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Abstract—The proliferation of sensor-equipped smartphones
has enabled an increasing number of context-aware applications
that provide personalized services based on users’ contexts.
However, most of these applications aggressively collect users
sensing data without providing clear statements on the usage and
disclosure strategies of such sensitive information, which raises
severe privacy concerns and leads to some initial investigation
on privacy preservation mechanisms design. While most prior
studies have assumed static adversary models, we investigate
the context dynamics and call attention to the existence of
intelligent adversaries. In this paper, we first identify the context
privacy problem with consideration of the context dynamics and
malicious adversaries with capabilities of adjusting their attack-
ing strategies, and then formulate the interactive competition
between users and adversaries as a zero-sum stochastic game.
In addition, we propose an efficient minimax learning algorithm
to obtain the optimal defense strategy. Our evaluations on real
smartphone context traces of 94 users validate the proposed
algorithm.

I. INTRODUCTION

The increasing popularity of smartphones equipped with a
variety of sensors provides new opportunities for the prolif-
eration of context-aware applications that offer personalized
services based on the operating conditions of smartphone users
and their surrounding environments. Such applications effec-
tively use sensors such as GPS, accelerometer, proximity sen-
sor and microphone to infer smartphone user’s current context
including location, mobility mode (e.g., walking or driving),
and social activities. Examples of context-aware applications
include GeoNote1 that reminds a user of something when he
is at a particular location and AutoSilent2 that automatically
mutes the phone when the user is in a meeting.

Although context-aware applications improve user experi-
ences on smartphones, severe privacy issues arise with these
applications. Nowadays, the growing privacy threats of sharing
location-related context information via context-aware applica-
tions on smartphones have been concerned by both consumers
[1] and governments [2]. Such privacy threats come from the
fact that many smartphone applications aggressively collect
sensing data without clear statements about how to use the
sensing data and whom the sensing data will be shared with.
Untrusted applications may sell such personal information to

1GeoNote: http://geonotehelp.blogspot.hk
2AutoSilent: http://www.novniv.com
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Fig. 1. An illustration on context privacy

advertisers without user’s permission. Enck et al. [3] studied
30 popular Android applications that have access to user’s
location, camera, microphone data, and found that 15 of them
sent users’ information to remote advertisement or analytics
servers. Moreover, malicious adversaries with criminal intent
could hack the applications with such information to pose a
threat to individual security and privacy. Being aware of such
risks, the smartphone users may not allow the applications
to access their sensing data, which, however, disables the
functionalities provided by the context-aware applications, and
thus, causes inconvenience to the users.

To enable smartphone users to enjoy services provided
by smartphone applications with privacy protection, many
existing privacy preserving approaches have been proposed to
explore better tradeoffs between service quality and individual
privacy. Most of these approaches focus on location privacy
[4]–[7], which, however, fall short when applied to context
privacy analysis due to the dynamics of user behaviors and
temporal correlations between contexts. Specifically, smart-
phone users usually transit between different contexts (e.g.,
a user goes to a particular hospital after eating at a coffee
shop), whose sensitivities are different to the users. Moreover,
the contexts are usually correlated, which has already been
studied for different goals [8]–[10]. Thus, the adversaries
can learn the connections between contexts by exploiting the
temporal correlations, and then use such correlations to infer
user’s sensitive contexts based on their observations on non-
sensitive contexts. For example, in Figure 1, a context-aware
application may learn that a user regularly follows a trajectory
1→ 2→ 3→ 4. Then, releasing the context information that
the user is at the coffee shop at location 1 may reveal that the
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user is very likely to go to the hospital, which is sensitive to the
user. However, the frameworks on location privacy [4]–[7] do
not consider such inference attacks from adversaries knowing
temporal correlations, and thus, are not directly applicable to
context privacy analysis.

To the best of our knowledge, the only existing work on
context privacy protection is MaskIt [9], which assumes that
adversaries take fixed attacking strategies that do not change
over time. This assumption is only valid for offline attacks,
e.g., analyzing user’s personal information and preferences.
However, some adversaries launch real-time attacks [7]. For
example, a context-aware application may sell user’s sensing
data to remote advertisement adversaries, who continuously
push context-related ads or spam to users based on the
user’s instant context information. Note that in the real world,
context-based ads or spam need to be delivered in real time
(e.g., NAVTEQ or AdLocal by Cirius Technologies) as users
may lose interest if the ads do not match current context.
In such case, it is highly possible that the adversaries will
adapt their attacking strategies based on their observations of
previous attacking results and context dynamics.

