel
network stack). The scheduler then dequeues and de-multiplexes
packets according to the new configuration. In a very large data
center, the control traffic between individual servers and the central
manager could be significant. We discuss this issue in Section 7.

5. SYSTEM EVALUATION
We implemented a c-Through prototype to study how well packet-
switched and circuit-switched networks coexist and how applica-
tions perform. Due to the expense of prototyping a hybrid electri-
cal/optical network, we emulate a HyPaC topology on a conventional
packet-switched network, enabling and disabling communications to
emulate the availability of high-speed optical links between switches.
A controller introduces a reconfiguration delay to emulate the re-
configuration and settling time that the optical components would
experience. Section 5.2 validates that this framework accurately
reproduces network properties of interest. Although we choose
parameters for these links and intervals based upon one particular
optical technology (MEMS optical switches), our results should
generalize as long as two assumptions continue to hold about optical
and electrical networking: First, that the reconfiguration time of the
optical switch remains long relative to the number of packets that
can be sent (e.g., a 5ms reconfiguration interval is 16,000 packets of
1500 bytes on a 40 Gbps network). Second, that a circuit-switched
optical path will retain a substantial bandwidth advantage over an
electrically-switched path.

5.1 Testbed Setup
While there is no canonical data center design, one popular config-
uration includes 40 servers per rack connected at 1 Gbps to a ToR
switch. Although a single rack can generate as much as 40 Gbps,
the ToR switches are often interconnected at 1, 2, 4, or 10 Gbps,
offering over-subscription ratios from 40:1 to 4:1 [7, 25].

We emulate comparable over-subscription ratios in our experi-
ments. The logical topology emulated is shown in Figure 3. Phys-
ically, our emulation testbed consists of 16 servers and two Ether-
net switches. Our switches are Dell PowerConnect 5448 Gigabit
switches, and the servers have two 4-core Intel Xeon 2.5GHz pro-
cessors and 8GB of memory. They run Ubuntu 8.04.3 LTS with
the Linux 2.6.30 kernel. The 16 servers are connected to the first
Gigabit Ethernet switch at 1 Gbps. We use VLANs to isolate the
servers into four logical server racks as shown in Figure 4. The
VLAN X loc is used for intra-logical-rack traffic. Packets tagged
with X loc can only reach other servers within the same logical
rack. Within each logical rack, one switch port is connected to the
second Gigabit Ethernet switch (as shown in the top of Figure 4)
which emulates a low speed packet-switched inter-rack network.
By rate-limiting the ports, over-subscription ratios from 40:1 to 4:1
can be emulated. VLAN X elec is used for traffic going through
this low speed packet-switched inter-rack network. On the other
hand, we emulate an optical circuit switch connecting the logical
racks using the internal switching fabric of the first Ethernet switch.
When the optical manager decides two logical racks are connected
via an emulated circuit, communications through the emulated opti-
cal switch between these logical racks are allowed; otherwise, they
are disallowed. An emulated optical circuit provides 4 Gbps of
capacity between logical racks when communication is allowed.
VLAN G opt is used for traffic going through the emulated optical
circuit-switched network.

Using an Ethernet switch to emulate the optical network creates a
few differences between our testbed and a real optical network. First,
we must artificially restrict communication through the emulated
optical switch to emulate the limited rack-to-rack circuits. Second,
we must make the network unavailable during optical switch recon-
figuration. We estimate this delay based upon the switching time of
MEMS switches plus a small settling time for the optical transceivers
to re-synchronize before talking to a new destination. During this
delay, no traffic is sent through the emulated optical switch.

For comparison, we also emulate a full bisection bandwidth
packet-switched network in the testbed by allowing traffic to flow
freely through the switching fabric of the first Gigabit Ethernet
switch.

We implement the per-rack output scheduler in the kernel. The
optical manager runs on a separate server. It collects traffic statistics
from the rack servers and dynamically reconfigures the emulated
optical paths. Because we use an Ethernet switch to emulate the
optical switch, the optical manager does not command switches
to set up optical paths. Instead, it communicates with the servers’
management daemons to reconfigure the scheduler. When the man-
ager starts to reconfigure optical paths, it first tells all servers to
disable the optical paths by configuring the scheduler modules. It
then delays for 10ms to emulate the switch reconfiguration, during
which time no servers can use any optical path. The manager then
instructs the servers to activate the new paths.

5.2 Micro-benchmark Evaluation
The goal of our micro-benchmarks is to understand how well today’s
TCP/IP stack can use the dynamic optical paths. In Section 6, we
measure the benefit applications gain from the optical paths.

5.2.1 TCP behavior during optical path reconfiguration

We evaluate the effect of optical network emulation using electrical
switches. We examine the TCP throughput between two servers in
our testbed over several reconfiguration epochs. The servers transfer

FIFO VLAN+output scheduling
Optical Electrical Optical Electrical

TCP (Mbps) 940 94 921 94
UDP (Mbps) 945 94 945 94

Table 2: Throughput with and without output scheduling.

0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

Time (s)

TC
P

th
ro

ug
hp

ut
(M

bp
s)

Electrical path
Optical path
Reconfigured optical path

Figure 5: TCP throughput on a reconfiguring path.

data as rapidly as possible from one to the other using the default
TCP CUBIC. While the flow is running, we periodically set up
and tear down the optical path between them. We emulate a 40:1
over-subscription ratio (100Mb/s between racks) to maximize the
capacity change upon reconfiguration.

Figure 5 shows the TCP throughput at the receiver across the
entire experiment, along with what that throughput would look like
if the flow was routed on the electrical or the optical path alone. The
testbed correctly emulates the changes in network capacity before,
during, and after reconfiguration. At time=1s, for instance, TCP
correctly increases its throughput from 100 Mbps to 1 Gbps.

