
Dynamic Programming Speedups

1



Dynamic Programming is a classic bottom-up opti-
mization technique. It usually requires filling in a table
T [i] indexed by some i ∈ I. The running time of the
algorithm will be

∑

i∈I w(i), the total amount of time
required to fill in all of the table entries; w(i) is the
work (time) needed to calculate the value of T [i].

A Dynamic Programming Speedup is a way of im-
proving the run-time of the DP algorithm by noting that
it is possible to fill in the table entries quicker than ex-
pected by taking advantage of dependencies between
the different table entries.

The two examples we will see are

(i) The Quadrangle-Inequality speedup, illustrated by
constructing Optimal Binary Search Trees and

(ii) The Monotone-Matrix speedup, illustrated by the
placement of web proxies on a line.

2



The Optimal Binary Search Tree Recurrence:
For 0 ≤ i ≤ j ≤ n, we are given constants w(i, j)

and define table c[·, ·] by c[i, i] = 0 and

c[i, j] = w(i, j) + min
i<k≤j

(c[i, k − 1] + c[k, j]) .

Note that filling in the table seems to require Θ(n3)

time. We will see that if w(i, j) satisfies the quadrangle-
inequality then the table can be filled-in using only
Θ(n2) time.

Totally Monotone Matrices:
For 0 ≤ i ≤ j ≤ n, we are (implicitly) given a(i, j)

and also b(i). Define table E[·] by

E[j] = min
1≤i≤j

(b(i) + a(i, j))

Note that filling in the table seems to require Θ(n2)

time. We will see that if b(i)+a(i, j) defines a Totally
Monotone Matrix then the table can be filled-in using
only Θ(n) time.

3



Selected References

1. Donald E. Knuth, “Optimum Binary Search Trees,”
Acta Informatica 1, pp. 14-25 (1971). (QI)

2. F. F. Yao, “Efficient Dynamic Programming Using
Quadrangle Inequalities,” Proceedings of the 12
Annual ACM Symposium on Theory of Comput-
ing (STOC’80), pp. 429-43, (1980). (QI)

3. A.Aggarwal, M.M.Klawe, S.Moran, P.Shor, R.Wilber.
“Geometric applications of a matrix-searching al-
gorithm.,” Algorithmica (2) pp. 195-208 (1987).
(MM)

4. G. Woeginger, “Monge strikes again: optimal place-
ment of web proxies in the internet,” Operations
Research Letters, 27(3), pp. 93-96 (2000). (MM)

5. Amotz Bar-Noy and Richard E. Ladner, “Efficient
Algorithms for Optimal Stream Merging for Media-
on-Demand, SIAM Journal on Computing, 33(5),
pp. 1011-1034 (2004). (QI)

4



Optimal Binary Search Trees: The Problem

We are given 2n + 1 probabilities, p1, . . . , pn and
q0, . . . , qn; pi is the probability that a search is for
keyi; such a search is called successful. qi is prob-
ability that the search argument is unsuccessful and
is for an argument between keyi and keyi+1 (where
we set key0 = −∞ and keyn+1 = ∞.

Our problem is to find an optimal binary search tree
(BST) with n internal nodes corresponding to success-
ful searches and n + 1 leaves corresponding to un-
succssful searches that minimizes the average search
time. Let d(pi) be the depth of internal node corre-
sponding to pi and d(qi) the depth of leaf correspond-
ing to qi. Then we want to find a tree that minimizes

∑

1≤j≤n

pj(1 + d(pj)) +
∑

0≤k≤n

qk d(qk).

5



Given p1, . . . , pn and q0, . . . , qn our problem is to find
a BST that minimizes.

∑

1≤j≤n

pj(1 + d(pj)) +
∑

0≤k≤n

qk d(qk).

Let c[i, j] be the minimum cost subtree for the weights
pi+1, . . . , pj and qi, . . . , qj. Our problem is to calcu-
late c[0, n] (and associated BST). Since both left and
right subtrees of a min-cost tree are also min-cost (op-
timal) we find that we need to solve:

c[i, i] = 0 and, for 0 ≤ i < j ≤ n,

c[i, j] = w(i, j) + min
i<k≤j

(c[i, k − 1] + c[k, j])

where

w(i, j) = pi+1 + · · · pj + qi + · · · qj.

6



Let w(i, j) = pi+1 + · · · pj + qi + · · · qj.
Our dynamic programming problem is to find c[0, n]

where the DP table is

c[i, i] = 0 and, for 0 ≤ i < j ≤ n,

c[i, j] = w(i, j) + min
i<k≤j

(c[i, k − 1] + c[k, j])

We will assume that we can calculate w(i, j) in O(1)

time (this can be done using O(n) preprocessing time
and O(n) space. How?).

Straightforwardly filling in c[i, j] requires Θ(j−i) time,
leading to an

∑

i,j Θ(j − i) = Θ(n3) time algorithm.

We will now see how to fill in the DP table using only
Θ(n2) time.

7



Definition: w(i, j) satisfies the quadrangle inequality
(QI) if

∀i ≤ i′ ≤ j ≤ j′, w(i, j)+w(i′, j′) ≤ w(i′, j)+w(i, j′)

Definition: w(i, j) is monotone on the lattice of intervals
(MLI) (ordered by inclusion) when

∀[i, j] ⊆ [i′, j′], w(i, j) ≤ w(i′, j′)

In our problem

w(i, j) = pi+1 + · · · pj + qi + · · · qj.

