IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

583

Maximum Margin Clustering Made Practical

Kai Zhang, Ivor W. Tsang, and James T. Kwok

Abstract—Motivated by the success of large margin methods
in supervised learning, maximum margin clustering (MMC) is
a recent approach that aims at extending large margin methods
to unsupervised learning. However, its optimization problem is
nonconvex and existing MMC methods all rely on reformulating
and relaxing the nonconvex optimization problem as semidefinite
programs (SDP). Though SDP is convex and standard solvers are
available, they are computationally very expensive and only small
data sets can be handled. To make MMC more practical, we avoid
SDP relaxations and propose in this paper an efficient approach
that performs alternating optimization directly on the original
nonconvex problem. A key step to avoid premature convergence in
the resultant iterative procedure is to change the loss function from
the hinge loss to the Laplacian/square loss so that overconfident
predictions are penalized. Experiments on a number of synthetic
and real-world data sets demonstrate that the proposed approach
is more accurate, much faster (hundreds to tens of thousands of
times faster), and can handle data sets that are hundreds of times
larger than the largest data set reported in the MMC literature.

Index Terms—Large margin methods, maximum margin clus-
tering (MMC), scalability, unsupervised learning.

. INTRODUCTION

RADITIONALLY, there are two key learning paradigms

in machine learning: supervised learning and unsuper-
vised learning. Supervised learning assumes that the training
samples are labeled, while unsupervised learning does not. A
particularly successful family of supervised learning methods
are the large margin methods [28], [36], with the support
vector machine (SVM) being the most prominent. It has
outperformed traditional methods even on difficult, high-di-
mensional problems such as handwritten digit recognition and
text categorization. One beauty of the SVM is that it aims at
minimizing an upper bound of the generalization error and can
be regarded as an approximate implementation of the structural
risk minimization principle.

Manuscript received January 13, 2008; revised May 19, 2008 and August 04,
2008; accepted October 31, 2008. First published March 06, 2009; current ver-
sion published April 03, 2009. This work was supported in part by the Research
Grants Council of the Hong Kong Special Administrative Region.

K. Zhang was with the Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong. He is now with the Life Science
Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
(e-mail: kai_zhang@Ibl.gov; zk1980@hotmail.com).

I. W. Tsang was with the Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong. He is now with the School of Computer
Engineering, Nanyang Technological University, Singapore 639798, Singapore
(e-mail: ivortsang@ntu.edu.sg; ivor.tsang@gmail.com).

J. T. Kwok is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong (e-mail: jamesk@cse.ust.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2008.2010620

On the other hand, unsupervised learning is more challenging
as no labeled data are available. An important task of unsuper-
vised learning is clustering, which aims at grouping the exam-
ples into a number of classes, or clusters [2], [14], [18]. Ex-
amples belonging to the same cluster should be similar to each
other, while those belonging to different clusters should not.
Clustering has been extremely valuable for data analysis in prac-
tice and is widely used in diverse domains ranging from engi-
neering, medical science, earth science, social science to eco-
nomics [11], [24], [29], [34], [37].

Over the decades, a battery of clustering approaches have
been developed. Examples include the k-means clustering al-
gorithm [16], mixture models [22], and spectral clustering [24],
[29]. Motivated by the superiority of large margin methods in
supervised learning, there is growing interest in extending them
to unsupervised learning. Recently, Xu et al. [38] proposed a
novel approach called maximum margin clustering (MMC),
which performs clustering by simultaneously finding the large
margin separating hyperplane between clusters. Experimental
results showed that this large margin clustering method (and
its variant [35]) have been very successful in many clustering
problems. Moreover, it can also be extended to a general frame-
work for both unsupervised and semisupervised learning [39].

However, while large margin supervised learning methods
are usually formulated as convex optimization problems [e.g.,
quadratic programs (QPs) for SVMs], large margin unsuper-
vised learning is much more computationally difficult. As the la-
bels are missing, optimization over all the possible discrete class
labelings lead to a hard, nonconvex, combinatorial problem. Ex-
isting MMC methods [35], [38], [39] all rely on reformulating
and relaxing the nonconvex optimization problem as semidef-
inite programs (SDPs) [6], which can then be solved by stan-
dard SDP solvers such as SDPT3 [33] and SeDuMi [31]. In par-
ticular, the generalized maximum margin clustering (GMMC)
method [35] reduces the number of parameters in the SDP for-
mulation from n? in [38] to n, where n is the number of samples.
This leads to significant computational savings.

However, even with the recent advances in interior point
methods of mathematical programming [17], [23], solving
SDPs is still computationally very expensive. While the
worst-case complexity of interior point SDP solvers is provably
polynomial [21], [23], the exponent can be quite high. Thus,
MMC is often not viable in practice and the data sets that
can be handled are very small (the largest data set reported
in the literature has only 360 examples [35]). On the other
hand, there can be an enormous amount of data available in
many real-world learning problems. For example, by casting
image segmentation as a clustering problem, a small 200 x
200 image already has 40000 pixels to be clustered. In web
and data mining, even medium-sized data sets have at least
tens/hundreds of thousands of patterns. How to scale up the

1045-9227/$25.00 © 2009 IEEE

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

584

clustering methods to cater large scale problems and turn them
into practical tools is thus a very challenging research topic.

In this paper, we perform MMC by avoiding the use of ex-
pensive SDP relaxations. Instead, we revisit a natural approach
that was considered ineffective [38], namely, by performing al-
ternating optimization [3] directly on the original nonconvex
problem. However, a straightforward implementation still easily
gets stuck in poor locally optimal solutions. Our key modifica-
tion is to replace the SVM by support vector regression (SVR)
with the Laplacian loss. As will be seen, this discourages prema-
ture convergence and, computationally, the proposed procedure
involves only a sequence of QPs used in SVR. The resultant
implementation is fast and scales well compared to existing ap-
proaches.

The rest of this paper is organized as follows. Section Il gives
a brief review on MMC. Section 111 then describes our proposed
approach based on iterative kernel regression procedures. Ex-
perimental results are presented in Section IV, where we com-
pare our approach with a number of related approaches on the
tasks of clustering and image segmentation. The last section
gives concluding remarks.

In the sequel, A > 0 (resp., A > 0) means that the matrix A
is symmetric and positive definite (pd) [resp., positive semidefi-
nite (psd)]. Moreover, the transpose of vector/matrix (in both the
input and feature spaces) will be denoted by the superscript T,
and 0,e € R™ denote the zero vector and the vector of all ones,
respectively. The inequality v = [vy,...,vx]" > 0 means that
v; > 0fori = 1,...,k. In addition, Ri denotes the set of
nonnegative vectors in R*. Some preliminary results have been
reported in [43].