In this environment, TCP can increase its throughput to the avail-
able bandwidth within 5 ms of reconfiguration. When the optical
path is torn down, TCP experiences packet loss since the available
bandwidth drops rapidly. Although throughput briefly drops below
the electrical network’s capacity, it re-reaches the electrical capacity
within a few tens of milliseconds. These experiments confirm that
the optical emulation reflects the expected outcome of reconfigu-
ration, and that TCP adapts rapidly to dynamically re-provisioned
paths. This adaptation is possible because of the low RTT among
servers. Even for a high bandwidth transmission, the TCP window
size remains small.

5.2.2 How does the scheduler affect throughput?

The optical management system adds an output scheduler in the
server kernel. The imposition of this component does not signifi-
cantly affect TCP or UDP throughput. Table 2 shows the throughput
achieved between a single sender and receiver using both 100 Mbps
and 1 Gbps links (electrical and optical capacities, respectively),
over TCP and UDP, and with and without the output scheduler. We
gathered the results using iperf to send 800MB of data from memory
as rapidly as possible.

5.2.3 Do large buffers affect packet delays?

c-Through is designed to avoid head-of-line (HoL) blocking by
using per-flow socket buffers to buffer traffic, preventing the large
buffers from imposing excess delay on latency-sensitive, small flows.
Traffic from different flows to the same per-rack output queue share
bandwidth according to TCP congestion control. The networks can,
of course, become congested when applications send a large amount
of data. This congestion, however, is not unique to c-Through.

App Traffic pattern Synchronization

VM Migration one-to-many NONE
MapReduce all-to-all Loose
MPI FFT all-to-all Global barrier

Table 3: Benchmark applications

To confirm that our per-flow buffering avoids HoL blocking and
does not unfairly increase latency, we send both TCP and ICMP
probes together with an aggressive TCP flow to servers in the same
destination rack. The probe flows sends 1 probe every second and the
heavy TCP flow sends 800MB of data as fast as possible, saturating
the 100MB socket buffer and transiently filling the relatively small
buffers on the Ethernet switch (until the optical network provides
it with more bandwidth in response to its increased demand). Both
TCP and ICMP probes observe a 0.15 to 4–5ms increase in RTT
due to the congestion at the switch, but do not experience the huge
delay increases it would observe were it queued behind hundreds of
megabytes of data.5

6. APPLICATIONS ON C-THROUGH
The benefits from using HyPaC depends on the application communi-
cation requirements. The traffic pattern, its throughput requirements,
and the frequency of synchronization all affect the resulting gain. We
evaluated three benchmark applications, summarized in Table 3. We
chose these applications to represent three types of cluster activity:
bulk transfer (VM migration), loosely-synchronized computation
(Map Reduce), and tightly-synchronized computation (MPI/HPC).
To understand how applications perform when optical circuits are
combined with an electrical network at different speeds, we em-
ulated 40:1, 10:1, and 4:1 over subscription ratios by setting the
cross-rack packet-switched bandwidth to 100Mbps, 400Mbps and
1Gbps. Although in practice a data center may run mixed applica-
tions, we run each application separately for ease of understanding
the applicability of c-Through to different application patterns.

6.1 Case study 1: VM Migration
Virtual machine (VM) migration—in which a live VM (including a
running operating system) moves from one physical host to another—
is a management task in many data centers. The core of migration
involves sending the virtual machine memory image (usually com-
pressed) from one host to another. This application represents a
point-to-point bulk data transfer and does not require synchroniza-
tion with machines other than the sender and receiver. Because the
VM memory image may be large (multiple GB) and the migration
needs to be done rapidly, VM migration requires high bandwidth.
Intuitively, we expect this application to be an ideal case for c-
Through: the high bandwidth demand will make good use of the
optical network, the pairwise concentrated traffic (point-to-point)
is amenable to circuit-switching, and the lack of synchronization
means that accelerating part of the traffic should improve the overall
performance.

We deployed the KVM [5] VMM on our testbed to study the
performance of virtual machine migration with c-Through. Our
experiment emulates a management task in which the data center
manager wants to shut down an entire rack; prior to shutdown, all
the VMs running on that rack need to be migrated to other racks. In
our experiments, we migrate all the VMs evenly to servers in other

5This design still could increase latency of application control messages within a
flow if the application sends data and control messages over the same socket.

racks based on the VM ID. The starting state has eight VMs per
physical node; each VM is configured with 1GB of RAM. Since we
have four servers per rack, we need to migrate 32 VMs in total.6

Figure 6 shows the average completion time of the task, averaged
across 3 runs, using c-Through, the bottlenecked electrical network,
and a full bisection bandwidth network. Results are further presented
as a function of the TCP send buffer size (Figure 6(a)) and the
reconfiguration interval (Figure 6(b)). The three bars correspond to
40:1, 10:1, and 4:1 over subscription ratios (flat for the case of full
bisection bandwidth).

We begin by examining the results when the electrical network
is 40:1 over-subscribed. In Figure 6(a) we fix the reconfiguration
interval to be 1s and vary the TCP socket buffer sizes on the servers.
Using only the bottlenecked electrical network, the migration takes
280 seconds. Even with default 128KB socket buffers, c-Through
accelerates the task to 120 seconds. With larger socket buffers,
c-Through improves performance even more. For example, with
300MB TCP socket buffers, the job completes within 60 seconds—
very close to the 52 second completion time with a full bisection
bandwidth network. The reasons for this near optimal performance
are twofold: First, during VM migration, each source host will tend
to have some traffic destined for each rack. As a result, an optical
path, once configured, can be fully utilized. Second, the performance
of the full bisection bandwidth network is closely determined by
the time to initiate the task and compress the VM images, opera-
tions that are CPU-limited and not bandwidth-limited. As a result,
the bandwidth provided by the optical path, while not always full
bisection, is nonetheless sufficient to accelerate performance.

