
1

Comp 5311 Database Management Systems

13. Query Processing and Optimization

2

Complex Joins

• Join with a conjunctive condition:

r JOIN 1 2... n s
1. Either use nested loops/block nested loops, or

2. Compute the result of one of the simpler joins r JOINi s

• final result comprises those tuples in the intermediate result that
satisfy the remaining conditions

1 . . . i –1 i +1 . . . n

• Join with a disjunctive condition

r JOIN 1 2 ... n s
1. Either use nested loops/block nested loops, or

2. Compute as the union of the records in individual joins:

(r JOIN1 s) (r JOIN2 s) . . . (r JOINn s)

useful only if all conditions are restrictive (selective)

3

The Projection Operation

• An approach based on external sorting for duplicate
elimination:

– Modify Pass 0 of external sort to eliminate unwanted fields. Thus,
sorted runs contain smaller records. (Size ratio depends on # and size
of fields that are dropped.)

– Modify merging passes to eliminate duplicates. Thus, number of result
tuples smaller than input. (Difference depends on # of duplicates.)

– Cost: In Pass 0, read original relation, write out same number of
smaller tuples. In merging passes, fewer tuples written out in each
pass.

SELECT DISTINCT R.bid
FROM Reserves R

4

Projection Based on Hashing

• Partitioning phase: Read R using one input buffer. For each
tuple, discard unwanted fields, apply hash function h1 to
choose one of M-1 output buffers (M is the number available
main memory pages).

– Result is M-1 partitions (of tuples with no unwanted fields). 2 tuples
from different partitions guaranteed to be distinct.

• Duplicate elimination phase: For each partition, read it and
build an in-memory hash table, using hash function h2 (<>
h1) on all fields, while discarding duplicates.

• Cost: For partitioning, read R, write out each tuple, but with
fewer fields. This is read in next phase.

5

Discussion of Projection

• Sort-based approach is the standard; better handling of
skew and result is sorted.

• If an index on the relation contains all wanted attributes
in its search key, can do index-only scan.

– Apply projection techniques to data entries (much smaller!)

• If an ordered (i.e., tree) index contains all wanted
attributes as prefix of search key, can do even better:

– Retrieve data entries in order (index-only scan), discard
unwanted fields, compare adjacent tuples to check for
duplicates.

6

Set Operations

Set operations can be handled by join algorithms. Should also remove
duplicates.

• Sorting based approach:
Sort both relations (on the same attribute).
The merging phase depends on the operation.

Intersection: report a tuple only if it belongs to both files
Union: report all tuples except for the ones that belong to both files
Set difference: report the tuples that belong to the first file but not the
second one

• Hash based approach:
Partition files r and s using hash function h (on all attributes). s is the build

input.
For each s-partition, build in-memory hash table (using h2), scan corresponding

r-partition (page-by-page) and for each tuple t of R
Intersection : report t only if it also belongs to s
Union: report t if it does not belong to s. At the end report all tuples of s
Set difference : report t only if it does not belong to s (computes R-S; how
to compute S-R)

7

Aggregate Operations (AVG, MIN, etc.)

• Without grouping:

– In general, requires scanning the relation.

– Given index whose search key includes all attributes in the SELECT or
WHERE clauses, can do index-only scan (e.g., “find the average age of
all sailors given an index on age”).

• With grouping (assuming that grouping attribute values do not
fit in memory):

– Sort on group-by attributes, then scan relation and compute aggregate
for each group. (E.g., “compute the average rating for each age
value”; what about “compute the average age for each rating value”)

– Similar approach based on hashing on group-by attributes.

– Given tree index whose search key includes all attributes in SELECT,

WHERE and GROUP BY clauses, can do index-only scan; if group-by
attributes form prefix of search key, can retrieve data entries/tuples in
group-by order.

8

Evaluation of Expressions

• So far: we have seen algorithms for individual
operations

• Alternatives for evaluating an entire expression tree

– Materialization: generate results of an expression whose
inputs are relations or are already computed, materialize
(store) it on disk. Repeat.