Il. MAXIMUM MARGIN CLUSTERING

Large margin methods, notably the SVMs, have been
highly successful in supervised learning. Given a training set
{(xi,yi)}i_,, where x; € X is the input and y; € {*1}
is the output, the SVM finds a large margin hyperplane
f(x) = wTo(x) + b separating patterns of opposite classes.
Here, ¢ is the mapping induced by the kernel function £. Com-
putationally, this leads to the following optimization problem:

ming p ¢ |wl|* + 20§Te
s.t. yi (Whe(x) +b) >1-¢&
& >0, 1=1,...,n
where &€ = [¢1,...,&,] T is the vector of slack variables for the

errors, and C' > 0 is a tradeoff parameter between the smooth-
ness (||w]|2) and fitness (¢ " e) of the decision function f(x).
Motivated by its success in supervised learning, MMC
[38] aims at extending large margin methods to unsupervised
learning by finding a large margin hyperplane separating
patterns of opposite clusters. Here, we consider the case
when there are only two clusters. As the class (cluster) labels
Yy = [y1,---,ya]" are unknown in the unsupervised setting,
one can obtain a trivially “optimal” solution with infinite
margin by assigning all patterns to a single cluster. To prevent

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

such a useless solution, Xu et al. [38] introduced a class balance
constraint that requires y to satisfy

—t<e'y<t 1)
where £ > 0 is a user-defined constant controlling the class im-

balance. Then, the margin is maximized with respect to (w.r.t.)
both the unknown y and the unknown SVM parameter (w, b) as

ming miny g ¢ ||W||2 + QCﬁTe
s.t. yi (Who(xi) +b) 21§
5120/ yle{:tl}/ Lzlvn
—l<ely<ut. 2)

Recall that the SVM is usually solved in its dual form

220Te — AT (Koyy)A

maxy
s.t. /\Ty =0
Ce>A>0 (3)
where A = [A1,...,\,]T is the vector of Lagrangian mul-
tipliers, K = [k(xi,%x;)],,,, is the kernel matrix with
k(xi,x;) = @(xi)To(x;), and o denotes the elementwise

product between matrices. Hence, (2) can also be written as a
minimax saddle-point problem

miny, maxy 2x"e — AT(K oyy A

s.t. AMy=0, Ce>\A>0
—l<e'y</t
y; € {£1}, i=1,...,n. ()

Note that the constraint y; € {£1} < y?—1 = 0 is nonconvex.
Thus, (4) is a nonconvex optimization problem that is difficult
to solve. Following [20], the above optimization problem can be
simplified to

min 6
y,6,m,v,b
(yy')oK et+p—v—Dby
5.8 (e+pu—v—>by)T" §—2CvTe =0
n>0, v>0 —L<e'y<{
yi € {1}, i=1,....n)

where b € R is the dual variable for the equality constraint
,\Ty = 0, and p,v € R’} are nonnegative vectors of the dual
variables for the box constraints Ce > A > 0. Instead of
working with the label vector y directly, problem (5) is further
reduced in [38] to a convex problem by using two relaxations.
First, the label relation matrix yy " € {£1}"*" in (5) is re-
placed by a n x n real-valued psd matrix M > 0. As the desired
matrix M is equal to yy ", the diagonal entries of M are set to
1, i.e., diag(M) = e. Since y; € {£1}, the balance constraint
in (1) becomes —fe < Me < fe. Moreover, in order to avoid b
and y being bilinear in the psd constraint (6), the second relax-
ation sets the variable b to zero, which is equivalent to assuming
that the decision hyperplane f(x) passes through the origin (i.e.,

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

ZHANG et al.: MAXIMUM MARGIN CLUSTERING MADE PRACTICAL

b = 0). By doing this, it can be shown that (5) can be relaxed to
the following SDP:

min ¢
M, é,u,v
MoK etpu—v
5.8 (e+p—v)T §-2CvTe =0
p=>0,v2>0, M?=>0
—le < Me < /e, diag(M) =e. (6)

After obtaining the optimal matrix M* from (6), the soft cluster
labels y can be recovered as y = /u1v1, Where yi1, vy are the
leading eigenvalue and eigenvector of M*, respectively. While
initially developing the two-cluster case, MMC is also extended
to the multicluster formulation [39], which again leads to a SDP.

Note that as M € R™*"™, the number of parameters in (6)
scales quadratically with n, the number of examples. Moreover,
as mentioned above, the decision hyperplane is assumed to pass
through the origin. Recently, these two problems are alleviated
by the GMMC algorithm [35], which leads to the following
SDP:

T
maxy, Y e

st. PTK™'P+C. eoe0

nyl n+1) >0

0<y<Ce (7)

where ¥y = [v1,-.., 7], P JI<” e] with I(") being the
n x n identity matrix, eo = [e " 0] "+1) isthe (n+1) x (n+

1) matrix with all zeroes except that the ith diagonal element
is 1, and C. is another user-defined parameter. The number of
parameters in this SDP is reduced from n2 in MMC to n, and
thus leads to significant computational savings.

I1l. PROPOSED PROCEDURE

In Section I11-A, we first revisit the use of alternating op-
timization for the original nonconvex MMC problem in (2).
Computationally, this allows the problem to be formulated as
a sequence of QPs for which many efficient and scalable QP
solvers are available [5]. However, empirically, it suffers from
premature convergence and easily gets stuck in poor local op-
tima. Our key proposal is to replace the SVM by either SVR
with the Laplacian loss (Section 111-B) or the least squares SVM
(LS-SVM), which uses the square loss (Section I11-C). An ef-
ficient procedure for enforcing the class balance constraint is
discussed in Section I11-D. Finally, complexity analysis is pre-
sented in Section IlI-E, which is then concluded by some dis-
cussion in Section I11-F.

A. lterative SVM

A natural way to solve (2) is to use a simple iterative approach
based on alternating optimization [3]. This is also similar to the
one proposed in [40], and the complete algorithm is summarized
in Algorithm 1. First, we fix y and maximize (3) w.r.t., A, which

585

TABLE |
CLUSTERING ERRORS ON DIGITS “3” AND “9” USING
THE ITERSVM AND THE ITERSVR

C 0.00001 0.0001 0.001 0.01 0.1 1 100
iterSVM = 31.13% 21.27% 19.7% 19.2% 19.7% 19.46% 19.46%
iterSVR 14.01% 2.98% 2.85% 3.24% 3.76% 3.5% 3.5%

is just a standard SVM training. Then, we fix A and minimize
(2) w.r.t. y, which reduces to

ming ., £'e
sty (Whe(x) +b) 21§
& >0, i1=1,...,n
yie{£1}, i=1,...,n
—l<ely<d. (8)

As shown by the following proposition, (8) can be solved
without the use of any optimization solver.

Proposition 1: For a fixed b, the optimal strategy to de-
termine the y;’s in (8) is to assign all y;’s as —1 for those
with wTo(x;) + b < 0, and assign y;’s as 1 for those with
wlp(x;)+b> 0.