To satisfy the aforementioned requirements, in this paper,
we model the strategic and dynamic competition between a
smartphone user and a malicious adversary as a zero-sum
stochastic game, where the user preserves context-based ser-
vice quality and context privacy against strategic adversaries.
The user’s action is to control the released data granularity
of each sensor used by context-aware applications in a long-
term defense against the adversary, while the adversary’s
action is to select which sensing data as the source for
attacks. The interactive competition between the user and the
adversary are considered to last for a number of stages with the
contexts dynamics. The previous context and attacking result
are observed by the user and the adversary as system state,
based on which both players adjust their future strategies.
The user’s optimal defense strategy is obtained at a Nash
Equilibrium (NE) point of this zero-sum game. An efficient
minimax learning algorithm with proved convergence is pro-
posed to obtain the NE point. Compared to traditional learning
algorithm, the proposed algorithm reduces the computational
cost by reducing the dimensions of state values that need to
be updated. We give both analytical results and evaluations on
real smartphone traces to analyze the factors that affect the
user’s optimal defense strategy.

The main contributions of this paper are threefold. First,
we identify the context privacy problem in context-aware
applications. Specifically, we consider the context correlations
and powerful adversaries that are capable of adjusting their
attacking strategies over time. Second, we analyze the context
privacy problem via a stochastic game formulation, and devise
an efficient minimax learning algorithm with provable conver-
gence to obtain optimal strategies. We improve the efficiency
of the learning algorithm by solving an equivalent problem
with reduced dimensions. We also prove that the algorithm
converges to an NE point. Finally, we use real smartphone
context traces of 94 users to demonstrate the efficacy and
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Fig. 2. A mobile phone context sensing system

efficiency of the proposed algorithm. Promisingly, the results
give guidance to the design of context privacy preserving
mechanisms.

The rest of the paper is organized as follows. Section II
introduces the system model. Section III presents the stochastic
game formulation for the context privacy problem. Section IV
proposes a minimax learning algorithm to obtain the user’s
optimal defense strategy. Section V describes the performance
evaluations, and Section VI reviews the related works. Finally,
Section VII concludes the paper.

II. SYSTEM MODEL

In this section, we describe the model of the mobile phone
context sensing system and the privacy issue when the context-
aware application is untrusted.

Context Sensing Model. Fig. 2 illustrates a mobile phone
context sensing system, where a sensor-equipped smartphone
runs untrusted context-aware applications. The smartphone
senses its environment with multiple sensors and releases
the modified sensing data to the context-aware applications
periodically for energy-efficiency reasons [8], [9], where a
period is referred to as a time slot in the context sensing
system. We assume that the smartphone user has installed a
privacy-preserving middleware (e.g., MaskIt [9]) to control
the released data granularity of each sensor. An untrusted
application accesses user’s data via the privacy-preserving
middleware but does not have the permission to access raw
sensing data. On the one hand, the untrusted application
extracts the user’s context using certain context recognition
approaches (e.g. [8], [10]). On the other hand, the untrusted
application leak the modified sensing data to an adversary.

User Model. A smartphone user can encounter a set of
contexts C = {c1, ..., cn}. We adopt the Markov model to
capture the transitions between contexts. It has been shown
that human behaviors and activities extracted from smartphone
sensors can be modeled well with a two-state Markov chain
[11], [12]. At time t, the user’s context is denoted as Ct ∈ C,
which is generated from a Markov model M . According to the
independence property of Markov chains, we have Pr[Ct =
ci|C1, ..., Ct−1] = Pr[Ct = ci|Ct−1]. A subset of contexts
is considered to be private contexts that are sensitive to the
user. The user claims a subset of C to be sensitive via special
applications (e.g., Locaccino [13]). The user’s context privacy
is breached if the adversary successfully infers that the user
is in its sensitive context. To protect context privacy, the user
can control the released data granularity of each sensor via the
privacy-preserving middleware.
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Adversary Model. The adversary is able to obtain the re-
leased sensing data at the time when the untrusted application
accesses the data, and is assumed to know the Markov chain
of a user [9]. The sensing data retrieved by the adversary in a
time slot is limited due to computational constraints (caused
by curse of dimensionality when using private data [5]) or
limited bandwidth used for retrieving data. As the contexts and
user’s released data granularity vary over time, the adversary
can adaptively choose different subsets of sensors to maximize
its long-term utility. To protect smartphone users against all
kinds of adversaries, we make the worst case assumption: the
adversary is a malicious attacker that aims at minimizing user’s
utility through a series of strategic attacks [7].

Problem Statement. Our goal is to find the optimal de-
fense strategy for users to preserve privacy against malicious
adversary over a serial of correlated contexts. As the user
and the malicious adversary have opposite objectives, their
dynamic interactions can be modeled as a zero-sum game.
Moreover, since the context is considered to keep changing
over time and both the user and the adversary make different
actions at different times, the zero-sum game is in a stochastic
setting, i.e., the context privacy game should be formulated as
a stochastic game.

