Spatiotemporal Access to Moving Objects

Hao LIU, Xu GENG
17/04/2018
Contents

• Overview & applications
• Spatiotemporal queries
• Moving objects modeling
 • Sampled locations
 • Linear function of time
• Indexing structure
 • TPR-tree
 • Tree organization heuristics
 • Operations
<table>
<thead>
<tr>
<th>Spatiotemporal vs. Spatial</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Space and time</td>
</tr>
<tr>
<td>• Moving objects</td>
</tr>
<tr>
<td>• Frequent updates</td>
</tr>
<tr>
<td>• Space</td>
</tr>
<tr>
<td>• Static objects</td>
</tr>
<tr>
<td>• Less frequent updates</td>
</tr>
</tbody>
</table>
Application: Air Traffic Controller

- Moving objects: airplanes
- Example: which airplanes will probably arrive at the airport in the next 5 minutes?

(Euclidean space: straight and direct Euclidean distance as the distance)
Application: Taxi-hailing Service

• Moving objects: taxis on the city roads

• Example: what are the nearest five taxis at this moment?
Application: Wireless Communication System

• Moving objects: mobile phone users

• Example: how many mobile phone users have been in area #47 in last 2 hours?

(Cellular network)
Location-based Spatiotemporal Queries

• Spatial queries at a certain timestamp or within a certain time interval
 • Intersection join
 • Window query
 • kNN
 • ...

Return the 2 nearest neighbors of q at time T_1 and T_2
Trajectory-based Spatiotemporal Queries

- Trajectory: path that a moving object follows over a time period
- Topological query
 - Enter
 - Leave
 - Cross
 - Bypass

$T_1 \rightarrow T_2$
Trajectory-based Spatiotemporal Queries

- Navigational query
 - Heading
 - Speed
 - Distance
 - Area

- Return the moving direction of p_1
- Return the objects that have moved to the north
- Return the travel speed of p_2
- Return the objects having traveled at speed of no less than 20 m/min
Aggregate Spatiotemporal Queries

• Aggregate query: summarized information about moving objects that lie in a query region during a query interval

Return the number of objects that have visited \(W \) between time \(T_1 \) and \(T_2 \)

\(T_1 \rightarrow T_2 \)
Modeling Moving Objects

• Historical queries: by sampled locations
 • Historical R-tree
 • 3D R-tree

• Predictive queries: by linear function of time
 • TPR tree
R-tree

- Spatial indexing with MBR (Minimum Bounding Rectangle)
- How to deal with objects that evolves?
R-tree Storing All Previous States?
Historical R-tree
3D R-tree

• Time is viewed as another dimension

• A trajectory of a point in 2D space is transformed to a set of 3D line segments, bounded by MBB (Minimum Bounding Box), its 2D projection reflects the origin trajectory

• 2D topological queries are transformed to 3D static range queries
Historical R-tree vs. 3D R-tree

Historical H-tree
- **Advantages**
 - All the historical states of the moving objects are maintained with reduced disk space
 - Efficient access to the previous states
- **Disadvantages**
 - Inefficient in preserving trajectory of objects

3D R-tree
- **Advantages**
 - Good at processing trajectory-based queries
- **Disadvantages**
 - There can be large dead spaces in an MBB, so overlapping is high in the whole index structure
Modeling Moving Objects

• Historical queries: by sampled locations
 • Historical R-tree
 • 3D R-tree

• Predictive queries: by linear function of time
 • TPR tree
Moving objects

• Assume linear motion, modeling position as a function of time
 • $x(t) = x(t_{ref}) + v(t - t_{ref})$
 • Make tentative future predictions
 • Avoid frequent update

• What to store
 • Set t_{ref} as index creation time
 • Store $(x(t_{ref}), v)$ for tracking moving objects
MBR for tracking moving objects

Fig 1: Initial setting for reference position and velocity at t_{ref}

Fig 2: MBR under initial setting

Fig 3: Position at time t. The original MBR assignment is deteriorated.