Proof: Assume, to the contrary, that the optimal assign-
ment of y is not according to the sorted order of w " (x;)’s. S0
there are two points x;, x;, with f(x;) = w'¢(x;) +b > 0
and f(xy) = w'p(x;) + b < 0, but the optimal predictions
are y; = —1 and y;, = 1. The objective in (8) can be written as

Z max (0,1 — y; f(x;))

= Z max (0,1 — y; f(x;))
i#j,k
T max (0,1 - (~1)£(x;)) + max (0,1 — £(x))

> Z max (0,1 — y; f(x;))
i#7,k
+ max (0,1 — f(x;)) + max (0,1 + f(xx))
which is thus nonoptimal, a contradiction. O
With Proposition 1, we then proceed to determine b as fol-
lows. First, we sort the w " ¢(x;)’s and use the set of midpoints
between any two consecutive sorted values as the candidates of
b. From these sorted b’s, the first (n—£) /2 and the last (n —¢) /2
of them will not satisfy the class balance constraint in (1) and so
can be dropped. For each remaining candidate, we determine the
;s according to Proposition 1 and compute the corresponding
objective value in (9). Finally, we choose the b that has the
smallest objective. With this learned b, the optimal strategy for
determining y in Proposition 1 is obviously the same as SVM’s
decision rule y; = sign(w " ¢(x;) + b). Therefore, the whole
procedure simply alternates between standard SVM training and
testing (on the given points) until convergence.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

586

()
=

g 0.8}
[
=
8

= 061
o

0.4t

0.2
1 2 3 4 5 6
number of iterations
(a)

g 15¢
S
)
(@)}

£ 10}
5]
)]
=
[&]

5 L

O 1 1 1 1
1 2 3 4 5 6
number of iterations
(b)

Fig. 1. Poor performance of the iterative SVM procedure (with
Objective value. (b) Clustering error (in percent).

). (a)

Algorithm 1: Iterative SVM (iterSVM) procedure

1: Initialize the labels y (e.g., by using a simple clustering
algorithm such as k-means).

2: Fix y and perform standard SVM training.

3: Compute w from the Karush—-Kuhn-Tucker (KKT)
conditions.

4: Compute the bias b as described in Section I11-A.

5: Assign the labels as y; = sign(w ' ¢(x;) + b).

6: Repeat steps 2-5 until convergence.

Recall that clustering becomes transductive learning if some
labeled patterns are available. Recently, Collobert et al. [9], [10]
showed that the constrained concave-convex procedure (CCCP)
[42] can be used to efficiently solve the SVM in such a transduc-
tive setting. Interestingly, if we discard the balance constraint,
then applying the CCCP in our MMC setting can lead to an algo-
rithm similar to Algorithm 1. Details are shown in the Appendix.

1) Poor Empirical Performance: In practice, the per-
formance of this iterative SVM is not satisfactory and its

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

improvement over the initial labeling is usually insignificant.
An example is shown in Fig. 1. Here, the task is to separate
digits 3 and 9 [from the University of California at Irvine (UCI)
optdigits data set], where each digit has about 390 samples.
The linear kernel is used. Initialization! (step 1) is performed
with the normalized cut algorithm [29], which yields an error
rate of 21.9%. Fig. 1 shows that both the objective value and the
clustering error2 change little during the iterations. The same
problem is observed when different C’s are used (Table I).

To understand this poor performance, consider the hinge loss
[Fig. 2(a)] used by the SVM

0,
L= { L—vifi,

where f; = f(x;) and y; f; defines the margin for patterns x;.
Because of this loss, the SVM tries to push the y; f;’s to the right
of the elbow (i.e., the point where y; f; = 1). As evidenced from
the empirical margin distribution of y; f;’s [Fig. 2(b)], most of
the patterns have margins y; f; > 1 (even with C' = 0.0001). If
we want to flip the label of a pattern, the loss changes from the
solid line to the dashed line in Fig. 3. The resultant increase in
the loss will be very large as most of the patterns are far from
the elbow (e.g., point “b™). Therefore, the SVM is unwilling to
flip the class labels. In other words, the procedure overcommits
to the initial label estimates, and thus easily gets stuck in a local
optimum.

ifyifi>1
otherwise

B. lterative SVR

1) Discouraging Premature Convergence: To prevent over-
confident predictions (i.e., y; f; > 1) and thus premature con-
vergence of the iterSVM, our approach aims at changing the
loss function so as to discourage ; f;’s from lying on the far
right of the elbow. This can be done by penalizing predictions
with y; f; > 1. Combining with the original hinge loss that pe-
nalizes predictions with y; f; < 1, we obtain the Laplacian loss
[Fig. 4(a)]

L, = |fl _yi|~

This can also be seen as a special case of the e-insensitive loss
(with e = 0) commonly used in SVR. The Laplacian loss can
be equivalently expressed in terms of y; f; as

I :{1_yifi7 yifi <1
3 yifi =1, wyifi > 1.

Thus, points with y; f; < 1 receive the same loss value as the
hinge loss, while points with y; f; > 1 are penalized as desired.
Moreover, as L is symmetric around the point where y; f; = 1,
the resulting y; f;’s will tend to lie around this point at the solu-
tion. As an example, Fig. 4(b) plots the empirical distribution of
y; f;’s obtained with the Laplacian loss on the same digits task
previously shown in Fig. 2(b). As can be seen, the y; f;’s are

1The purpose of using the normalized cut algorithm for initialization here is
to demonstrate that the iterative SVM has poor performance even when started
with a good initial solution. In the sequel (Section 1V), we will always use the
standard -means clustering algorithm for initialization, which is computation-
ally much cheaper.

2Clustering error: the percentage of examples whose class labels are not cor-
rectly assigned using the clustering algorithm.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

ZHANG et al.: MAXIMUM MARGIN CLUSTERING MADE PRACTICAL

1.5
n 1
®
o
o)
g
= 05
0 ‘
0 0.5 1 15 2
vi
(2)
30 T
—C =0.0001
25 —C =001
—0C=
20t —C =100

frequency
o

10
5F /K
|~
0 L M
-20 -10 0 10 20 30 40 5055
Yi fi
(b)
Fig. 2. Loss function and empirical distribution of ; ;’s on the digits task for

iterSVM. (a) Hinge loss. (b) Distribution of , ;’s.

now close to 1. Therefore, it is easier to flip the labels if needed,
and one can escape from a poor solution at a smaller expense.
As expected, this leads to a significant improvement in the clus-
tering performance compared to that of iterSVM (Table I). The
complete iterative SVR procedure (also called iterSVR in the
sequel) is shown in Algorithm 2.

Algorithm 2: Iterative SVR/LS-SVM

Initialize the labels y by a simple clustering method.
Fix y, and perform SVR with Laplacian loss/LS-SVM.
Compute w from the KKT condition.

Compute the bias b as described in Section 111-D.
Assign the labels as y; = sign(w ' ¢(x;) + b).

Repeat steps 2-5 until convergence.

A common objection to the Laplacian loss is that the resul-
tant SVR solution will not be sparse. However, in the context
of MMC, typically we are only interested in the clustering so-
lution. Besides, after the clustering solution has been obtained,
one can still obtain a sparse classification model by running the
SVM if desired.

2) Effect of Nonzero e: Recall that the Laplacian loss is a
special case of the e-insensitive loss with e = 0. In this section,

587

\
4 &N
230
8 -
(0]
227
=
r b
0 .
-4 3 4

Fig. 3. Flipping the labels when the hinge loss is used.