III. STOCHASTIC GAME FORMULATION

A stochastic game is a dynamic game with proba-
bilistic transitions played in a sequence of stages. A
two player stochastic game Γ consists of a six-tuple <
S,A1,A2, r1, r2, P >. S is the discrete state space. Ak is the
action space of player k for k = 1, 2. rk : S ×A1 ×A2 7→ R
is the stage payoff function for player k. P : S ×A1×A2 7→
∆(S) is the transition probability map, where ∆(S) is the set
of probability distributions over S. The game Γ is played in
a sequence of stages, where each player k receives a stage
payoff rk(s, a1, a2) based on players actions ak ∈ Ak and
current stage s ∈ S . Each player k attempts to maximize its
expected sum of discounted payoffs.

In this section, we formulate the privacy game in mobile
phone context sensing as a two-player stochastic game.

A. States and Actions

1) System States: In each time slot, the smartphone user is
in a certain context and releases data of multiple sensors to
the context-aware application. The user’s context is included in
the system state as the user’s action depends on its observation
of the current context. Note that the current context is only
observable to the user, while the adversary can only infer
the context based on the modified sensing data and the user’s
Markov model. Previous attack results should also be included
in the system state. As the adversary’s strategy is not known
by the user, the user can only conjecture the adversary’s
strategy from previous attack results, which are assumed to
be observable to the user. This assumption is reasonable in
context-based applications. For instance, if a user receives
an advertisement based on its current private context, then
the user knows that the adversary successfully inferred this

private context; if the user receives an advertisement based
on a context that it has never been to, then the user knows
that the adversary has failed to infer its true context. Thus,
the user should maintain a record of which contexts the
adversary has launched attacks on, and which contexts have
been successfully attacked. The attack result observed at time
t, namely the attack result in the last time slot, is denoted
as Art, whose value can be Art = 1 meaning the adversary
successfully infers the context Ct−1, or Art = 0 meaning
the adversary fails to infer the context Ct−1. In summary, the
context and attack result are observable to the user and affect
the user’s decisions. Thus, the state of the privacy stochastic
game at time t is defined by St = {Ct, Art}.

2) User’s Actions: After observing the state St =
{Ct, Art} at each stage (note that the adversary can only
infer Ct based on M ), both the user and the adversary decides
their actions for the current stage. As discussed in Section II,
the user controls the granularity of the released sensing data
to protect its context privacy while preserving the quality of
context-based services. For simplicity, we use the accuracy of
context recognition to measure the granularity of the sensing
data, which is assumed to be the weighted summation of the
data granularity of each sensor. Formally, the action of the
user at time t is defined as atu = {atu,1, ..., atu,K}, with each
sensor’s data granularity atu,k ∈ [0, 1],∀k = 1, ...,K, where
K is the total number of sensors used for recognition. The
accuracy of context recognition g (0 ≤ g ≤ 1) based on atu is
given by g =

∑K
k=1 κka

t
u,k, where {κk : ∀k} are the weights

measuring the sensitivity of the sensor’s data granularity to
the context recognition accuracy.

3) Adversary’s Actions: On the other hand, due to the lim-
ited attacking capability, the adversary needs to select a proper
subset of sensing data for retrieval. Mathematically, the adver-
sary’s actions at time t are defined as ata = {ata,1, ..., ata,K},
where ata,k is the probability of retrieving the data of the kth
sensor. The power limitation constraints for the adversary’s
actions are as follows.∑

k

ata,i ≤ L,

0 ≤ ata,i ≤ 1,∀k, (1)

where L is the power limitation of the adversary.
4) State Transitions: It can be seen that the state St is

uncertain (due to the uncertainty of Ct) and depend on the
actions of the user and the adversary (Art depends on the
player’ actions). We assume that user behavior is independent
of player’s actions. Then, the state transition probability can
be computed by

Pr[St+1|St, atu, ata] = Pr[Art+1|Art, atu, ata] Pr[Ct+1|Ct]
= Pr[Art+1|atu, ata] Pr[Ct+1|Ct]. (2)

The second equality holds because Art+1 is the attack results
observed at time t + 1, which only depends on the actions
players made at the last stage.
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B. Stage Payoff

After defining the states and actions, we give a concrete
expression of stage payoffs. The payoff function of the user
is defined to be the quality of the context-based service with
weighted penalty on privacy loss, which is written as

ru(St, atu, a
t
a) =QoS(atu)− ω · Pri(St), (3)

where QoS(atu) is the quality of context-based service the user
enjoys, ω the equivalent service quality improvement caused
by unit privacy loss, and Pri(St) the privacy loss. QoS(atu) is
a measure of the user’s degree of satisfaction with the context-
based service and can be modeled as a sigmoid function of
the context recognition accuracy. Sigmoid function has been
widely used to approximate the user’s satisfaction with respect
to service qualities [14]. Concretely, QoS(atu) is measured as

QoS(atu) =
1

1 + e−θ(a
t
u−η)

, (4)

where θ decides the steepness of the quality of service sat-
isfactory curve, η the satisfaction threshold below which the
user has very limited satisfaction (the function curve is convex)
and above which the user’s satisfaction rapidly approaches an
asymptotic value (the function curve is concave).