Fig 4: The ideal MBR assignment in t. $T = t_{\text{ref}}$
TPR tree – index structure

- **Time Parameterized R tree**
 - Design for querying moving objects in a period of time *in the future*
 - Leaf nodes
 - Position of moving object
 - Represented by \((x_{ref}, v)\)
 - Pointer to moving object
 - Internal (non-leaf) nodes
 - Bounding rectangle
 - Represented by \((\text{MBR}, \text{VBR})\)
 - Pointer to subtree
Example in tracking moving rectangles

VBRs: \{left, right, bottom, top\}

\[a_v = \{1,1,1,1\}; \quad b_v = \{-2,-2,-2,-2\}; \quad N_{1v} = \{-2,1,-2,1\} \]

\[c_v = \{-2,0,0,2\}; \quad d_v = \{-1,-1,1,1\}; \quad N_{2v} = \{-2,0,0,2\} \]

- Some characteristics on this bounding strategy
 - The bounding strategy is conservative – keeps expanding
 - Avoids excessive storage cost.
 - Bound rectangle tightened when new rectangle inserted or deleted
Heuristics on designing tree

• The TPR tree is designed for timestamp queries in $[T_c, T_c + H]$
 • T_c: Current update time
 • H: Tree parameter – the timespan the tree can see in the future

• TPR-tree
 • Given an objective function $A(t = T_c)$ for static data
 • Static indexing structures minimize $A(t = T_c)$ during tree organization
 • TPR-tree minimize the integral over time:

$$\text{minimize } \int_{T_c}^{T_c+H} A(t)dt$$
Time as a parameter

• Left:
 \[\text{minimize } A(t = T_c) \]

• Right:
 \[\text{minimize } \int_{T_c}^{T_c+H} A(t)dt \]
Objective

• Use objective from R*-tree
 • The area of a bounding rectangle
 • The overlap of two rectangle.
 • The perimeter of a bound rectangle
 • The distance between the centroids

• The four objectives are adapted in different parts of R*-tree and TPR-tree algorithm
 • Keeps bound rectangles small
 • The probability of rectangle intersects query region is small

For TPR-tree

\[\int_{Tc}^{Tc+H} A(N, t)dt \] [1]
\[\int_{Tc}^{Tc+H} OVR(N_1, N_2, t)dt \] [2]
\[\int_{Tc}^{Tc+H} P(N, t)dt \] [3]
\[\int_{Tc}^{Tc+H} CDIST(N_1, N_2, t)dt \] [4]
Insertion -- ChooseSubTree

R-tree
- 1. \(n = \text{root} \)
- 2. **IF** \(n \) is a leaf
 - return \(n \)
 - **ELSE**
 - choose entry that minimize MBR area ([1])
- 3. \(n = \) chosen entry, go to 2

R*-tree and TPR-tree
- 1. \(n = \text{root} \)
- 2. **IF** \(n \) is a leaf
 - return \(n \)
 - **ELSE**
 - choose entry that minimize MBR area ([1]); resolve ties by smallest MBR size
- 3. \(n = \) chosen entry, go to 2
Insertion -- ChooseSubTree

• Try to insert k:
 • Choose N5
 • min BR area increment
 • Choose N1
 • Minimize BR overlap

R*-tree and TPR-tree
• 1. n=root
• 2. IF n is a leaf
 return n
 IF n’s child is leaf
 Choose entry that minimize BR overlap ([2]) with siblings; resolve ties by smallest area entanglement
 ELIF n’s child is non-leaf
 Choose entry that minimize MBR area ([1]); resolve ties by smallest MBR size
• 3. n = chosen entry, go to 2
Re-insert

- When a leaf node is full
- Remove and re-insert a fraction of entries
 - Select entries with largest centroid distance
 - If still full, do split

- N1 is full and k is awaiting:
 - Re-insert b
 - Largest centroid distance CDIST(b,N1), compared to a,c,k
 - B is re-inserted to N1
 - Do split
Split

Step 1 ChooseSplitAxis

• For each axis (x and y in this case):
 • 1. Sort entries by lower value of the rectangle (a,k,c,b)
 • 2. Determine all possible entry allocations (1-3, 2-2, 3-1)
 • 3. Compute $S = \text{sum of perimeter for each allocation}$
 • 4. go to 1 and do the same for higher value, accumulate S
 • 5.6...

• Choose the split axis with minimum S
Split

Step 2 ChooseSplitIndex

- Minimize overlap between MBRs
 - Suppose x-axis is chosen in ChooseSplitAxis
 - Considering 3 different divisions
 - 2-2 division has minimal overlap
 - Split using 2-2 division

Insertion result
Deletion

• Identify the leaf node contains the entry to be deleted and remove the entry
• If leaf node underflows
 • Re-insert all entries of the node
• Else
 • Remove entry and terminate
• Propagate to upper levels if needed

• Bound rectangles are tightened after insertion or deletion
Reference

Reference