Figure 6(b) shows the effect of the reconfiguration interval on VM
migration performance. In this figure, we fix the socket buffer size
to 100MB, as a reasonable choice from the previous results. Since
VM migration is a point-to-point bulk transfer application, it does
not require fine-grained optical path reconfiguration. c-Through
achieves good VM migration performance even with a 5 second
optical reconfiguration interval.

As expected, when the electrical network is less oversubscribed,
the performance gap among the three network designs shrinks. That
is, when the bandwidth of electrical network is higher, the benefit
of adding more bandwidth is relatively smaller. More importantly,
however, our results clearly demonstrate that even augmenting a
slow electrical network with c-Through could achieve near optimal
performance for VM migration/bulk data transfer applications.

6.2 Case study 2: MapReduce
MapReduce [18] is a widely-used parallel computation approach
in today’s data centers. Many production data centers, such as
Amazon EC2 and Google, support MapReduce-style applications.
In MapReduce applications, jobs are split into Map tasks and Reduce
tasks. During the Map phase, the master node assigns the job to
different mappers. Each mapper reads its input from a data source
(often the local disk) as key-value pairs and produces one or more
intermediate values with an output key. All intermediate values for
a given output key are transfered over the network to a reducer. The
reducer sorts these intermediate values before processing them; as a
result, it cannot start until all mappers have sent it their intermediate
values. At the end of the Reduce task, the final output values are
written to stable storage, usually a distributed file system, such as
the Hadoop filesystem (HDFS).

6Although each VM is configured with 1GB RAM, the virtual machine may not be
using all the RAM at one time. Thus, before migration, the VMM will compress the
memory image, reducing the amount of data it needs to send.

0

100

200

300

400

Co
m

pl
et

io
n

Ti
m

e(
s)

40:1 over−subscription
10:1 over−subscription
4:1 over−subscription

Electrical
Network

c−Through
(buf:128KB)

(buf:50MB)
(buf:100MB)

(buf:300MB)
(buf:500MB)

Full bisection
bandwidth

0

100

200

300

400

Co
m

pl
et

io
n

Ti
m

e(
s)

40:1 over−subscription
10:1 over−subscription
4:1 over−subscription

Electrical
Network

c−Through
(reconfig: 0.3s)

(reconfig: 0.5s)
(reconfig: 1.0s)

(reconfig: 3.0s)
(reconfig: 5.0s) Full bisection

bandwidth

(a) Varying socket buffer size (reconfigure: 1s) (b) Varying reconfiguration interval (buffer size: 100MB)
Figure 6: Virtual machine migration performance

0

200

400

600

800

Co
m

pl
et

io
n

Ti
m

e
(s

)

40:1 over−subscription
10:1 over−subscription
4:1 over−subscription

Electrical
network

c−Through
(buf: 128KB)

(buf: 50MB)
(buf: 100MB)

(buf: 300MB)
(buf: 500MB)

Full bisection
bandwidth

0

200

400

600

800

Co
m

pl
et

io
n

Ti
m

e
(s

)

40:1 over−subscription
10:1 over−subscription
4:1 over−subscription

Electrical
network

c−Through
(reconfig: 0.3s)

(reconfig: 0.5s)
(reconfig: 1s)

(reconfig: 3s)
(reconfig: 5s)

Full bisection
bandwidth

(a) Varying socket buffer size (reconfigure: 1s) (b) Varying reconfigure interval (buffer size: 100MB)
Figure 7: The performance of Hadoop sort

In the context of c-Through, MapReduce has two important fea-
tures: all-to-all traffic and coarse-grained synchronization. The
mappers must often shuffle a large amount of data to the reducers.
As a result, MapReduce applications may not have traffic that is as
concentrated as that in a bulk data transfer such as VM migration.7

Second, MapReduce applications have only a single system-wide
synchronization point between the Map and Reduce phase.

To explore the effect of c-Through on MapReduce-style applica-
tions, we deployed Hadoop (an open source version of MapReduce)
on our testbed. The first Hadoop application that we ran was a
distributed sort. A feature of Hadoop sort is that the intermediate
data generated by the mappers and the final output generated by
the reducers are at least as large as the input data set. Therefore,
Hadoop’s sort requires high inter-rack network bandwidth. Our
sort uses 10GB of random data as its input set, and we vary the
c-Through parameters as before.

Figure 7 shows the performance of Hadoop sort on c-Through
with different buffer sizes, reconfiguration intervals. Figure 7(a)
shows the effect of the TCP send buffer size on job completion
time (as before we fix the optical network reconfiguration time
to 1s). Enlarging the TCP socket buffers has very little impact
on performance when the buffer size is larger than 50MB. The
reason is that the block size of HDFS is 64MB, which also forms its
transmission unit. Consequently, Hadoop does not expose enough
traffic to the kernel when socket buffers are set to large values.

In Figure 7(b), we fix the TCP send buffer size to 100MB and
vary the optical path reconfiguration interval. The key result from
this experiment is that more frequent optical path reconfiguration
can improve Hadoop’s sort performance (this should be expected,

7With one important exception: During the output phase, the final values are written
to a distributed filesystem, often in a rack-aware manner.