Next, we measure the privacy loss of the user based on
the definition of context privacy in [9]. Consider a user over
a day with a context space C and a set of sensitive context
Cs ⊆ C. We say that the released data preserves privacy if
the adversary learns little information about the user being
in a private state from the released data, meaning that for
all sensitive contexts and all times the difference between the
posterior and prior beliefs on the user being in a sensitive
context at that time is limited. Normally, the adversary values
the information of user’s recent contexts more highly than the
information about user’s contexts in the faraway future. Based
on the above intuition, we define context sensitivity as follows.

Definition 1 (Context Sensitivity) The sensitivity of a con-
text c is defined to be the sum of the discounted differences
between the prior belief and the posterior belief after observ-
ing current context on the user being in each sensitive context
in the future, that is,

Sens(c) =

∞∑
t=0

∑
cs∈Cs

γt
∣∣Pr[Ct = cs|C0 = c]− Pr[Ct = cs]

∣∣ ,
(5)

where 0 < γ < 1 is the discount factor of the context privacy.

The sensitivity of a context c measures the maximum infor-
mation that the adversary can learn about the user’s sensitive
contexts in the future by observing the user being in c.

Based on the context sensitivity, we define user’s privacy
loss. If an adversary successfully infers a user’s current con-
text, the user’s privacy loss is the sensitivity of the current
context. Otherwise, the privacy loss is zero, as the user’s true

context is still unknown to the adversary. Thus, the privacy
loss is expressed as

Pri(St,atu,a
t
a) = Sens(Ct)Art+1, (6)

where Art+1 is the attack result known at time t+ 1, i.e., the
attack result for context Ct. The probability of a successful
attack at time t is Pr[Art+1] =

∑
i κia

t
u,ia

t
a,i.

Then, we decide ω, i.e., the equivalent service quality
improvement caused by unit privacy loss. For each context, we
measure service quality improvement and privacy loss when
the adversary can access all user’s raw sensing data, compared
with the case that the adversary knows nothing. We assume
that the adversary has prior belief of a user’s context based on
its background knowledge (e.g., the adversary knows the user’s
behavior pattern or the Markov chain of the user’s contexts).
Therefore, we express ω as (7), where Pr[Ct = c] is the
adversary’s prior belief on user’s context. Substituting (4) (5)
(6) (7) back into (3), we can obtain the stage payoff for the
user, while the stage payoff for the adversary is the negative
of (3).

Generally, context applications run continuously on a smart-
phone all day long [8], [9]. Thus, we assume that there is an
infinite number of time slots, i.e., the context privacy stochastic
game is played for an infinite number of stages. Normally, the
smartphone users care more about the current context or near
future contexts than the faraway future contexts. For example,
a user’s current context is more private since the adversaries
can cause immediate damage to the user. Therefore, the user’s
utility is to the expected sum of discounted stage payoffs,
where the delayed payoffs value less to the user

Uu = E[

∞∑
t=0

γtru(St,atu,a
t
a)], (8)

where γ is the discount factor of the context privacy. Then, the
user’s objective is to derive an optimal defense strategy that
maximizes Uu, which is discussed in the following section.

IV. LEARNING THE OPTIMAL DEFENSE STRATEGY

Based on the context privacy stochastic game formulation
in Section III, we will discuss the algorithm to derive the NE
of the stochastic game, so as to obtain the optimal defense
strategy of the user.

A. Minimax Equilibrium in the Context Privacy Game

Formally, a stratefy in a stochastic game is defined to be
a probability distribution over the action set at any state. A
strategy π is said to be stationary if πt = π for all t, that is,
the strategy is fixed over time. In this paper, we are interested
in stationary policies. In the context privacy stochastic game,
the user’s strategy is denoted by πu : S 7→ ∆(Au) and
the adversary’s strategy is denoted by πa : S 7→ ∆(Aa),
where S is the state space for St, ∆(Au) and ∆(Aa) the
probability distributions over the user’s action space Au and
the adversary’s action space Aa, respectively.

In stochastic games, utilities are expressed in the form of
state value. Here, the initial state is defined to be the state at
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ω =

∑
c:c∈C Pr[Ct = c](QoS(au = 1)−QoS(atu = 0))∑

c:c∈C Pr[Ct = c](Pri(atu = 1,ata = 1, Ct = c)− Pri(atu = 0,ata = 1, Ct = c))
, (7)

time t = 0, denoted by S0. Given policies πu, πa and a state
s ∈ S, the user’s utility can be written as

V π(s) =

∞∑
t=0

γtE[ru(St,atu,a
t
a)|πu, πa, S0 = s]. (9)

Denote the actions atu,a
t
a determined by policies πu, πa to be

aπu,a
π
a , respectively. Then, we can rewrite (9) as

V π(s) = ru(s,aπu,a
π
a) + γ

∑
s′ 6=s

Pr[s′|s,aπu,aπa ]V π(s′). (10)

Both user and adversary follow their optimal policies
{π∗u, π∗a} that maximize their own utilities, where the optimal
policies are called an optimal strategy pair π∗ = {π∗u, π∗a}.
An optimal strategy pair in a stochastic game are the policies
at a Nash equilibrium point, which is defined as follows.