It is obvious that this w(i, j) is MLI. To see that it
satisfies the QI note w(i, j) = w(0, j)−w(0, i−1).
So,

w(i, j) + w(i′, j′) = (w(0, j)− w(0, i − 1)) +
(

w(0, j′) − w(0, i′ − 1)
)

=
(

w(0, j)− w(0, i′ − 1)
)

+
(

w(0, j′) − w(0, i − 1)
)

= w(i′, j) + w(i, j′).

8



c[i, i] = 0 and, for 0 ≤ i < j ≤ n

c[i, j] = w(i, j) + min
i<k≤j

(c[i, k − 1] + c[k, j])

Speedup Theorem: (F.F. Yao) If w(i, j) satisfies the
QI and is MLI then the DP table above can be filled in
using only Θ(n2) time.

This was proved in two steps. The first was

Lemma 1: If w(i, j) satisfies the QI and is MLI then
c[i, j] also satisfies the QI.

This lemma implies that c[i, j] satisfies the QI.
The second step was

Lemma 2: Let ck(i, j) = w(i, j)+c[i, k−1]+c[k, j].

Let Kc(i, j) = max{k : ck(i, j) = c(i, j) be the
largest index k at which minimum occurs in the DP
(we set Kc(i, i) = i). Then, if c[i, j] satisfies the QI,

Kc(i, j) ≤ Kc(i, j + 1) ≤ Kc(i + 1, j + 1).

9



c[i, i] = 0 and, for 0 ≤ i < j ≤ n

c[i, j] = w(i, j) + min
i<k≤j

(c[i, k − 1] + c[k, j])

Assume that conditions of Lemma 2 hold so that

Kc(i, j) ≤ Kc(i, j + 1) ≤ Kc(i + 1, j + 1).

If we had already calculated c[i, j], Kc(i, j)

and c[i + 1, j + 1], Kc(i + 1, j + 1),
then we could calculate c[i, j] in

1 + Kc(i + 1, j + 1) − Kc(i, j)

time.

If j − i = t + 1, we can calculate c[i, i + t + 1] in

1 + Kc(i + 1, i + 1 + t) − Kc(i, i + t)

time.
10



c[i, i] = 0 and, for 0 ≤ i < j ≤ n

c[i, j] = w(i, j) + min
i<k≤j

(c[i, k − 1] + c[k, j])

Let t = j − i, t = 0,1, . . . n. We will fill in the DP
table c[i, j] in increasing order of t. Assume that we
have already calculated all of the entries for j − i ≤ t.
Then the total amount of time to fill in all of the c[i, j]

entries with j − i = t + 1 is

n−t−1
∑

i=0

(1 + Kc(i + 1, i + 1 + t) − Kc(i, t))

≤ n − t + Kc(n − t, n)

≤ 2n

Thus, the total amount of time to fill in the DP table is
O(n · 2n) = O(n2).

We have just seen that Yao’s Theorem follows from
her two lemmas and we therefore only have to prove
the two lemmas.

Also, in the optimal binary search tree problem the
w(i, j) satisfy Yao’s conditions, so we can solve that
problem in O(n2) time.

11



Lemma 1: If w(i, j) satisfies the QI and is MLI then
c[i, j] also satisfies the QI.

Proof: This is a straightforward case by case analy-
sis. See Yao’s original paper for details.

12



Lemma 2: Let ck(i, j) = w(i, j)+c[i, k−1]+c[k, j].

Let Kc(i, j) = max{k : ck(i, j) = c(i, j) be the
largest index k at which minimum occurs in the DP
(we set Kc(i, i) = i). Then, if c[i, j] satisfies the QI,

Kc(i, j) ≤ Kc(i, j + 1) ≤ Kc(i + 1, j + 1).

Proof: We will assume i < j since the lemma is ob-
viously true when i = j.

We will prove Kc(i, j) ≤ Kc(i, j + 1); to do this it
suffices to prove that, if i < k ≤ k′ ≤ j then

ck′[i, j] ≤ ck[i, j] ⇒ ck′[i, j + 1] ≤ ck[i, j+!] (1)

The QI of c[i, j] says

c[k, j] + c[k′, j + 1] ≤ c[k′, j] + c[k, j + 1].

Addding w(i, j)+w(i, j+1)+c[i, k−1]+c[i, k′−1]

to both sides gives gives

ck(i, j) + ck′(i, j + 1) ≤ ck′(i, j) + ck(i, j + 1),

yielding (1) and therefore Kc(i, j) ≤ Kc(i, j + 1).

The proof of Kc(i, j+1) ≤ Kc(i+1, j+1) is similar.

13



Review

We just saw Yao’s proof that, if w(i, j) satisfies the QI
and is MLI then the DP table

c[i, i] = 0 and, for 0 ≤ i < j ≤ n

c[i, j] = w(i, j) + min
i<k≤j

(c[i, k − 1] + c[k, j])

can be filled in using only Θ(n2) time. This DP was
originally formulated for the Optimum Binary Search
Tree problem, with a Θ(n3) solution, by Gilbert and
Moore in 1959. The Θ(n2) improvement was origi-
nally proven by Knuth in 1971 using a very problem
specific analysis.

The importance of Yao’s result (1980) is that she gave
very simple conditions on w(i, j) that, if satisfied, guar-
antee that the same speedup works. While the condi-
tions might seem rather artificial, they do arise quite
often in practice. See, e.g., the paper on Optimal
Stream Merging by Bar-Noy and Ladner in the refer-
ences.

14