0 50 100 150 200 250 300
0

50

100

Time (s)

Co
m

pl
et

io
n(

%
)

Map Task

0 100 200 300 400 500 600 700 800
0

50

100

Time

Co
m

pl
et

io
n(

%
)

Reduce Task

Electrical network (40:1 over−subscribed)
c−Through(buf:100MB, reconfig: 0.3s)
Full bisection bandwidth

Data copy from mappers

Sort

Reduce with output writing

Figure 8: The completion of Hadoop sort tasks

since faster reconfiguration allows for more frequent draining of the
slowly filling buffers).

Coupling c-Through with a slow (40:1 over-subscribed) electrical
network provides near-optimal performance for Hadoop sort. To
understand the source of this performance improvement, we plot
the benchmark’s execution timeline in Figure 8. The top portion
shows the Map phase and indicates the completion of the map tasks
as a function of time. The solid line shows Hadoop’s performance
on the bottlenecked electrical network with 40:1 over subscription
ratio; note how the curve has a long tail. This tail comes from a few
mappers that are reading from a non-local data source and are hit-
ting the electrical network’s bottleneck capacity. By adding optical
paths, c-Through eliminates the long tail, significantly reducing the
completion time of the map phase (seen when the c-Through curve
reaches 100%). This reduction, in turn, improves overall Hadoop
sort performance because the reduce tasks cannot start processing
until all of the map tasks have completed.

The bottom portion of Figure 8 shows the execution timeline of

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.2

0.4

0.6

0.8

1

Job Completion Time (s)

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Electrical network(40:1 over−subscribed)
c−Through (buf:100MB, reconfig:1.0s)
Full bisection bandwidth network

Figure 9: The completion of Hadoop Gridmix tasks

the Reduce phase, which has three steps: copying the intermediate
values from the mappers and grouping by key, sorting, and the exe-
cution of the reduce function. (The execution of the reduce function
also includes writing the output back to HDFS.) c-Through can sig-
nificantly speed up the data copying and output writing. During the
data copying step, data is shuffled among all of the mappers and
reducers. Since the use of key space and the value sizes are uniform,
there is an equivalent traffic pattern across all racks. Nevertheless,
our results shows that c-Through can still accelerate this data shuf-
fling step. Since reducers can start pulling data from mappers as
soon as it is available, intermediate data is shuffled among mappers
and reducers while the remaining mappers are still running. There
is not a blocking serialization point in the shuffle phase because the
map tasks and reduce tasks are running in parallel. This property
makes it suitable for batch transfer over optical paths.

As reduce tasks complete, the final output is written to HDFS,
which maintains (by default) three replicas of each data block. After
an invocation of reduce, HDFS will write one copy of the data locally
and send two additional copies of the data to other servers. This
replication generates significant network traffic and saturates the
electrical network, which is clearly visible in the bottom figure by
the long tail of the output writing step. Again, this traffic does not
exhibit significant skew, but nevertheless, c-Through can accelerate
this bulk data transfer step significantly.

Finally, we summarize MapReduce’s performance on the three
network designs. When Hadoop sort runs on a full bisection band-
width network, it can still be bottlenecked by intensive disk I/O
operations. Consequently, as before, we observe that even using
reconfigurable optical paths with a slow electrical network can still
provide close to optimal performance to data-intensive, MapReduce-
style applications—despite relatively uniform traffic patterns. Simi-
larly, when the electrical network becomes faster, the performance
gap among bottlenecked electrical network, c-Through and full bi-
section bandwidth network is smaller.

Gridmix: To understand how c-Through works for more realistic
applications with complicated traffic patterns, we study the perfor-
mance of the Hadoop Gridmix benchmark on c-Through. Grid-
mix [4] mimics the MapReduce workload of production data centers.
The workload is simulated by generating random data and submitting
MapReduce tasks based on the data access patterns observed in real
user jobs. Gridmix simulates many kinds of tasks with various sizes,
such as web data scanning, key value queries and streaming sort. We
generate a 200GB uncompressed data set and a 50GB compressed
data set for our experiments. Each experiment launches 100 tasks
running on these data sets. We run the same Gridmix experiment
3 times for each network architecture. Figure 9 shows the cumu-
lative distribution of the completion time of Gridmix tasks on the

bottlenecked electrical network, full bisection bandwidth network
and c-Through network respectively. In our experiment, c-Through
uses 100MB socket buffer size and 1 second optical reconfiguration
time. The over-subscription ratio of the electrical network is 40:1.
The results show that even when the electrical network is highly
over-subscribed, the completion time of Gridmix jobs on c-Through
network is very close to that on full bisection bandwidth network.

6.3 Case study 3: MPI Fast Fourier
Fast Fourier Transforms (FFTs) are frequently used in scientific
computing; efficient parallel FFT computation is important for many
large scale applications such as weather prediction and Earth simu-
lation. Parallel FFT algorithms use matrix transpose for FFT trans-
formation. To perform a matrix transpose using MPI, a master
node divides the input matrix into sub-matrices based on the first
dimension rows. Each sub-matrix is assigned to one worker. Matrix
transpose requires each worker to exchange intermediate results
with all other workers. Parallel FFT on a large matrix therefore
requires data intensive all-to-all communication and periodic global
synchronization among all of the workers. We expected this style
of application to be challenging to a hybrid network because of the
poor traffic concentration and strict synchronization among servers.
Surprisingly, c-Through substantially improved performance.

We studied the performance of parallel FFT on our testbed using
FFTW [2]. FFTW is a C library for computing discrete Fourier
transform in one or more dimensions. It provides both single node
and MPI-based implementations to compute FFT with real or com-
plex data matrices. We ran MPI FFTW on 15 nodes of our testbed
to compute the Fourier transform of a complex matrix with 256M
elements. The resulting matrix occupies 4GB. Figure 10 reports the
MPI FFT completion time with different network settings.