Definition 2 (NE in Stochastic Game) In a zero-sum
stochastic game Γ, a Nash Equilibrium (NE) point is an
optimal strategy pair π∗ = {π∗u, π∗a}, such that for all state
s ∈ S

V π
∗
(s) ≥ V π

a

(s), (11)

and

V π
∗
(s) ≤ V π

u

(s), (12)

where πa = {πu, π∗a},∀πu, and πu = {π∗u, πa},∀πa.

In the context privacy stochastic game, the user aims to find
the minimax equilibria, where the user tries to determine an
optimal strategy π∗u that maximizes {V π(s) : ∀s}, while the
adversary tries to find an optimal strategy π∗u that minimizes
{V π(s) : ∀s}. Thus, based on (10), we have

V π
∗
(s) = max

πu

min
πa

{
ru(s,aπu,a

π
a)

+ γ
∑
s′ 6=s

Pr[s′|s,aπu,aπa ]V π
∗
(s′)

}
, (13)

where V π
∗
(s) is referred to as the value of state s.

It has been shown [15] that the equilibrium in a zero-sum
stochastic game is the unique minimax equilibrium, and thus
the optimal strategy pair in the context privacy game is unique.

B. Equivalent State Value

Based on (13), the optimal strategy pair can be derived via
existing reinforcement learning algorithms, e.g. minimax-Q
learning [16]. However, since cardinality of S could be very
large, the complexity of deriving π∗ according to (13) would
be very high. For example, the minimax-Q learning needs to
solve |S| bimatrix games, where |S| is the cardinality of S.
In order to reduce the computational complexity, we solve an
equivalent problem instead.

The equivalent state value Ṽ π
∗

u (Ar) is defined to be the
expected state value over the context variable, i.e., Ṽ π

∗

u (Ar) =
Ec[V π

∗

u (s)] where s = {Ar, c}. Then, we have the following
observation.

Lemma 1 The equivalent state value Ṽ π
∗

u (Ar) can be de-
rived from (13) and enjoys an expression where context c is
eliminated, i.e.,

Ṽ π
∗
(Ar) = Ec

[
ru(s,aπ

∗
) + γ

∑
Ar′

(
Pr[Ar′|aπ

∗
]Ṽ π

∗
(Ar′)

)]
,

(14)

where aπ
∗

= {aπ∗u ,aπ
∗

a } is the action pair following the
optimal strategy pair π∗.

Proof: By taking expectation over c on both sides of (13),
we have

Ṽ π
∗
(Ar)

= Ec
[
ru(s,aπ

∗
) + γ

∑
s′ 6=s

Pr[s′|s,aπ
∗
]V π

∗
(s′)

]
= γ

∑
Ar′,c′

Ec
[
ru(s,aπ

∗
) + Pr[Ar′|aπ

∗
] Pr[c′|c]V π

∗

u (Ar′, c′)
]

= Ec
[
ru(s,aπ

∗
)
]

+ γ
∑

Ar′,c′,c

(
Pr[Ar′|aπ

∗
] Pr[c′|c] Pr[c]V π

∗

u (Ar′, c′)
)

= Ec
[
ru(s,aπ

∗
)
]

+ γ
∑
Ar′,c′

(
Pr[Ar′|aπ

∗
] Pr[c′]V π

∗

u (Ar′, c′)
)

= Ec

[
ru(s,aπ

∗
) + γ

∑
Ar′

(
Pr[Ar′|aπ

∗
]Ṽ π

∗
(Ar′)

)]
. (15)

This completes the proof.
We can see that Ṽ π

∗

u (Ar) largely reduces the number of
state values from |S| or 2|C| to 2 (since Ar is a binary
variable). The following theorem proves that we can derive
the optimal action pair from Ṽ π

∗

u (Ar).

Theorem 1 The optimal strategy pair π∗ = {π∗u, π∗a} for
the context privacy stochastic game (13) can be obtained by
solving the following equivalent problem

π∗ = arg max
πu

min
πa

{
ru(s,aπ

∗
)

+ γ
∑
Ar′

(
Pr[Ar′|aπ

∗
]Ṽ π

∗
(Ar′)

)}
, (16)

Proof: By standard Markov decision process (MDP)
techniques [17], [18], the problem (13) can be expressed as
an equivalent MDP minπa

maxπu
Ec[V πu (s)] with the state
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Algorithm 1 Minimax Learning Algorithm
Input: The context privacy stochastic game Γ
Output: π∗

// 1. initialization
1: t← 0, Art = 0;
2: Ṽ t(Ar = 0)← 1, Ṽ t(Ar = 1)← 1;
3: Initialize strategy pair πt: two uniform distributions where
atu,i = 1