– Pipelining: pass on tuples to parent operations even as an
operation is being executed

9

Materialization

• Materialized evaluation is always applicable

• Cost of writing intermediate results to disk and
reading them back can be quite high

– Our cost formulas for operations ignore cost of writing final
results to disk, so

• Overall cost = Sum of costs of individual operations +
cost of writing intermediate results to disk

10

Pipelining

• Pipelined evaluation : evaluate several operations
simultaneously, passing the results of one operation on to the
next.

• Much cheaper than materialization: no need to store a temporary
relation to disk.

• For pipelining to be effective, use evaluation algorithms that
generate output tuples even as tuples are received for inputs to
the operation.

• Pipelines can be executed in two ways: demand driven and
producer driven

11

Pipelining (Cont.)

• In demand driven or lazy evaluation

– system repeatedly requests next tuple from top level operation

– Each operation requests next tuple from children operations as
required, in order to output its next tuple

– In between calls, operation has to maintain “state” so it knows
what to return next

• In produce-driven or eager pipelining

– Operators produce tuples eagerly and pass them up to their
parents

• Buffer maintained between operators, child puts tuples in buffer,
parent removes tuples from buffer

• if buffer is full, child waits till there is space in the buffer, and then
generates more tuples

12

Evaluation Algorithms for Pipelining

• Some algorithms are not able to output results even as
they get input tuples. They are called blocking.
– E.g. sort merge join, or hash join

– These leads to intermediate results being written to disk and
then read back always

• Algorithm variants are possible to generate (at least
some) results on the fly, as input tuples are read in
– E.g. hybrid hash join generates output tuples even as probe

relation tuples in the in-memory partition (partition 0) are read

– Pipelined join technique: Hybrid hash join, modified to buffer
partition 0 tuples of both relations in-memory, reading them as
they become available, and output results of any matches
between partition 0 tuples

• When a new r0 tuple is found, match it with existing s0 tuples,

output matches, and save it in r0
• Symmetrically for s0 tuples

13

Query Optimization - Motivation

❑ Consider the relations R1(A,B,C), R2(C,D,E), and R3(E,F). Primary keys are underlined
and foreign keys in italics. Foreign keys are not NULL.

❑ Assume that :
✓ R1 has 1000 tuples
✓ R2 has 10000 tuples
✓ R3 has 100000 tuples

✓ What is the best way to join R1, R2, and R3?

(R1 JOINC R2) JOINE R3 or R1 JOINC (R2 JOINE R3)

• What is the size (number of records) in intermediate result R1 JOINC R2?

• What is the size (number of records) in intermediate result R2 JOINE R3?

• What is the size (number of records) in the final result?

Cost difference between a good and a bad way of evaluating a query can be enormous
• How the optimizer can choose the best evaluation plan for processing the query?
• Different plans for a given query involve

– Different but equivalent algebra expressions
– Different algorithms for each operation

14

Query Optimization Approaches

• Practical query optimizers incorporate elements of the
following two broad approaches:
▪ Search all the plans and choose the best plan in a

cost-based fashion – COST BASED OPTIMIZATION

GENERAL IDEA:

1] Generate possible evaluation plans

2] Estimate the cost of each plan

3] Execute the plan with the minimum expected cost

▪ Use heuristic to choose a plan – HEURISTIC OPTIMIZATION

GENERAL IDEA:

1] Perform the cheap operations first (i.e., selections before joins)

2] Try to utilize existing indexes

3] Remove the useless attributes early

15

Different Algebra Expressions

• Given a query, the optimizer will first generate an algebra expression
(tree)

SELECT sname

FROM Sailor S, Reserves R, Boats B

WHERE S.sid=R.sid and R.bid = B.bid and R.date=1.1.2005 and
B.color=red

Sailor S Reserves R

R.date=1.1.2005 AND B.color=red

JOIN

 S.sname

JOIN

Boats B

Sailor S Reserves R

R.date=1.1.2005 AND B.color=red

JOIN

JOIN

Boats B

Sailor S Reserves R

JOIN

JOIN

Boats B

R.date=1.1.2005

B.color=red

S.sname
S.sname

16

Evaluation Plan

• An evaluation plan defines exactly what algorithm is used for
each operation, and how the execution of the operations is
coordinated.