We follow the same method as with previous experiments to study
the effect of socket buffer size and optical reconfiguration interval on
application performance. Because MPI FFT exchanges small blocks
(20MB) of the matrix among servers, larger buffers do not substan-
tially improve performance. The benefits of c-Through for MPI
FFT depend more on rapid optical path reconfiguration. As shown
in Figure 10, with 100MB socket buffers and a 0.3 second optical
reconfiguration interval, the job took twice as long using c-Through
with a 40:1 oversubscribed electrical network as it did on the full
bisection bandwidth network. When the optical path is reconfigured
slowly (e.g. 5 seconds), the performance of MPI FFT is much worse
than when the reconfiguration interval is 0.3 seconds. The frequent
global barrier synchronization, combined with the uniform traffic
matrix, make it impossible to saturate the optical network for the
entire period. To maximize performance, applications must ensure
there is enough data available in the buffers to saturate the optical
link when it becomes available. Reconfiguration periods should
not be large without reason: The period should be chosen just long
enough to ensure efficiency (the network experiences downtime dur-
ing the reconfiguration), but small enough so that links do not fully
drain due to lack of data to the chosen destination rack.

7. DISCUSSION
7.1 Applicability of the HyPaC Architecture
The case studies provide several insights into the conditions under
which a HyPaC network can or cannot provide benefits.

Traffic concentration: Bulk transfers can be accelerated by
high capacity optical circuits. c-Through buffers at sources to create

0

100

200

300

400

500

600

700

Co
m

pl
et

io
n

Ti
m

e
(s

)

40:1 over−subscription
10:1 over−subscription
4:1 over−subscription

Electrical
network

c−Through
(buf: 128KB)

(buf: 50MB)
(buf: 100MB)

(buf: 300MB)
(buf: 500MB)

Full bisection
bandwidth

0

100

200

300

400

500

600

700

Co
m

pl
et

io
n

Ti
m

e
(s

)

40:1 over−subscription
10:1 over−subscription
4:1 over−subscription

Electrical
network

c−Through
(reconfig: 0.3s)

(reconfig: 0.5s)
(reconfig: 1.0s)

(reconfig: 3.0s)
(reconfig: 5.0s)

Full bisection
bandwidth

(a) Varying socket buffer size (reconfigure:1s) (b) Varying reconfigure interval (buffer size: 100MB)
Figure 10: The performance of MPI FFT

bulk transfer opportunities, but applications may not be able to make
full use of such a feature if they internally operate on small sized data
units. An example of this comes from our experience with Hadoop:
In many cases, Hadoop’s default configuration limited the nodes’
ability to generate and buffer large amounts of data, even when
TCP provided sufficient buffer space. Fortunately, the performance
tuning was straightforward—and similar to the techniques needed to
achieve high throughput on high bandwidth-delay networks.

Even applications that may seem on the surface to have uniform
traffic matrices may experience transiently concentrated traffic, such
as the data output phase in Hadoop. By diverting even just this
one phase of the transfer over the optical links, all applications
running on the cluster—even those with uniform traffic—can benefit
from the reduced load on the oversubscribed electrical network.
Second, even uniform applications such as the sort phase of Hadoop
may experience traffic concentration on shorter timescales due to
statistical variation in their traffic. If those timescales are long
enough, the hybrid network can exploit the transient imbalance to
accelerate the transfer.

Synchronization: HyPaC networks are more suited for applica-
tions with loose or no synchronization. The pairwise connections
and reconfiguration interval impose a minimum time to contact all
racks of interest called the circuit visit delay. If the time between
application synchronization events is substantially smaller than the
circuit visit delay, the benefits of a HyPaC network decrease rapidly.
There are two ways to reduce the circuit visit delay: Cluster the
application traffic so that it must visit fewer racks, or move to faster
optical switching technologies; until these technologies become
available, the HyPaC architecture may not be an appropriate choice
for tightly synchronized applications that require all-to-all commu-
nication.

Latency sensitivity: All the applications we have studied so
far are not sensitive to the latency of particular messages. Some
data center applications, such as Dynamo [19], do not operate on
bulk data. Instead, they need to handle a large number of small
queries. These applications are sensitive to the latency of each query
message. For such applications, a HyPaC network can improve
query throughput and relieve congestion in the electrical network,
mostly because these applications also perform concentrated bulk
transfers during reconfiguration and failover. However, it does not
reduce the non-congested query latency.

7.2 Making Applications Optics Aware
Our current design makes the optical paths transparent to appli-
cations. Applications might take better advantage of the HyPaC
architecture by informing the optical manager of their bandwidth

needs, or by adapting their traffic demands to the availability of
the optical network. We view both of these questions as interesting
avenues for future exploration. The applications we have studied so
far have largely stationary traffic demands that would benefit little
from telegraphing their intent to the manager. Other applications,
however, may generate more bursty traffic that could benefit from
advance scheduling. The second approach, allowing applications
to actively adapt to the reconfiguring bandwidth, could potentially
leverage optical paths in much better ways.

For example, applications could buffer more data on their own,
or generate data in a more bursty fashion based upon the avail-
ability of the network. Several datacenter applications are already
topology-aware, and it may be possible to make such applications
(e.g., Hadoop) adapt to the changing topology just by modifying
the scheduling algorithms. Finally, the optical component manager
might be integrated into a cluster-wide job/physical resource man-
ager that controls longer-term, high level job placement, to improve
traffic concentration as discussed below.

7.3 Scaling
There are three scaling challenges to realize a large hybrid network.
First, the size of the data center may exceed the port capacity of
today’s optical switches, requiring a more sophisticated design than
the one considered so far. Second, the measurement and matching
computation overhead scales with the number of racks. Third, if
racks talk to more and more other racks, the circuit visit delay, i.e.
the amount of time it takes to connect one rack to a particular other
rack, might increase. To make the discussion concrete, we consider
a large data center with 1000 racks (a total of 40,000 servers).