K , a
t
a,i = L

K ,∀i;
// 2. iteration

4: repeat
5: Select an action pair {atu,ata} based on πt;
6: Update Art+1 after both players take their actions

{atu,ata};
7: Update equivalent state value Ṽ t+1(Ar) according to

(18);
8: Update optimal strategy πt+1 according to (16) with

updated state values;
9: t← t+ 1;

10: until Converge

space S, the action space {{au}, {aa}}, the transition kernel
Pr[Ar′|aπ∗ ] = Ec [Pr[s′|s]], and the stage payoff function
Ec
[
ru(s,aπ

∗
)
]
. It is known that the optimal strategy pair π∗

can be obtained by solving

min
πa

max
πu

Ec[V π(s)] = Ec
[
min
πa

max
πu

{
ru(s,aπ

∗
)

+γ
∑
Ar′

(
Pr[Ar′|aπ

∗
]Ṽ π

∗
(Ar′)

)}]
,

(17)

which completes the proof.

C. A Minimax Learning Algorithm

According to Theorem 1, we can derive π∗ by learning
Ṽ π
∗

u (Ar), which can be obtained by the following update rule,
which is modified from Q-learning [19].

Ṽ t+1(Ar) =(1− αt+1)Ṽ t(Ar)

+ αt+1Ec
[
ru(s,atu,a

t
a) + γṼ t(Ar′)

]
, (18)

where αt ∈ [0, 1) is the learning rate, which needs to decay
over time in order for the learning algorithm to converge. In
this paper, we set αt = 1

t . Ṽ t+1
u (Ar) is used as an approximate

of Ṽ π
∗

u (Ar) and iteratively updates according to (18) until
converges.

Then, the learning algorithm for equivalent state value
Ṽ π
∗

u (Ar) is described in Algorithm 1. First we initialize equiv-
alent state values to be 1, and the strategy of each player to
be uniform distribution. Then, we iteratively update equivalent
state values and strategy pair according to (18) and (16),
respectively, until the strategy pair approaches the optimal
strategy pair. It is provable that the iteratively updated πt

converges to the optimal strategy pair. Due to page limitation,
we omit the detailed proof.

V. EVALUATION

In this section, we conduct trace-driven simulations to
evaluate the smartphone user’s payoffs under the privacy
attack. First, we show the proposed algorithm largely improves
the convergence speed compared with the traditional learning
algorithm. Then, we demonstrate the effectiveness of the pro-
posed algorithm by comparing the sum of discounted payoffs
when the user adopts different strategies. We also study how
the user’s utility and strategies are affected by some system
parameters.

A. Setup

The user model, system parameters, and baselines used for
evaluation are described as follows.
• User Model. We evaluate the performance of our pro-

posed algorithm using the Reality Mining dataset 3,
which was collected by the MIT Media Laboratory from
September 2004 to June 2005 [20]. The Reality Mining
dataset records the continuous activities of 94 students
and staff at MIT equipped with Nokia 6600 smartphones,
which are pre-installed with several pieces of software
that collects data about call logs, Bluetooth devices
in proximity of approximately five meters, location at
granularity of cell tower, application usage, transportation
model (e.g., driving, walking, stationary), etc. The total
length of all subjects’ traces combined is 266,200 hours,
with average, minimum, and maximum length being 122
days, 30 days, and 269 days, respectively. As location is
the most complete and fine-grained context in the dataset,
we select location traces as the user’s contexts in our eval-
uation. The average, minimum, and maximum numbers of
locations per user is 19, 7, and 40, respectively. Based on
the location traces, we train a Markov chain for each user.
Then, we simulate user’s behaviors based on the trained
Markov chain. For each user, a certain percentage p of
contexts are selected as sensitive contexts.

• System Parameters. Unless explicitly otherwise stated,
we use the following system parameters in our simu-
lations. For each user, the the percentage of sensitive
contexts p is set to 0.5, satisfaction threshold eta set to
0.7, QoS steepness θ set to 10, the discount factor γ
set to 0.8. According to [8], there are three sensors (i.e.,
GPS, WiFi, and Bluetooth) used to identify user’s location
contexts. Thus, we set the number of sensors needed
to identify the context to 3, and the power limitation
of the adversary L is set to 2. The weights of sensors
{κi : i = 1, ...,K} are set to the normalized values
drawing from a uniform distribution.