1.5

Laplacian loss

——C =0.0001 |-

60
—C=0.01

501
100

40

frequency
w
o

20+

10+

% 2 1 0 1 2 3 4
A
(b)

Fig. 4. Loss function and empirical distribution of ; ;’s on the digits task for
SVR with the Laplacian loss. (a) Laplacian loss. (b) Distribution of ; ;’s.

we investigate the effectiveness of a nonzero e. Using the same
digit task in Section I11-Al as an example, we study the objec-
tive value3 and clustering error of the iterative SVM procedure,
as well as those of the iterative SVR procedure usinge = 0, 0.5,
and 0.9. As can be seen from Fig. 5, iterSVR using the Lapla-
cian loss leads to better objective values and clustering perfor-
mance, while iterSVR using a large ¢ has little improvement on
both criteria. Indeed, as ¢ is increased, the advantage of iterSVR
gradually diminishes. This can be explained by examining the

3Here, we report the value of the SVM objective in (3). For iterSVR, this
objective is computed by fixing the obtained value of in (3) and then perform
standard SVM training.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

588

objective value

0.2 : : : L
2 4 6 8 10
number of iterations
(@)
201 —+—SVM]
—©—SVR(e =0.9)
—©—SVR(e = 0.0)

& 15t
S
o
£ 10}
9
[0}
=
[$]

5 -

0 1 1 1 1

2 4 6 8 10
number of iterations
(b)

Fig.5. Comparison of the objective values and clustering errors obtained by the
iterative SVM and SVR procedures. (a) Objective value. (b) Clustering error (in
percent).

empirical distribution of the resultant v f;’s (Fig. 6). As can be
seen, when ¢ is large, most of the v, f;’s are distributed in the
valley where the loss is 0, and thus the right elbow of the loss
function becomes ineffective.

C. lterative Least Squares SVM

Instead of using the Laplacian loss in Section I11-B, one can
also penalize overconfident predictions by using the square loss

Ly = (fi—i)* = (vifi — 1)%.

As both the Laplacian and square losses are symmetric around
y; f; = 1 and have similar trends, we expect both to have similar
performance, as will be verified experimentally in Section V.
Note that with the use of the square loss, step 2 of Algorithm
1 now involves the training of an LS-SVM [32], which can be
obtained efficiently by solving a simple linear system.

D. Enforcing the Class Balance Constraint

As discussed in Section Il, in order to avoid trivially “op-
timal” clustering solutions, one has to enforce a class balance

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

150

100

frequency

Fig. 6.
when

Loss function and empirical distribution of ; ;’s on the digits task

constraint such as the one in (1). Here, we require each of the
y’s obtained throughout the proposed iterative process to sat-
isfy (1). To guarantee this, we cannot compute the bias b from
the KKT conditions as usual.

Consider the iterSVR procedure in Section 111-B. Recall that
the primal problem of SVR with the Laplacian loss is

Wl +203 (6 +€)

MM b.g; .65

=1
s.t. yi — (Wwlp(xi) +b) <&
—yi+ (Who(x;) +b) <&
fori =1,...,n, where & and & are slack variables. With the

labels being unknown, the complete MMC problem becomes
ming woe e W2 +2C0) (& + &)
=1

s.t. Yi — (ngo(x,;) + b) <&
—yi+ (who(x;) +b) <&
& >0, =20
yi € {£1},
—t<e'y<d.

1=1,...,n

Similarly, for the iterLS-SVM procedure in Section I11-C, the
primal problem of LS-SVM is

n
ming e, W’ +CY €2
=1

s.t. yi — (WT<p(x,;)—|—b) =&, i=1,....n
and the corresponding MMC problem is
ming woe, (Wl +CY &
=1
s.t. Y — (thp(xi) + b) =&
yi € {1}, i=1,...,n
—¢ < eTy <.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

ZHANG et al.: MAXIMUM MARGIN CLUSTERING MADE PRACTICAL

After w is obtained from the optimization problem of SVR/LS-
SVM, both problems reduce to the form

miny Z |WT(p(Xi) +b— yilp
i=1
s.t. y; € {£1}, i=1,...,n
—l<ely<t ©9)

where p = 1 for the SVR model, and p = 2 for the LS-SVM
model.

Analogous to the iterSVM in Section Il1-A, the following
proposition shows that (9) can be easily solved without the use
of any optimization solver.

Proposition 2: For a fixed b, the optimal strategy to de-
termine the y;’s in (9) is to assign all y;’s as —1 for those
with w T (x;) + b < 0, and assign y;’s as 1 for those with
WT(,O(XZ') +b>0.

Proof: Assume, to the contrary, that the optimal assign-
ment of y is not according to the sorted order of w " (x;)’s. So
there are two points x;, x;, with f(x;) = w ' (x;) +b > 0
and f(xx) = W' (xx) + b < 0, but the optimal predictions
are y; = —1 and y;, = 1. Then, the objective in (9) is

Z |WT<P(Xi) +b- yz|p

=1
Y1) =wal” |+ 1) = (DI + 1 (i) = 1
i#5,k
Z |f(xi)=wil” | +1f (%)= 11" + 1 f(xx) + 1]
i#].k
which is thus nonoptimal, a contradiction. O

Therefore, the optimal bias b and label assignment y can be
determined in the same manner as described in Section I11-A.

E. Time Complexities
Consider a general SDP problem of the form

fTx

miny
l
st A+ mAi =0, i=1
j=1

where x = [z1,...,7]" € R is the vector of variables and
f € R! and A; € R™*™’s are symmetric matrices. On using
interior-point methods to solve such SDPs, it is known that the
time complexity per iteration is O(12>""" , n?) [21], and the
number of iterations is usually O(y/> i~ n;) [23].

Now, rewrite the SDP formulation of MMC in (6) in the form
of (10). Denote M = [Mij]?’j:l, where n is the number of
examples to be clustered. We then have

,o-.,m (10)

min 1)
M,é,p,v

s.t.[eor _2§yTe} Z Mw{ oK/2 8}
7#1
n (n)
+ZM;,7:{I 0—?K 0] -I—Z I;:;ll)

+ Z vi (10) + ST = 0 (12)

589

S ML 2+ Z MuI™ = 12)
i,jf;,].v..,n
M Z 0 Vi Z 07 1= 17 , (13)

C+> Mij>0 £=> M;; >0, i=1,..,n (14)

=1 =1

—1—|—M“ZO 1—]\4“207 L:L,’n, (15)

Here, I(") ’s are n x n. symmetric matrices with all zeros except

that the z;th and jith entries are ones, and I(") ’sare n X n diag-
onal matrices with all zeros except that the zth diagonal entry is
one. On re-expressing in terms of the symbols in (10), we have
l=(n?>+n)/2+2n+1,n;, =n+1for(11), and n; = n for
(12), n; = 1 for each inequality constraint in (13)—(15). So the
total time complexity is O(((n2 +n)/2+2n +1)%((n+1)? +
n? 4 6n) - /8n + 1) = O(n®?).