Optical network construction: Given a 1000-rack data center,
c-Through would require a 1000-port optical circuit switch. Re-
search prototype MEMS optical switches already scale to a few
thousand input and output ports [31], but they are not available com-
mercially; today’s largest MEMS switches has 320 input and output
ports [1]. In the future, however, this approach could provide a very
simple and flexible way to add optical paths into large data centers.

Without such dense switches, one choice is to divide the datacen-
ter into zones of 320 racks (12800 servers). As we discuss below,
both anecdotes and recent datacenter utilization data from Google
suggest that the vast majority of jobs run on clusters smaller than
this. However, this answer is both intellectually dissatisfying and is
based only on today’s use patterns. An alternate approach is to chain
multiple MEMS switches using the same fat-tree or butterfly topolo-
gies used in recent research to scale electrical networks, at the cost of
both increased cost and the requirement for fast, coordinated circuit
switching. Fortunately, constructing a rack-to-rack circuit switched

optical fat tree is much simpler than a node-to-node packet switched
fat tree (it operates at roughly 1

40 the scale). Eleven 320x320 optical
MEMS switches could cover a 1000-rack data center, at a cost three
times higher per node than simply dividing the network into zones.

Optical network management: The VLAN based traffic con-
trol can remain unchanged when c-Through is used in large data cen-
ters since it operates on a per-switch or per-server basis. If we use a
single switch or a fat-tree to construct the optical network, Edmonds’
algorithm can still be used to compute the optical path configuration.
Edmonds’ algorithm is very efficient: For a 1000-rack data center,
the computation time to generate a new configuration/schedule is
only 640ms on a Xeon 3.2GHz processor, which is sufficiently fast
for a large class of data center applications [39]. If the optical net-
work topology is a hierarchy or a ring, the configuration is not a
perfect matching anymore; nevertheless, it is still a max weighted
matching. Several algorithms can compute the maximum matching
efficiently [23], and several approximation algorithms [23, 32] can
compute near-optimal solutions even faster.

Scaling also increases the demands on collecting and reporting
traffic measurements, as well as disseminating reconfiguration no-
tices. If optical paths are reconfigured every second and all of the
rack queues have a large amount of data buffered, each server needs
to report its traffic demands (4 bytes each) for each of the 1000 pos-
sible destination racks. Thus, each server will send 4KB of traffic
statistics data to the optical manager. Across the whole data center,
the optical manager will receive 160MB of traffic measurement data
(40 servers per rack) every second. We believe that our existing
heuristic for discarding under-occupied buffer slots will be sufficient
to handle this aspect of scaling (Section 4). For example, based on
our MapReduce experiment trace, when servers only report queue
sizes larger than 1MB, the traffic measurement data is only 22% of
the worst case volume. As discussed below, we believe that as the
network scales, more and more of the rack-to-rack paths are likely
to be unused.

Finally, a number of standard techniques, such as hierarchical
aggregation trees and MAC-layer multicast, can help alleviate the
messaging overhead. Multiple message relay nodes can be orga-
nized into a logically hierarchical overlay. Each leaf node collects
traffic measurement data from a subset of servers, aggregating the
data through the hierarchy to the root that computes the optical
configuration. Notifications of configuration changes can also be dis-
seminated efficiently through the hierarchy to the servers. Intra-rack
MAC layer multicast could be used to further improve efficiency.

Circuit visit delay: The circuit visit delay depends on the num-
ber of destination racks to which servers spread traffic. In a 1000-
rack data center, the worst case scenario is an application that simul-
taneously sends large amounts of traffic to destinations in all 1000
racks. The last rack will have to wait for 999 reconfiguration periods
before it can be provisioned with an optical path.

The problems of long circuit visit delay are twofold. First, the
amount of data that must be queued could grow quite large—up to
a full circuit visit delay times the server’s link capacity. At 1 Gb/s,
999 seconds worth of data (128 GB) would substantially exceed the
memory available in most servers. Worse, this memory is pinned
in kernel. During the wait for reconfiguration, the application’s
traffic will be routed over the electrical network, causing congestion
for other, possibly latency-sensitive, traffic.8 For this worst case

8We have deliberately avoided a design in which some traffic is delayed until the
optical network becomes available, feeling that such an approach makes little sense
without tight application integration to appropriately classify the traffic.

scenario, data center designers may require other solutions, such as
a full bisection bandwidth electrical network.

In practice, however, many factors can help keep the circuit visit
delay low. First, although some applications (e.g. MapReduce, MPI)
require all-to-all communication, the application may only use a
smaller set of racks during any particular phase of its execution.
Second, in a large data center, a single application usually does
not use the entire data center. In many cases, a large data center is
separated into many subnets. Different applications are allocated
into different subnets. Although we do not have exact numbers about
the job sizes in production data centers, recently released workload
traces from a Google production data center show that their largest
job uses 12% and the medium size job only uses 0.8% of cores in
the data center [3].9 Therefore, even in a large data center, there
are likely to exist smaller cliques of communicating nodes. In fact,
Microsoft researchers have also observed this to be true in their large
production data center [29]. A second path to scaling, then, is to
ensure that the job placement algorithms assign these applications to
as few racks as possible. This is actually a simplification of the job
placement algorithms required today, which must not only group at
the rack level, but at the remaining levels of the network hierarchy.