• Example assuming that Sailor is sorted on sid

Sailor S Reserves R

JOIN

JOIN

Boats B

R.date=1.1.2005

B.color=red

S.sname

Use index on R.date

Index nested loop
use index on B.bid
filter B.color condition in memory

Materialize intermediate result

Sort on R.sid
Merge Join

17

Choice of Evaluation Plans

• Must consider the interaction of evaluation techniques
when choosing evaluation plans: choosing the
cheapest algorithm for each operation independently
may not yield best overall algorithm. E.g.
– merge-join may be costlier than hash-join, but may provide a

sorted output which reduces the cost of a subsequent
operation (e.g., duplicate elimination).

– nested-loop join may provide opportunity for pipelining

• Need to estimate the cost of operations
– Depends critically on statistical information about relations

which the database must maintain
• E.g. number of tuples, number of distinct values for join

attributes, etc.

– Need to estimate statistics for intermediate results to
compute cost of complex expressions

18

Catalog Information for Statistics Estimation

Every database system has a system catalog (or
otherwise called data dictionary) that stores
metadata. Metadata include statistics about the stored
tables. Specifically, for each relation R it stores:

• nR: number of tuples in R.

• bR: number of blocks containing tuples of R.

additional info:

• fR: blocking factor of R — i.e., the number of tuples of
R that fit into one page.

• size of each attribute

• V(A, R): number of distinct values that appear in R for
attribute A; same as the size of A(R).

19

Catalog Information about Indices

• HTi: number of levels in index i — i.e., the height
of i.
– For a balanced tree index (such as B+-tree) on attribute

A of relation R, HTi = logfi(V(A,R)).

– For a hash index, HTi is 1, or 1.2 if we assume the
existence of overflow buckets.

• Additional Info:

– fi: average fan-out of internal nodes of index i, for
tree-structured indices such as B+-trees.

– LBi: number of lowest-level index blocks in i — i.e, the
number of blocks at the leaf level of the index.

20

Selection Size Estimation

The output size of an operation determines (i) the cost of the
operation and (ii) the cost of subsequent operations.
Therefore its accurate estimation is important for
optimization.

• Equality selection A=v(R)
Example: rating=8(SAILORS)
SC(A, R): selection cardinality of attribute A of relation R; average
number of records that satisfy equality on A.

• SC(A, R)= nR /V(A, R)

• SC(A, R)/fR — number of blocks that these records will occupy if
these records are ordered on attribute A.

• If the records are not ordered on A, each record may reside in a
different page

• Equality condition on a key attribute: SC(A,R) = 1

21

Selections Involving Comparisons

• Selections of the form A<v(R) (case of A > v(R) is
symmetric)

• Let C denote the estimated number of tuples satisfying
the condition.
– min(A,R) and max(A,R) are available in catalog

• C = 0 if v < min(A,R)

• C =

– Example: rating<2(SAILORS) = # records in sailors * (2-1)/(10-
1+1)=# records in sailors /10

– Again: more accurate estimation using histograms

min(,)
.
max(,) min(,) 1

R

v A R
n

A R A R

−

− +

22

Histograms

• The previous estimates are based on the assumption that each value of A
has the same probability.

• This uniformity assumption rarely holds in practice.

• Commercial systems use histograms.

• In histograms, we assume local uniformity within each bucket (but not
global uniformity).

Balance

of accounts

0 999 1999 2999 1,999,999 2,099,999....

10,000

12,000

20,000

250

How many accounts

have balance in the range

1000-2500

23

Implementation of Complex Selections

•The selectivity of a condition i is the probability that a tuple in the

relation R satisfies i . If si is the number of satisfying tuples in R, the

selectivity of i is given by si /nR.