Similarly, rewrite the SDP of GMMC in (7) to the form of
(10) as

max 'yTe
Y
st. (PTK™'P+Ceeoe))+ v (-Topi) =0 (16)
i=1
C—v2>0, >0 i=1..n (17

Then, ! = n,n; = n+1 for (16), and n; = 1 for each inequality
constraint in (17). So the time complexity is O(n?((n + 1)% +
n) - v2n+1) = O(n*3). Thus, both MMC and GMMC are
computationally expensive even on small data sets.

On the other hand, the iterSVR algorithm involves only a
sequence of QPs. Modern SVM implementations typically
have an empirical time complexity that scales between O(n)
and O(n?3) (for solving one such QP) [27], whereas for
the iterLS-SVM algorithm, each LS-SVM iteration involves
only solving a linear system with n variables and n con-
straints, and so the time complexity is O(n?). The number
of iterations in iterSVR/iterLS-SVM is usually small (around
ten in practice). As for the determination of b described in
Section 111-D, w " ¢(x;)’s can be obtained without any cost
from the cached gradients of the SVM solvers, and the sorting
of these w' (x;)’s takes O(nlog(n)) time. After removing
those b candidates that do not satisfy the class balance con-
straint, there are O(¢) candidates left and each one takes O(n)
time to compute the objective. So the determination of b takes a
total of only O(nlog(n) + ¢n) time. Hence, both iterSVR and
iterLS-SVM are computationally efficient.

F. Discussions

Our iterative algorithm is similar to self-training [41], [44],
in which a classifier uses its own predictions to help classify the
unlabeled data. A small amount of labeled data is usually avail-
able and the labels of some highly confident, but previously un-
labeled patterns are assigned by the classifier incrementally. The
classifier is then retrained and the procedure reiterates until all

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

590

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

05 0.4 =)
~©-k-means| 0.2|[-©=Kkmeans ~O-kmeans ~©-k-means| ot
0,06} | —B—iterSVR || —B—itersVR Ol —E—iterSVR ® ¢ 0.35) —B—iterSVR 1A
50000 000000000900 00¢ @ pe fo%o) 9 9 o4 H b 03l Y
908 oasf ! i oo d " ! \ 90000000 | 6009
£ ' X E iy iy | 0.3h 1y ' 0.25(1 N
5 0% 5 [0 P A B R il ;
E E ' ! 1 E
® 0.03) 8 0af v | ' L b, ! 5 | (i
y ! 1 ' 1 1 p ok 1 1 1
S : ' ' i 5 i\
0.02 I ! i : : ' v
0o0sf ! ' ! e ' !
0.01 [e3C] b0 000 60O
o 0
10 20 5 10 20 10 15 20 10
number of tests number of tests number of tests number of tests
(@) (b) © (d)

Fig. 7. Clustering errors with different -means initializations. (a) Digits 4 versus 9. (b) Digits 1 versus 4. (c) Digits 1 versus 9. (d) Digits 1 versus 8.

TABLE Il
AVERAGE CLUSTERING ERROR AND CPU TIME ON THE 45 UCI DIGIT
CLUSTERING TASKS USING DIFFERENT INITIALIZATION SCHEMES

clustering error (%) CPU time (second)

random only 48.21 0.001
random+iterSVR 28.57 12.74
KM only 3.49 0.025
KM-+iterSVR 1.92 1.75
NC only 2.43 4.12
NC+iterSVR 0.91 5.57

unlabeled patterns are labeled. Note that our algorithm does not
require any labeled data for initialization and all the unlabeled
patterns are assigned labels in the first iteration. Moreover, in
self-training, the labels of the unlabeled patterns are typically
left unchanged after being assigned. On the other hand, our al-
gorithm keeps updating all these labels. Therefore, it can avoid
the situation where labels of some malicious patterns are over-
confidently predicted at the early beginning.

The EM algorithm can also be considered as a special case of
self-training. Moreover, both the EM algorithm and our approach
rely on alternating optimization. However, the main difference
is that the expectation—maximization (EM) algorithm is proba-
bilistic and thus requires a good generative model, while ours is
not. In particular, each EM iteration computes the expected (soft)
cluster label of each pattern, and then updates the model param-
eters by maximizing the likelihood. On the other hand, our al-
gorithm obtains hard cluster label for each pattern (using SVM
testing), and then updates the model parameters by minimizing
the structural risk functional (using SVM training). In general,
these two approaches can have different clustering results.

IV. EXPERIMENTS

In this section, we demonstrate the superiority of the pro-
posed MMC procedure on a number of real-world data sets.
Section IV-A first studies the issue of initialization. Section IV-B
then compares the clustering performance of the various MMC
methods and standard clustering methods. Finally, experiments
on some large data sets are presented in Section 1V-C.

A. Initialization

In this section, we study the effect of initialization on
iterSVR. The following initialization schemes are included in
the experiment:

1) random;
2) standard k-means clustering (KM);
3) normalized cut (NC) [29].

TABLE IlI
SUMMARY OF THE DATA SETS

size #positive #negative | #features | balance parameter ¢
optdigits 3-8 (s) | 100 50 50 64 0.03n,
optdigits 1-7 (s) | 100 50 50 64 0.03n
optdigits 2-7 (s) | 100 50 50 64 0.03n
optdigits 8-9 (s) | 100 50 50 64 0.03n,
ionosphere (s) 100 50 50 33 0.03n
optdigits 3-8 357 174 183 64 0.03n
optdigits 1-7 361 179 182 64 0.03n
optdigits 2-7 356 177 179 64 0.03n
optdigits 8-9 354 174 180 64 0.03n
optdigits 3-9 771 389 382 64 0.03n,
ionosphere 351 126 225 33 0.15n,
svmguide1-a (s) | 1,000 500 500 4 0.03n
ringnorm (s) 1,000 500 500 20 0.03n
image 1,010 430 580 18 0.03n,
letter 1,555 766 789 16 0.03n
satellite 2,236 703 1,533 36 0.15n
svmguide1-a 3,089 1,089 2,000 4 0.15n
ringnorm 7,000 3,457 3,543 20 0.03n

The first two schemes are each repeated three times because of
the inherent randomness. NC, on the other hand, is based on
eigenvalue decomposition and so does not need multiple repe-
titions. We use all 45 pairs of the digits 0-9 from the optdigit
data set in the UCI machine learning repository [1]. The average
performance over these 45 tasks, both immediately after the ini-
tialization and at the end of the proposed iterSVR procedure, are
reported. The Gaussian kernel is used, and C' is set to 500.