• Baselines. We compare the convergence speed of the
proposed algorithm and that of the traditional learning
algorithm that learns state values directly according to
(13). We also compare the performance of users adopting
different strategies. We compare the optimal policies ob-
tained by the proposed algorithm (denoted by proposed)

3http://realitycommons.media.mit.edu/realitymining.html
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with fixed strategy and myopic strategy. The fixed strategy
draws an action that uniformly sets the granularity of
each sensor to 1

K . And the myopic strategy is the optimal
strategy obtained by myopic learning, where the effects
of current actions on the future payoffs are ignored, i.e.,
γ is considered to be 0 in the myopic learning.
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(b) Convergence speed of the
traditional learning algorithm

Fig. 3. CDF of convergence speed

B. Results
1) Convergence Speed: We first show the convergence

speed improved by the proposed algorithm in Figure 3.
Figure 3 depicts the cumulative distribution function (CDF)
of iterations needed to learn the optimal policies for all
users in the Reality Mining dataset. We can see that the
convergence speed of the proposed algorithm for all users
are less than 220 iterations, while for more than half of the
users, the convergence speed of the traditional algorithm are
more than 105 iterations, which demonstrates that the proposed
algorithm largely improves the convergence speed compared
with traditional learning algorithm. The improvement of the
proposed algorithm comes from the smaller cardinality of the
equivalent state value, which eliminate the context dimension
in the learning process.

2) Comparison of Different Strategies: Figure 4 compares
the performance of the smartphone user when it adopts differ-
ent strategies to evaluate the proposed context privacy stochas-
tic game and the proposed algorithm. It is assumed that the
adversaries use their optimal stationary strategy learned by the
minimax algorithm. As shown in Figure 4, the proposed and
the myopic strategies achieve higher sum of discounted payoff
than the fixed strategy against the adversaries with different
power limitations, since the former two strategies maximize
the worst-case performance, while the fixed strategy takes
actions without considering the adversary’s action. Moreover,
the proposed strategy achieves highest sum of discounted
payoff. This is because the proposed strategy also takes the
future payoff into consideration when optimizing the current
strategy. Therefore, when smartphone users are under attack
from adversaries that are capable of dynamically changing
their strategies, the best choice is to adopt the strategy learned
from the proposed algorithm that considers future payoff and
the dynamics of the adversaries.

Moreover, comparing Figure 4(a), Figure 4(b), and Figure
4(c), we can see that sum of discounted payoff achieved by

the proposed strategy goes down as the power limitation of the
adversaries L increases. This is because as L increases, the
adversaries are able to access more sensing data, it is more
likely for the adversaries to successfully attack the user. In
such situation, the user may take more conservative actions
(i.e., releasing data with less granularity), which results in
lower service quality, or the user take the same action to
preserve service quality, which, however, causes more privacy
loss. As such, either case leads to lower payoff.

3) Impacts of System Parameters: In the following, we
show how the percentage of sensitive contexts and satisfac-
tion threshold affect the sum of discounted payoff, and we
also depict the optimal policies in different contexts. These
evaluation results can provide some guidance in the design of
the context privacy preserving schemes.

The average sums of discounted payoff of all users are
reported in Figure 5 and Figure 6. From Figure 5, we can see
that the sums of discounted payoff achieved by the proposed
and myopic strategies get lower as the percentage of sensitive
contexts increases, since it would cost more privacy loss to
release the same amount of data when the users have more
sensitive contexts. The sum of discounted payoff achieved
by the fixed strategy stays relatively the same over different
percentage of sensitive contexts, because the service quality
is invariant and dominates the payoff when adopting the fixed
strategy. Moreover, the gap between the sums of discounted
payoff obtained by adopting the proposed and myopic strate-
gies approaches to zero when the percentage of sensitive
contexts goes down. This is because the consideration of future
payoff only affect the weights of privacy loss in the sum of
discounted payoff, and both strategies pay more attention to
the service quality part when there are fewer sensitive contexts,
which reduces the difference between with (the proposed
strategy) and without (the myopic strategy) consideration of
future payoff. This observation can provide some guidance for
the context privacy preserving schemes that for the users with
a small faction of sensitive contexts, the impact of current
actions on the future payoff can be neglected so as to design
more efficient algorithm.

Figure 6 reports the sums of discounted payoff achieved
by different strategies over the applications with different
satisfaction threshold η. It can be seen that for the applications
with higher satisfaction threshold, the sums of discounted
payoff achieved by all strategies go down, since the service
quality is lower as satisfaction threshold increases. We can
also see that when the satisfaction threshold is very low,
say 0.2, the differences in the sums of discounted payoff are
achieved by different strategies are quite small. It can be seen
according to (3) (4) (6) that with low satisfaction threshold,
high service quality is easily achieved with only slight privacy
loss by contributing a small amount of data, which are the
cases of adopting the proposed and the myopic strategies.
As such, the service quality dominates the payoff and stays
relatively the same over different strategies. Thus, the privacy
leaked by the applications that require high accuracy is hard
to preserve, and the privacy preserving schemes need to be
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Fig. 4. Sum of discounted payoff of different strategies
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Fig. 5. Sum of discounted payoff vs. percentage
of sensitive context
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sensitivities

carefully designed to find a good tradeoff between privacy
and utility since different strategies have significant impact on
the user’s total payoff.