•Conjunction: 1 2. . . n (R). The estimate for number of

tuples in the result is:

•Disjunction:1 2 . . . n (R). Estimated number of tuples:

based on the logical equivalence:

1 2 . . . n
R n

R

s s s
n

n

1 21 (1) (1) ... (1)n
R

R R R

ss s
n

n n n

 − − − −

1 1.. ..n n =

24

Attribute Independence

• The previous estimates are based on the assumption that values of attributes
are independent.

• This attribute independence assumption rarely holds.

• Consider for instance the sailor table, and assume that the rating of a sailor
increases with his experience. We have histograms on both the rating and the
age rating. Furthermore, the number of sailors with age 20 and 50 are equal.

• The two queries below are estimated to have the same SC
Select *

From Sailors

Where Rating = 10 and Age = 20

Select *

From Sailors

Where Rating = 10 and Age = 50

• Which query is expected to retrieve more record?

• Solution: Multidimensional histograms

25

Multi-dimensional histograms

• Main idea:

– Divide the space (e.g., age-rating) in buckets, so that data in each bucket
are almost uniform.

– Keep in memory the bucket extents and the number of records per bucket

– Use this information to estimate the number of objects in query window

5

21

6

2 2

1

5

1

4

3 3

3 4

9

910

11

1 1 1

5

5

5

6

x1 x2 x3 x4
x5

y1

y2

y3

y4

y5

b1

b2

b3

b4

b5

b6

x1 x2 x3 x4
x5

y1

y2

y3

y4

y5 query

9

13

MINSKEW example

26

Estimation of the Size of Joins

• The Cartesian product R x S contains nR .nS tuples; each
tuple occupies sR + sS bytes.
– If R S = , then R JOIN S is the same as R x S.

• If R S is a key for R, then a tuple of S will join with at
most one tuple from R
– therefore, the number of tuples in R JOIN S is no greater than the

number of tuples in S.

• If R S in S is a (not null) foreign key referencing R, then
the number of tuples in R JOIN S is exactly the same as
the number of tuples in S.
– The case for R S being a foreign key referencing S is symmetric.

• In the example query sailor JOIN reserves, sid in reserves
is a foreign key of sailor
– hence, the result has exactly nreserves tuples.

27

Estimation of the Size of Joins (Cont.)

• If R S = {A} is not a key for R or S.
If we assume that every tuple r in R produces nS/V(A,S)
tuples in R JOIN S, the number of tuples in R JOIN S
is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more
accurate one.

(,)

R Sn n

V A S

(,)

R Sn n

V A R

28

Estimation of the Size of Joins (Cont.)

• Example two tables with information about sailors and reserves. The
join attribute is the sailor id, i.e., sid in reserves is a foreign key on
sailor.

• Catalog information for join examples: nsailor = 10,000, nreserves =
5000, V(sid, reserves) = 2500, which implies that only 2500 sailors
have boat reservations.

• Compute the size estimates for reserves JOINsid sailor without using
information about foreign keys:

– V(sid, reserves) = 2500, and
V(sid, sailor) = 10000

– The two estimates are 5000 * 10000/2500 = 20,000 and 5000 *
10000/10000 = 5000

– We choose the lower estimate, which in this case, is the same as our earlier
computation using foreign keys.

29

Size Estimation for Other Operations

• Projection: estimated size of A(R) = V(A,R)

• Aggregation : estimated size of Group-by A = V(A,R)

• Set operations

– For unions/intersections of selections on the same relation:
rewrite and use size estimate for selections

• E.g. 1 (R) 2 (R) can be rewritten as 1 2 (R)

– For operations on different relations:

• estimated size of R S = size of R + size of S.

• estimated size of R S = minimum (size of R , size of S).

• estimated size of R – S = R.

• All the three estimates may be quite inaccurate, but provide
upper bounds on the sizes.