As can be seen from Table 11, iterSVR with random initial-
ization has poor performance. This can be explained by noting
that the random scheme leads to a very poor initialization result
(close to 50% error). As in any learning method that relies on
local optimization, it cannot recover from a very poor initializa-
tion (indeed, though the result obtained by iterSVR is still poor,
it has significantly improved the accuracy over the very poor ini-
tialization result by about 20%). With better initialization (such
as those provided by k-means and normalized cut), the iterSVR
procedure is able to obtain a much lower clustering error. How-
ever, normalized cuthas O(n?) time and O(n?) space complexi-
ties, and is thus usually slow and memory inefficient. In contrast,
the k-means algorithm is easy to implement and the complexity
is linear with the sample size n and dimensionality. Moreover,
there are also several recent advances on scaling up the k-means
algorithm [12], [19], [25]. Therefore, the k-means algorithm is
suitable for use in large scale problems. In the sequel, we will
always use the k-means algorithm for initialization.

In the following, we further investigate how the k-means ini-
tialization may influence the clustering performance. We focus
on four digit clustering tasks (1 versus 9, 1 versus 8, 4 versus
9, and 1 versus 4), and initialize the iterSVR procedure with

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

ZHANG et al.: MAXIMUM MARGIN CLUSTERING MADE PRACTICAL

591

TABLE IV
CLUSTERING ERRORS (IN PERCENT) ON THE VARIOUS DATA SETS

KM KKM NC MMC GMMC iterSVM iterLS-SVM iterSVR
optdigits 3-8 (s) 0+0 0+0 0 2.0 0 0+0 040 0+0
optdigits 1-7 (s) 8.0+0 5.6+3.1 3.0 0 0 1.0+0 0+0 0+0
optdigits 2-7 (s) 9.0+0 9.0+0 6.0 15.0 2.0 3.040 3.040 3.040
optdigits 8-9 (s) 11.04+0 11.0+£ 0 9.0 3.0 7.0 9.0+0 0+0 3.0+0
ionosphere (s) 20.0+0 10.0+0 23.0 25.0 14.0 23.0+0 19.0+0 25.0+0

optdigits 3-8 53+0 5.54+0 6.4 - 4.2 4510 4240 34+0
optdigits 1-7 0+0 0+0 0 - 0 0+0 0+0 0+0
optdigits 2-7 3.1+0 2.84+0 0.3 - 0 3.1+0 0.6+£0 0+0
optdigits 8-9 93+0 9.0+0 10.0 - 5.9 4.8+0 4240 3.7+0
optdigits 3-9 20.9+14.5 19.3+15.1 219 - 8.3 188+10.9 15.6+120 92+78
ionosphere 28.8+0 28.2+0 25.0 - 24.2 28.5+0 24.5+0 28.2+0
svmguidel-a (s) 23540 9.040 125 - 10.0 6.6+0 6.0£0 6.8+0
ringnorm (s) 24.0+0.5 3.6+0 22.3 - 1.4 23.84+0.5 155+ 0.7 3.2+ 0.01
image 43.5+0 39.2+0.2 41.2 - 41.2 38.7+0 28.2+0 31.6£0
letter 17.9+0 6.8+0 23.2 - 7.0 7.4+0 7.4+0 7.2+0
satellite 4140 2.94+0 4.2 - 2.1 3.84+0 4440 3.6+0
svmguide1-a 35.84+0 26.84+0 23.9 - - 29.8+0 6.6+0 16.7+0
ringnorm 23.440.08 5240.01 6.940.4 - - 23.440.09 7.2+0.04 2.540.02
#times best 1 3 2 1 9 1 7 7

k-means (using random seeds). For each task, the experiment
is repeated 20 times. Fig. 7 shows the initial and final clus-
tering errors. As can be seen, different k-means initializations
sometimes do not influence the final clustering performance
[Fig. 7(a) and (b)]. In some other cases [Fig. 7(c) and (d)], a
better k-means initialization leads to better clustering perfor-
mance, as is typical of algorithms based on local optimization.
Nevertheless, as discussed above, the iterSVR procedure can al-
ways improve the initial clustering result. Moreover, in practice,
one can often avoid a bad £-means solution by a more careful se-
lection of the k-means seeds. For example, in Section IV-B, this
is achieved by ensuring that the seeds are sufficiently far away.
As will be seen, the clustering performance of iterSVR (aver-
aged over a number of k-means initializations) is very compet-
itive with those of the other clustering algorithms.

B. Clustering Performance

In this section, experiments are performed on a number
of data sets from the UCI machine learning repository [1]
(optdigits,* ionosphere, letter, and satellite), the LIBSVM
data® (adult and svmguidel — a) and another benchmark repos-
itory® (image and ringnorm). For the optdigits data, we follow
[35] and focus on those pairs that are difficult to differentiate
(namely, 3 versus 8, 1 versus 7, 2 versus 7, 8 versus 9, and 3
versus 9). For letter and satellite, they have multiple classes
and we use their first two classes only (A versus B, and C1
versus C2, respectively). The class balance parameter is always
set to £ = 0.03n for the balanced data sets, and ¢ = 0.15n for
the imbalanced ones. The other settings are the same as in [38].

Note that some of the data sets here are quite large. As
mentioned in Section I, the SDP formulation for the original
MMC algorithm [38] is very expensive in terms of both time

“4The test set of optdigits is used here.
Shttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
Bhttp://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

and memory, and can only be run with at most 100 patterns on
our PC. Hence, in order to compare with the original MMC
algorithm on these data sets, downsampling is performed. For
the optdigits and ionosphere data, we create subsets [labeled
with the suffix “(s)” in Table 111] by sampling 50 samples from
each class. Similarly, for svmguidel —a and ringnorm, we
create subsets with 500 samples randomly selected from both
the positive and negative classes. A summary of all the data
sets is in Table I11.

The following clustering methods are compared:

1) standard £-means clustering (KM), with & = 2;

2) kernel k-means clustering (KKM), with & = 2;

3) normalized cut (NC) [29], using the Gaussian affinity func-

tion and with all points included in the neighborhood;

4) MMC [38];

5) GMMC [35];

6) iterSVM (Section I11-A);

7) iterSVR (Section I11-B);

8) iterLS-SVM (Section I11-C).
Recall that the last three methods follow basically the same
procedure and only differ on the choice of loss function:
iterSVM uses the hinge loss, iterSVR uses the Laplacian loss
(which corresponds to e = 0 of the e-insensitive loss), while
iterLS-SVM uses the square loss. Preliminary results show
that the performance of iterSVR is not sensitive to ¢ when ¢ is
very small. Hence, we use ¢ = 0.05 in the sequel, as this is
experimentally more efficient than setting e = 0. The Gaussian
kernel k(x,x’) = exp(—||x —x||>/o?) is used for all the
kernel methods in the experiment. For each method and each
data set, we report the result with its best o value chosen from
a set of candidates. As for the regularization parameter C, the
results for the existing MMC methods (MMC and GMMC)
are based on the best C value chosen from a set of candidates
({1,10,100, 500}) for each data set. For the proposed iterative
procedures, the value of C is usually less crucial and we
simply fix it to 10 for iterSVM, 500 for iterSVR, and 100 for
iterLS-SVM on all the data sets.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