8. RELATED WORK
Our previous papers [24, 39] proposed the basic ideas of using
optical circuits to augment an under-provisioned packet-switched
network in data centers. Two recent proposals sketched designs that
are similar in spirit to ours. One observed that many applications
that run in their production datacenters do not require full bisec-
tion bandwidth. They instead proposed the use of 60GHz wireless
“flyways” to augment an electrical network provisioned for average-
case use, using the wireless links to selectively add capacity where
needed [29]. The second one is parallel work Helios [22], which
explores a similar hybrid electrical/optical data center architecture.
A key difference between Helios and c-Through is that Helios im-
plements its traffic estimation and traffic demultiplexing features on
switches. This approach makes traffic control transparent to end-
hosts, but it requires modifying all the switches. An advantage of the
c-Through design is that by buffering data in the hosts, c-Through
can batch traffic and fill the optical link effectively when it is avail-
able. Helios and c-Through demonstrate different design points and
performance trade-offs in the hybrid data center design space.

The supercomputing community has also extensively examined
the use of optical circuits, though their goals often differ substantially
from our focus. Within a supercomputer, several papers examined
the use of node-to-node circuit switched optics [14]; in contrast,
our work deliberately amortizes the potentially high cost of optical
ports and transceivers by providing only rack-to-rack connectivity, a
design we feel more appropriate for a commodity datacenter. Our
work by necessity then focuses more on the application and oper-
ating systems challenges of effectively harnessing this restricted
pattern of communication. IBM researchers explored the use of
hybrid networks in a stream computing system [36]. While it pro-
vides no design details, this work focused primarily routing and job
management in stream computing.

Using large per-destination queues at the edge to aggregate traffic
and make use of optical paths is related to optical burst switch-
ing [35] in optical networks. Many research efforts examined the
use of optical burst switching in the Internet backbone (e.g [38, 40]),

9The data do not specify the exact size of the datacenter.

but they focus mostly on distributed scheduling and contention res-
olution in order to correctly integrate the optical paths. Similarly,
UCLP (User Controlled Lightpaths) [11] and numerous other tech-
nologies (e.g., MP-λ -S) switch optical circuits on hour-and-longer
timescales for wide-area connectivity and computing. In contrast,
our datacenter focus limits the amount of traffic available to statisti-
cally multiplex onto the optical links, but simultaneously grants the
flexibility to induce traffic skew and to incorporate the end-hosts into
the circuit switched network. Our results suggest that the increased
control and information from this integration substantially improves
the throughput gains from optical links.

9. CONCLUSION
Building full bisection bandwidth networks using packet switches
imposes significant complexity. It may also aim to provision more
than today’s and future’s applications require. This paper explores
the use of optical circuit switching technology to provide high band-
width to data center applications at low network complexity. We
present a HyPaC architecture that integrates optical circuits into to-
day’s data centers, and demonstrate the feasibility of such a network
by building a prototype system called c-Through.

By studying several modern datacenter applications, we assess the
expected gain from integrating optical circuits in target data center
scenarios. Our results suggest that a HyPaC network offers the poten-
tial to significantly speed many applications in today’s datacenters,
even when the applications may not intuitively seem to be promising
candidates for acceleration through circuits. While there remain
many significant questions about—and options for—the design of
future datacenter networks, we believe the HyPaC architecture rep-
resents a credible alternative that should be considered along-side
more conventional packet switched technologies.

Acknowledgments: We thank Richard Gass of Intel Labs Pitts-
burgh for his help setuping up the experiments. We thank our shep-
herd Jitendra Padhye and the anonymous reviewers for their valu-
able feedback. This research was supported in part by NSF awards
0546551 and 0619525. Wang and Ng are sponsored by the NSF
through CAREER Award CNS-0448546, CNS-0721990, and by an
Alfred P. Sloan Research Fellowship.

References
[1] Calient networks diamondwave fiberconnect, . http://www.calient.

com/products/diamondwave_fiberconnect.php.
[2] FFTW: Fastest fourier transform in the west, . http://www.fftw.org/.
[3] Google cluster data, . http://code.google.com/p/

googleclusterdata/.
[4] Gridmix: Trace-based benchmark for mapreduce, . https://issues.

apache.org/jira/browse/MAPREDUCE-776.
[5] KVM: Kernel based virtual machine, .

http://www.linux-kvm.org/page/Main_Page.
[6] Glimmerglass 80x80 MEMS switch. Website, 2003.

http://electronicdesign.com/article/test-and-measurement/
3d-mems-based-optical-switch-handles-80-by-80-fibe.aspx.

[7] OpenCirrus, . https://opencirrus.org/.
[8] OpVista CX8 optical networking system for 40G and 100G services to de-

but at NXTComm08, . http://www.encyclopedia.com/doc/
1G1-180302517.html.

[9] Alcatel-Lucent Bell labs announces new optical transmission record, .
http://tinyurl.com/yau3epd.

[10] IETF transparent interconnection of lots of links (TRILL) working group, .
http://datatracker.ietf.org/wg/trill/charter/.

[11] UCLP project, . http://www.uclp.ca/.
[12] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity, data center

network architecture. In Proc. ACM SIGCOMM, Aug. 2008.

[13] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera:
Dynamic flow scheduling for data center networks. In Proc. 7th USENIX NSDI,
Apr. 2010.

[14] K. Barker, A. Benner, and R. H. et al. On the feasibility of optical circuit switching
for high performance computing systems. In Proc. SC05, 2005.

[15] A. Basu and J. G. Riecke. Stability issues in OSPF routing. In Proc. ACM
SIGCOMM, Aug. 2001.

[16] T. A. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data center
traffic characteristics. In Proc. Workshop: Research on Enterprise Networking,
Aug. 2009.

[17] J. Buus and E. J. Murphy. Tunable lasers in optical networks. Journal of Lightwave
Technology, 24(1), 2006.

[18] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In Proc. 6th USENIX OSDI, Dec. 2004.

