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12. Join Algorithms
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Join Processing

• Several different algorithms to implement joins

• Choice based on cost estimate. We only take into 
account the I/O operations (reads and writes of pages)

• Terminology: 
– r, s relations to be joined

– nr, ns number of records in r, s

– br, bs number of pages in r, s

– M available memory in pages

• Examples assume equijoins on the following tables
– Number of records of customer:  10,000     depositor: 5000

– Number of pages of   customer:       400     depositor:   100

– The join attribute is the customer-name, which is the key of 
customer.
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Block Nested-Loop Join

• We wish to compute r JOIN s

• r is called the outer relation and s the inner relation
of the join.

• Block nested loop join requires no indices and can be 

used with any kind of join condition.

for each block Br of r do begin

for each block Bs of s do begin

for each tuple tr in Br do begin

for each tuple ts in Bs do begin

if (tr,ts) satisfies the join condition 

add (tr,ts) to the result.
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Block Nested-Loop Join (Cont.)

• Worst case estimate:  br  bs + br page accesses. 

– Each page in the inner relation s is read once for each page in the outer 
relation

• Best case: br + bs block accesses.

• Improvements to nested loop and block nested loop algorithms:
– In block nested-loop, use M — 2 disk pages as blocking unit for outer 

relations, where M = memory size in pages; use remaining two pages to 
buffer inner relation and output

– Cost =   br / (M-2)  bs + br

• Optimizations:
– If equi-join attribute forms a key or inner relation, stop inner loop on first 

match

– Scan inner loop forward and backward alternately, to make use of the 
pages remaining in buffer (with LRU replacement)

– Use main-memory hash table for the outer relation (to decrease CPU cost)
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Example of Block Nested-Loop Join Costs
bdepositor= 100, bcustomer=400

• Compute depositor JOIN  customer, with depositor as the outer 
relation.

• Worst case cost of block nested-loop 

– 100*400 + 100 =  40,100 page accesses 

– How many main memory pages you need to apply block nested-loop? 

• Best case cost of block nested-loop join 

– 100 + 400 =  500 page accesses 

– How many main memory pages you need to achieve this cost? 

• Cost of block nested loops join with 52 main memory pages 

– 2*400 + 100 =  900 page accesses 
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Indexed Nested-Loop Join

• Index lookups can replace file scans if
– join is an equi-join or natural join and

– an index is available on the inner relation’s join attribute

– Can construct an index just to compute a join.

• For each tuple tr in the outer relation r, use the index to 
look up tuples in s that satisfy the join condition with 
tuple tr.

• Cost of the join:  br + nr  c
– Where c is the cost of traversing index and fetching all matching s

tuples for one tuple or r

– c can be estimated as cost of a single selection on s using the join 
condition.

• If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.
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Example of Indexed Nested-Loop Join Costs

• Compute depositor JOIN  customer, with depositor as the outer 
relation.

• Let customer have a primary B+-tree index with 4 levels on the join 
attribute customer-name (which is the primary key of customer).

• Number of pages bdepositor= 100

• Number of records ndepositor= 5000

• Cost of indexed nested loops join

– 100 + 5000 * 5 = 25,100 disk accesses.

• CPU cost likely to be less than that for block nested loops join

• Indexed Nested-Loop is the best algorithm if there are selective 

conditions on the outer relation
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Merge-Join

• Sort both relations on 
their join attribute (if not 
already sorted on the join 
attributes).

• Merge the sorted 
relations to join them

Join step is similar to the 
merge stage of the sort-
merge algorithm.  

Main difference is handling of 
duplicate values in join 
attribute — every pair with 
same value on join 
attribute must be matched
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Merge-Join (Cont.)

• Can be used only for equi-joins and natural joins

• Each block needs to be read only once (assuming all 
tuples for any given value of the join attributes fit in 
memory)

• Thus number of page accesses for merge-join is  

br + bs +    the cost of sorting if relations are 

unsorted.
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Hash-Join

• Applicable for equi-joins and natural joins.

• A hash function h is used to partition tuples of both 
relations into n buckets (i.e., a hash file organization)

• h maps JoinAttrs values to {0, 1, ..., n-1}, where 
JoinAttrs denotes the common attributes of r and s
used in the natural join. 

r0, r1, . . ., rn-1 denote partitions of r tuples

• Each tuple tr  r is in partition ri where i = h(tr [JoinAttrs]).

s0,, s1. . ., sn-1 denote partitions of s tuples

• Each tuple ts s is in partition si, where i = h(ts [JoinAttrs]).
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Hash-Join (Cont.)
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Hash-Join (Cont.)

• r  tuples in bucket/partition ri need only to be 
compared with s tuples in si

• Need not be compared with s tuples in any other 

partition, since:

– an r tuple and an s tuple that satisfy the join condition 
will have the same value for the join attributes.

– If that value is hashed to some value i, the r tuple has 
to be in ri and the s tuple in si.
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Hash-Join Algorithm

1. Partition the relation r using hashing function h.  When 
partitioning a relation, one page of memory is reserved 
as the output buffer for each partition.

2. Partition s similarly.

3. For each i:
– Load bucket ri into memory and build an in-memory hash 

index on it using the join attribute.  This hash index uses a 
different hash function than the earlier one h. Relation r is 
called the build input.

– Read the tuples in bucket si from the disk page by page. For 
each tuple ts locate each matching tuple tr in ri using the in-
memory hash index. Relation s is called the probe input.



14

Hash-Join algorithm (Cont.)

• The number of buckets n is such that each bucket of the 
build input r should fit in the available main memory pages 
M. Assuming each bucket has the same size:  

M ≥ br/n

• Also M ≥ n+1 because for each bucket we should have one 
buffer page (plus one page for input buffer)

• In order to satisfy these conditions: M > sqrt(br)

– The probe relation partitions need not fit in memory

• Recursive partitioning required if number of partitions n 
is greater than number of pages M of memory.

– Rarely necessary:  e.g., recursive partitioning not needed for 
relations of 1GB or less with memory size of 2MB, with page size of 
4KB.
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Example of Hash-Join between customer and  depositor

• Assume that memory size is M=25 pages

• bdepositor= 100 and bcustomer = 400.

• depositor is the build input.  

– Partition depositor into 5 buckets, each of size 20 pages.  This 
partitioning can be done in one pass.

• customer is the probe input. 

– Partition customer into 5 buckets, each of size 80 pages. This is also 
done in one pass.

• Read each bucket in turn of the build input in memory, and probe 
against records of the corresponding probe bucket.

• Therefore total cost:  3(100 + 400) = 1500 page transfers 

– ignores cost of writing partially filled pages
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Hybrid hash-join

• If the memory is large enough we can keep one or more buckets of one 
file in memory at all times. Lets say that we have 10 buckets and that 
each bucket is 90 pages. If we have 100 main memory pages, when we 
partition the build input r we keep the entire first bucket in memory and 
allocate 9 pages for the remaining buckets and 1 for reading the file 
page by page.  

• When we read the probe input s , we use again 10 buckets and the same 
hash function. If a record falls in the first bucket, we produce 
immediately results since we have the first bucket of r (90 pages) in 
memory. 

• In this way we avoid writing and reading back the first buckets of both r
and s. 

• If we have more memory, we can keep more buckets. 

• It is better to partition the smallest file (i.e., the build input) first since it 
has smaller buckets and we may be able to keep more in memory.