592

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

TABLE V
CPU TIME (IN SECONDS) TAKEN BY THE VARIOUS ALGORITHMS

KM KKM NC MMC GMMC iterSVM iterLS-SVM _ iterSVR
optdigits 3-8 (s) 0.004+0.007 0.04%0.04 0.02 859.8 204 002£001 0.10£001 0.05%0.02
optdigits 1-7 (s) ~ 0.006+0.01 0.094:0.01 0.02 679.4 178 0.06+0.01 0.09+0.01 0.0840.03
optdigits 2-7 (s) 0.005+0.007 0.0340.01 0.08 10780 1.89 0.08+0.02 0124002 0.12+0.01
optdigits 8-9 (s) 0.004+0.007 0.0340.01 0.09 957.0 1.69 0034001 0.1140.02 0.0840.01
ionosphere (s) 0.006+0.008 0.0240.01 0.11 764.0 1.97 0.02+0.01 0.15+0.02 0.06+0.02

optdigits 3-8 0.02+£0.01 0.1640.01 0.31 - 129 0314002 1304025 0.86+0.02
optdigits 1-7 0.02+0.01 0.17+0.03 0.33 - 21.3 0.18+0.04 1.78+021 0.62+0.03
optdigits 2-7 0.014£0.07 0.1540.01 0.31 - 194 0124001 1274024 1.37+0.07
optdigits 8-9 0.01+£0.01 0.1840.01 0.29 - 209 0724002 2.33+035 0.79+0.02
optdigits 3-9 0.440.01 1.39+0.03 3.70 - 239.5 2374044 3.43+054 4.27+043
ionosphere 0.084£0.008 0.12+0.01 0.28 - 19.8 0.07+0.01 5794072 0.45+0.05
svmguidel-a (s) 0.04+0.007 0.7+0.03 7.54 - 588.6 0.29+0.02 2.35+0.41 2.49+0.18
ringnorm (s) 0.07+0.03 0.54+0.02 6.58 - 506.0 1514047 10.85+5.78 7.75+3.23
image 0.02+£0.01 0.63+0.02 6.39 - 1054.0 048+0.16 12.3143.69 2.54+0.23
letter 0.0240.008 1.39+0.03 25.21 - 1747.0 3.66+0.67 251.2+17.2 14.51+1.24
satellite 0.05£0.01 3.97+0.18 93.82 - 5590.0 2.6540.12 361.44+20.5 11.8340.87
svmguide1-a 0.134+0.02 4.83+0.52 221.0 - - 3.3+0.04 18.634+9.57 36.25+2.18
ringnorm 0.5740.2 40.53+0.53 38.2+43.76 - - 56.9+7.5 112049.8 148.4+2558
Implementations of the iterSVM and iterSVR are modified TABLE VI

from the LIBSVM package’ (version 2.85) [7], while that of
iterLS-SVM is from the LS-SVMlIlab package® (version 1.5)
[32]. The implementation of the MMC is provided by the au-
thors of [38]. Both the MMC and the GMMC use the state-of-
the-art SDP solver of SDPT3° (version 4.0) [33]. Moreover,
kernel evaluations are implemented in C++. All experiments
are performed on a 2.13-GHz Intel Core 2 Duo PC with 3-GB
memory running Windows XP.

Recall that the initial class labels for the iterative
SVM/SVR/LS-SVM are obtained from the k-means clus-
tering procedure (with £ = 2). Hence, they are susceptible to
the local minimum problem. On the other hand, NC, which is
based on eigendecomposition, and MMC/GMMC, which are
based on convex SDPs, are not plagued by local minima. In
our implementation, this problem is alleviated by requiring the
initial prototypes of k-means clustering to be sufficiently far
away. These local optimization methods are then repeated ten
times with different initial seeds for the k£-means clustering on
each data set, and then the averaged results are reported.

1) Results: Clustering errors on the various data sets are
shown in Table IV. Data sets that cannot be run on our PC
because of insufficient memory are marked with “—.” Indeed,
the standard implementation of NC also cannot be run on the
ringnorm data and, here, its memory requirement is reduced by
using the Nystrom approximation20 [15]. The last row summa-
rizes the number of times each algorithm performs best (i.e.,
has the smallest clustering error). As can be seen, both iterSVR
and iterLS-SVM are competitive with (and on some tasks even
better than) GMMC and outperform the other methods.

As mentioned in Section I, another key problem with MMC
and GMMC is that the solving of the corresponding SDPs is
very slow. Table V compares the central processing unit (CPU)
time consumption of the different algorithms. As can be seen,
iterSVR is more efficient than GMMC (about 500 times faster

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
8http://www.esat.kuleuven.ac.be/sista/lssvmlab/
Shttp://www.math.nus.edu.sg/~mattohkc/sdpt3.html

10The Nystrém approximation uses 500 random samples and the reported
result is averaged over ten repetitions.

NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE
OF THE ITERATIVE PROCEDURES

iterSVM iterLS-SVM iterSVR
optdigits 3-8 (s) 240 240 3+0
optdigits 1-7 (s) 5+0 5+0 5+0
optdigits 2-7 (s) 7+0 3+0 5+0
optdigits 8-9 (s) 3+0 3+0 7+0
ionosphere (s) 3+0 3+0 5+0
optdigits 3-8 3+0 240 3+0
optdigits 1-7 240 240 3+0
optdigits 2-7 3+0 3+0 5+0
optdigits 8-9 6+0 4+0 5+0
optdigits 3-9 39+08 515+0.7 64+1.8
ionosphere 2+0 3+0 440
svmguide1-a (s) 5+0 5+0 5+0
ringnorm (s) 5.7+1.1 6.24+2.2 13.5+5.7
image 5+0 9+0 440
letter 6+0 4+0 15+£0
satellite 11£0 13+0 5+0
svmguide1-a 440 4+0 10+0
ringnorm 4.8+ 0.5 5.440.5 7.4+0.8

on satellite, the largest data set that can be run by GMMC on
our machine) and MMC (about 10 000 times faster on the data
sets that MMC can handle). Thus, while iterSVR is competitive
with GMMC in terms of clustering error, iterSVR is much more
advantageous than GMMC in terms of training time. In general,
iterLS-SVM is slower than iterSVR, as the LS-SVM solution
is not sparse and each LS-SVM iteration has to solve a linear
system involving all the patterns. On the other hand, it is well
known that the SVR solution is sparse and thus each SVR iter-
ation of iterSVR only involves optimizing the support vectors.
Moreover, as can be seen from Table VI, the iterative methods
usually converge very fast (in fewer than ten iterations). Note
that although iterSVM converges faster than iterSVR, its clus-
tering performance is much inferior (Table 1V).