[19] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In Proc. 21st ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2007.

[20] J. Edmonds. Paths, trees and flowers. Canadian Journal on Mathematics, pages
449–467, 1965.

[21] K. Elmeleegy, A. Cox, and T. E. Ng. On count-to-infinity induced forwarding
loops in ethernet networks. In Proc. IEEE INFOCOM, Mar. 2006.

[22] N. Farrington, G. Porter, S. Radhakrishnan, H. Bazzaz, V. Subramanya, Y. Fain-
man, G. Papen, and A. Vahdat. A hybrid electrical/optical switch architecture for
modular data centers. In Proc. ACM SIGCOMM, Aug. 2010.

[23] Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM
Computing Survey, 18:23–38, 1986.

[24] M. Glick, D. G. Andersen, M. Kaminsky, and L. Mummert. Dynamically recon-
figurable optical links for high-bandwidth data center networks. In Optical Fiber
Comm. Conference (OFC), Mar. 2009. (invited paper).

[25] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel, and
S. Sengupta. VL2: A scalable and flexible data center network. In Proc. ACM
SIGCOMM, Aug. 2009.

[26] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: A scalable and
fault-tolerant network structure for data centers. In Proc. ACM SIGCOMM, Aug.
2008.

[27] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu.
BCube: A high performance, server-centric network architecture for modular data
centers. In Proc. ACM SIGCOMM, Aug. 2009.

[28] Joseph Berthold. Optical networking for data center interconnects across wide area
networks, 2009. http://www.hoti.org/hoti17/program/
slides/SpecialSession/HotI-2009-Berthold.pdf.

[29] S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest data center networks.
In Proc. ACM Hotnets-VIII, Oct. 2009.

[30] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: A scalable ethernet
architecture for large enterprises. In Proc. ACM SIGCOMM, Aug. 2008.

[31] J. Kim, C. Nuzman, B. Kumar, D. Lieuwen, et al. 1100x1100 port MEMS-based
optical crossconnect with 4-dB maximum loss. IEEE Photonics Technology
Letters, pages 1537–1539, 2003.

[32] N. Mckeown. The iSLIP scheduling algorithm for input-queued switches.
IEEE/ACM Transactions on Networking, 7(2):188–201, Apr. 1999.

[33] A. Myers, T. E. Ng, and H. Zhang. Rethinking the service model: Scaling ethernet
to a million nodes. In Proc. 3nd ACM Workshop on Hot Topics in Networks
(Hotnets-III), Nov. 2004.

[34] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan,
V. Subramanya, and A. Vahdat. Portland: A scalable fault-tolerant layer2 data
center network fabric. In Proc. ACM SIGCOMM, Aug. 2009.

[35] C. Qiao and M. Yoo. Optical burst switching (OBS) - a new paradigm for an
optical Internet. Journal of High Speed Networks, 8(1):69–84, 1999.

[36] L. Schares, X. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hil-
drum, D. Kuchta, J. Wolf, and E. Schenfeld. A reconfigurable interconnect fabric
with optical cicuit switch and software optimizer for stream computing systems.
In Optical Fiber Comm. Conference (OFC), Mar. 2009.

[37] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh. Viking: A multi-spanning-tree
ethernet architecture for metropolitan area and cluster networks. In Proc. IEEE
INFOCOM, Mar. 2004.

[38] J. Turner. Terabit burst switching. J. of High Speed Networks, 8(1):3–16, 1999.
[39] G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T. S. E. Ng, K. Papagian-

naki, M. Glick, and L. Mummert. Your data center is a router: The case for
reconfigurable optical circuit switched paths. In Proc. ACM Hotnets-VIII, Oct.
2009.

[40] M. Yoo, C. Qiao, and S. Dixit. QoS performance of optical burst switching
in IP-over-WDM networks. Journal on Selected Area in Communications, 18:
2062–2071, 2000.

[41] X. Zhang, R. Wagle, and J. Giles. VLAN-based routing infrastructure for an
all-optical circuit switched LAN. In IBM T.J. Watson Research Report, July 2009.

http://www.calient.com/products/diamondwave_fiberconnect.php
http://www.calient.com/products/diamondwave_fiberconnect.php
http://www.fftw.org/
http://code.google.com/p/googleclusterdata/
http://code.google.com/p/googleclusterdata/
https://issues.apache.org/jira/browse/MAPREDUCE-776
https://issues.apache.org/jira/browse/MAPREDUCE-776
http://www.linux-kvm.org/page/Main_Page
https://opencirrus.org/
http://www.encyclopedia.com/doc/1G1-180302517.html
http://www.encyclopedia.com/doc/1G1-180302517.html
http://tinyurl.com/yau3epd
http://datatracker.ietf.org/wg/trill/charter/
http://www.uclp.ca/
http://www.hoti.org/hoti17/program/slides/SpecialSession/HotI-2009-Berthold.pdf
http://www.hoti.org/hoti17/program/slides/SpecialSession/HotI-2009-Berthold.pdf

	Introduction
	Optics: Pro and Con
	HyPaC Network Requirements
	System Requirement
	Design Choices and Trade-offs

	c-Through Design and Implementation
	Managing Optical Paths
	Traffic De-multiplexing
	c-Through System Implementation

	System Evaluation
	Testbed Setup
	Micro-benchmark Evaluation
	TCP behavior during optical path reconfiguration
	How does the scheduler affect throughput?
	Do large buffers affect packet delays?

	Applications on c-Through
	Case study 1: VM Migration
	Case study 2: MapReduce
	Case study 3: MPI Fast Fourier

	Discussion
	Applicability of the HyPaC Architecture
	Making Applications Optics Aware
	Scaling

	Related Work
	Conclusion