Next, we study the optimal strategy in contexts with differ-
ent sensitivities. To control the value of context sensitivity,
we use the average values of the state values of all users
as the state values. We denote the total amount of released
data a =

∑
i κia

t
u,i and the amount of information leaked

to the adversary b =
∑
i κia

t
u,ia

t
a,i, which represent the

optimal strategies. Figure 7 depicts the variance of optimal
a, b obtained by the proposed algorithm when the users are
in different contexts. It can be seen that when the sensitivity
of current context is smaller than 0.25 or larger than 0.87,
the optimal a equals to 1 or 0, respectively. In such cases,
either the variance of the service quality or the variance of
the privacy loss dominates. While when the context sensitivity
falls between 0.25 and 0.87, a and b slightly go down with the
increment of the context sensitivity, since the users choose a
more conservative strategy (releasing less data) as the privacy
values more to the users. An interesting observation is that
a stays larger than the satisfaction threshold (set to 0.7 by
default) when the context sensitivity falls between 0.25 and
0.87. The reason is that below the satisfaction threshold the
user enjoys only very limited service quality. Therefore, it
is very important to identify the satisfaction threshold when
designing the privacy preserving schemes.

VI. RELATED WORK

Numerous techniques have been proposed for preserving
privacy in LBSs and participatory sensing on mobile phone.
Spatial cloaking and anonymization are widely adopted [4],

[5], [21], [22], where a value provided by a user is indistin-
guishable from those of k − 1 other users to provide privacy
guarantee, known as k-anonymity. [4] devises a framework
which provides k-anonymity with different context-sensitive
personalized privacy requirements. Several clique-cloak al-
gorithms are proposed in [4] to implement the framework
by constructing a constraint graph. In [5], locality-sensitive
hashing is utilized to partition user locations into groups that
contain at least k users. A form of generalization based on the
division of a geographic area is adopted by Anonysense [21],
where a map of wireless LAN access points is partitioned.
KIPDA [22] enables k-anonymity for data aggregation with
a maximum or minimum aggregation function in wireless
sensor networks. However, these privacy techniques focus on
the single shot scenario, which do not protect user’s privacy
against adversaries knowing temporal correlations.

Differential privacy has been considered as a major axis in
data publishing. Publishing different types of data has been
studied, such as histogram [23], [24], set-valued data [25]
and decision trees [26]. Among these studies, the data type
related to our work is histogram. Blum et al. [23] divides
the input counts into bins of roughly the same count to
construct a one-dimensional histogram. By observing that the
accuracy of a differential privacy compliant histogram depends
heavily on its structure, Xu et al. [24] propose two algorithms
with different priorities for information loss and noise scales.
However, these techniques focus on data modifications but
do not environmental dynamics and adversaries’ adjustable
strategies.

Another category preserves privacy via cryptographic tech-
niques. Girao et al. [27] aggregate data based on homomorphic
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encryption, which preserves privacy by performing certain
computations on ciphertext. The limitation of homomorphic
encryption is that a server must know all the users that
have reported data to compute the final aggregated results.
Secure information aggregation frameworks are proposed in
[28]. However, the cryptographic techniques fail to cope with
context privacy since the adversaries can decode the true
sensing data by compromising context-aware applications.

The only existing work that studies the context privacy issue
is MaskIt [9]. MaskIt is a middleware that employs a privacy
check to decide whether to release or suppress the current user
context. As such, MaskIt limits the adversaries from knowing
the user being in a sensitive context even the adversaries have
knowledge about the temporal correlation between user’s con-
texts. Nevertheless, MaskIt does not consider the adversaries’
capability to adjust their attacking strategies.

Several game theoretic analyses on location privacy have
also been discussed. Freudiger et al. [6] study the problem of
selfishness in location privacy schemes based on pseudonym
changes, and analyze the non-cooperative behavior of mo-
bile nodes with an n-player complete information game.
Shokri et al. [7] formulate the location privacy problem as
Stackelberg Bayesian games with the consideration of user’s
service quality and adversary’s cost. However, these location
privacy problems are quite different from the context privacy
discussed in this paper, where the stochastic dynamics and
temporal correlation of user’s behaviors and environments are
considered.

VII. CONCLUSION

This paper studied the privacy problem of context-aware
applications on smartphones. Considering the distinct features
of the context privacy problem including the context dynamics
and powerful adversaries with knowledge of temporal corre-
lations between contexts and capabilities of adjusting their
attacking strategies, we formulate the interactive competition
between users and adversaries as a zero-sum stochastic game.
To obtain the user’s optimal defense strategy efficiently, we
propose a minimax learning algorithm to solve an equivalent
problem with reduced dimensions. Evaluations on real smart-
phone traces demonstrate the efficacy of the optimal defense
strategy obtained by the proposed algorithm. The proposed
stochastic game framework and evaluation results can provide
some guidelines for the design of privacy preserving mecha-
nisms for context privacy protection.
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