C. Experiments on Large Data Sets

To demonstrate the scaling properties of the different
algorithms, we use the adult data set from the sequential
minimization optimization (SMO) webpage.1! This version of

Uhttp://research.microsoft.com/users/jplatt/smo.html

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

ZHANG et al.: MAXIMUM MARGIN CLUSTERING MADE PRACTICAL

593

TABLE VII
NUMBER OF PATTERNS IN THE adult SusseTs
adult-1a adult-2a adult-3a adult-4a adult-5a adult-6a adult-7a adult-8a adult-a
1,605 2,265 3,185 4,781 6,414 11,220 16,100 22,696 32,561
10*
281 *)G
z 10?
5 27f 5
: 3
o) S
- (&) 0
(_‘:’,)’ 26+ ng/ 10 Q KM
9 “E’ - KKM
e 25l = NC
(_(g 10721 —§—- GMMC
< IterSVM IterSVM
o4l IterLSSVM | | IterLSSVM
-©- IterSVR B -©- IterSVR
1 10 1
10° 10* 10° 10° 10* 10°
data size data size
(a) (b)

Fig. 8. Comparison of the clustering algorithms on the adult subsets. (a) Balanced cluster error. (b) Time consumption.

TABLE VIII
EMPIRICAL TIME COMPLEXITY OF THE VARIOUS ALGORITHMS
ON THE adult DATA SET

KM KKM NC GMMC iterSVM
O(nlAl()') O(n2‘19) O(nzzs;s) O(n3'72) O(nl‘ﬁs)

iterLS-SVM
O(n?-62)

iterSVR
O(n207)

the adult data has predefined subsets, ranging in size from the
smallest of 1605 to the largest of 32561 (Table VII). As in
Section 1V-B, we compare a variety of algorithms including:
1) k-means clustering, 2) kernel k-means clustering, 3) nor-
malized cut, 4) GMMC, 5) iterSVM, 6) iterLS-SVM, and 7)
iterSVR. On the other hand, MMC cannot be run even on the
smallest subset because of memory problem.

As the data is very skewed,!2 the clustering error is inap-
propriate for performance evaluation. Instead, the balanced
clustering error, which is defined as the cluster error averaged
over the two classes, is reported here. Experimental results are
shown in Fig. 8. In terms of the (balanced) clustering error, both
iterLS-SVM and GMMC are very good; iterSVR is slightly
inferior but still outperforms all the other methods. In terms
of speed, GMMC is the slowest. Note that many algorithms
(such as kernel k-means clustering, normalized cut, GMMC,
and iterLS-SVM) cannot be run with the larger subsets because
of insufficient memory. The empirical time complexities of
the various methods are shown in Table VIII. Overall, iterSVR
yields good clustering performance and is fast.

Finally, we demonstrate the ability of the iterSVR procedure
on large data sets by considering image segmentation as a clus-
tering problem. Experiments are performed on four images!3
with the RGB values (in the range [0,255]) as features. The

12The numbers of positive and negative samples in the full set adult a
are 7841 and 24 720, respectively.

13The horse and roo images are from the benchmark Berkeley image
segmentation database whose url is http://www.eecs.berkeley.edu/Re-
search/Projects/CS/vision/bsds/; zebra and squirrel are commonly used in
vision literature.

sizes of the images are reported in Table IX. As can be seen,
there are a large number of pixels to be clustered and methods
including MMC, GMMC, and iterLS-SVM are unable to handle
these large data sets. For comparison, we run k-means clus-
tering and iterSVM. As in Section 1V-B, the Gaussian kernel
k(x,x') = exp(—||x — x’||*/o?) is used. A fixed o = 500
and C' = 500 is used for iterSVR on all the images, while the
other algorithms have the extra freedom in choosing their best
parameters. As can be seen from Fig. 9, the segmentation results
of iterSVR are visually more satisfactory than those of the other
algorithms.

In the same manner as [29], the iterSVR algorithm can be
used for multiclass problems by performing binary clustering
recursively. For example, as shown in Fig. 10, the woman image
is first segmented to background and foreground (from left to
right), then the skin and clothes, and so on.

V. CONCLUSION

In this paper, we propose an efficient approach for solving
MMC via alternating optimization. The key step is on the use of
SVR with the Laplacian loss, or LS-SVM with the square loss,
in the inner optimization subproblem. In contrast to the tradi-
tional hinge loss used in the SVM, these symmetric loss func-
tions discourage premature convergence by penalizing overcon-
fident predictions. While existing MMC algorithms are formu-
lated as very expensive SDPs, our approach is formulated as a
sequence of efficient kernel regression (involving either QPs or
linear system). Empirically, the clustering accuracies of the pro-
posed iterative procedures are competitive or even better than
existing MMC and traditional clustering algorithms. Moreover,
it is much faster (by tens of thousands of times compared with
MMC and hundreds of times compared with GMMC) and can
handle much larger data sets (hundreds of times larger than the
largest data set reported in the MMC literature).

In the future, we will investigate how to extend our clustering
method to the semisupervised learning setting. Another problem

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

594

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

TABLE IX

SIZES OF THE

Fig. 9. Segmentation results obtained by

worth investigation is how to scale up the iterative LS-SVM
procedure that has performed quite well in our experiments.
Currently, we can only use the LS-SVMlab package on data
sets with a maximum of about 7000 samples. We plan to
incorporate techniques such as low-rank approximation [13]
and large scale decomposition methods [8] so that it can
be used on much larger real-world data sets. Moreover, we
will study the extension to the multiclass scenario, where the
balance constraints need to be enforced among the multiple
decision functions.

APPENDIX
CONCAVE-CONVEX PROCEDURE FOR MAXIMUM
MARGIN CLUSTERING

The concave-convex procedure [42] is an optimization tool
for problems whose objective function can be expressed as a
difference of convex functions. In the optimization literature, it
is often known as the difference of convex functions algorithm
(DCA) [26]. While the concave-convex procedure only consid-
ered linear constraints [42], Smola et al. generalized this to the
CCCP for problems with a concave-convex objective function
with concave-convex constraints [30].

Consider the following optimization problem:

fo(x) = o(x)
fi(x) — i(x) < ¢,

ming

s.t.

IMAGES USED IN FIGS. 9 AND 10

-means clustering (second column), iterSVM (third column), and iterSVR (fourth column).

where f;, ; (¢ = 0,...,n) are real-valued, convex, and differ-
entiable functions on R4, and ¢; € R. Given an initial x,, CCCP
computes x;1 from x; by replacing ;(x) with its first-order
Taylor expansion at x;, and then setting x;; to the solution of
the relaxed optimization problem

min

i fo(x) = [o(xe) + V o(xe) T (x = x4)]
s.t. fi(x) = [i(x)+V i(Xt)T(.X -x¢)] < e,

Here V (%) is the gradient of the function at x. Each CCCP
iteration then becomes a convex optimization problem. For non-
smooth functions ;, it can be easily shown that the gradient in
(18) should then be replaced by the subgradient (a subgradient
of f at x is any vector ~ that satisfies the inequality f(y) >
f(x)+~"op(y —x) forall y [4]). It can be shown that the objec-
tive (18) obtained from each iteration decreases monotonically
and converges to a local minimum [30]. In practice, CCCP can
often converge to a global solution [26].

On dropping the balance constraint, the MMC problem in (2)
can be written as

ming ;¢ ||w|>+2C¢"e
s.t. |WTtp(Xi) + b| >1-¢
&>0, i=1,...,n. (19)

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23, 2009 at 05:25 from IEEE Xplore. Restrictions apply.

