Comp 5311 Database Management Systems

10. B+-trees and Dynamic Hashing

B^{+}-Tree Index Files

- Disadvantage of indexed-sequential files: performance degrades as file grows, since many overflow blocks get created. Periodic reorganization of entire file is required.
- Advantage of B^{+}-tree index files: automatically reorganizes itself with small, local, changes, in the face of insertions and deletions. Reorganization of entire file is not required to maintain performance.
- Disadvantage of B^{+}-trees: extra insertion and deletion overhead, space overhead.
- Advantages of B^{+}-trees outweigh disadvantages, and they are used extensively in all commercial products.

B^{+}-Tree Index Files (Cont.)

- All paths from root to leaf are of the same length (i.e., balanced tree)
- Each node has between $\lceil n / 2\rceil$ and n pointers. Each leaf node stores between $\lceil(n-1) / 2\rceil$ and $n-1$ values.
- n is called fanout (it corresponds to the maximum number of pointers/children). The value $\lceil(n-1) / 2\rceil$ is called order (it corresponds to the minimum number of values).
- Special cases:
- If the root is not a leaf, it has at least 2 children.
- If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 and ($n-1$) values.

Leaf Nodes in B^{+}-Trees

- For $i=1,2, \ldots, n-1$, pointer P_{i} either points to a file record with search-key value $K_{i j}$ or to a bucket of pointers to file records, each record having search-key value K_{i} If $L_{j} L_{j}$ are leaf nodes and $i<j$, L_{i} 's search-key values are less than L_{j}^{\prime} 's search-key values
- P_{n} points to next leaf node in search-key order (right sibling node)

Non-Leaf Nodes in B+-Trees

- Non leaf nodes form a multi-level sparse index on the leaf nodes. For a non-leaf node with m pointers:
- All the search-keys in the subtree to which P_{1} points are less than K_{1}
- For $2 \leq i \leq n-1$, all the search-keys in the subtree to which P_{i} points have values greater than or equal to K_{i-1} and less than K_{i} (example : P_{2} points to a node where the value v of each key is $K_{1}<=v<k_{2}$)

Example of B^{+}-tree

$$
\mathrm{B}^{+} \text {-tree for account file }(n=5)
$$

- Leaf nodes must have between 2 and 4 values $(\lceil(n-1) / 2\rceil$ and $n-1$, with $n=5)$.
- Non-leaf nodes other than root must have between 3 and 5 children ($\lceil(n / 2\rceil$ and n with $n=5$).
- Root must have at least 2 children.

Observations about B^{+}-trees

- Since the inter-node connections are done by pointers, the close blocks need not be "physically" close (i.e., no need for sequential storage).
- The non-leaf levels of the B^{+}-tree form a hierarchy of sparse indices.
- The B^{+}-tree contains a relatively small number of levels (logarithmic in the size of the main file), thus search can be conducted efficiently.
- Insertions and deletions to the main file can be handled efficiently, as the index can be restructured in logarithmic time (as we shall see).

Example of clustering (primary) B+-tree on candidate key

You may also have sparse B+-tree, e.g., entries in leaf nodes correspond to pages

Example of non-clustering (secondary) B+-tree on candidate key

Example of clustering $\mathrm{B}+$-tree on non-candidate key

Example of non-clustering B+-tree on non-candidate key

Queries on B^{+}-Trees

- Find all records with a search-key value of k.
- Start with the root node
- If there is an entry with search-key value $K_{j}=k$, follow pointer P_{j+1}
- Otherwise, if $k<K_{m-1}$ (there are m pointers in the node, i.e., k is not the larger than all values in the node) follow pointer $P_{j ;}$ where K_{j} is the smallest search-key value $>k$.
- Otherwise, if $k \geq K_{m-1}$, follow P_{m} to the child node.
- If the node reached by following the pointer above is not a leaf node, repeat the above procedure on the node, and follow the corresponding pointer.
- Eventually reach a leaf node. If for some i, key $K_{i}=k$ follow pointer P_{i} to the desired record or bucket. Else no record with search-key value k exists.

Queries on B^{+-}Trees (Cont.)

- In processing a query, a path is traversed in the tree from the root to some leaf node.
- If there are K search-key values in the file, the path is no longer than $\left\lceil\log _{\lceil n / 2}(K)\right\rceil$.
- A node is generally the same size as a disk page, typically 4 kilobytes, and n is typically around 100 (40 bytes per index entry).
- With 1 million search key values and $n=100$, at most
$\log _{50}(1,000,000)=4$ nodes are accessed in a lookup.

Inserting a Data Entry into a B+ Tree

- Find correct leaf L.
- Put data entry onto L.
- If L has enough space, done!
- Else, must split L (into L and a new node L2)
- Redistribute entries evenly, copy up middle key.
- Insert index entry pointing to $L 2$ into parent of L.
- This can happen recursively
- To split index node, redistribute entries evenly, but push up middle key. (Contrast with leaf splits.)
- Splits "grow" tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

Deleting a Data Entry from a B+ Tree

- Start at root, find leaf L where entry belongs.
- Remove the entry.
- If L is at least half-full, done!
- If L less than half-full,
- Try to re-distribute, borrowing from sibling (adjacent node to the right).
- If re-distribution fails, merge L and sibling.
- If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
- Merge could propagate to root, decreasing height.

B+-tree Updates

Consider the B+-tree below with order 2 (each node except for the root must contain at least two search key values - and 3 pointers).

Remove 1
Remove 41

B+-tree Updates (cont)

After removing 41

Remove 3
Insert 41

B+-tree Updates (cont)

Insert 1

B^{+}-Tree File Organization

- Index file degradation problem is solved by using B^{+}-Tree indices. Data file degradation problem is solved by using B^{+}-Tree File Organization.
- The leaf nodes in a B^{+}-tree file organization store records, instead of pointers.
- Since records are larger than pointers, the maximum number of records that can be stored in a leaf node is less than the number of pointers in a nonleaf node.
- Leaf nodes are still required to be half full.
- Insertion and deletion are handled in the same way as insertion and deletion of entries in a B^{+}-tree index.

Bulk Loading of a B+ Tree

- If we have a large collection of records, and we want to create a B+ tree on some field, doing so by repeatedly inserting records is very slow.
- Bulk Loading can be done much more efficiently.
- Initialization: Sort all data entries (using external sorting will be discussed in the next class), insert pointer to first (leaf) page in a new (root) page.

Bulk Loading (Cont.)

- Index entries for leaf pages always entered into right-most index page just above leaf level. When this fills up, it splits. (Split may go up right-most path to the root.)
- Much faster than repeated inserts!

Hash Indices

- Hashing can be used not only for file organization, but also for index-structure creation.
- A hash index organizes the search keys, with their associated record pointers, into a hash file structure.
- Strictly speaking, hash indices are always secondary indices
- if the file itself is organized using hashing, a separate primary hash index on it using the same search-key is unnecessary.
- The version that we discuss is for relatively static datasets
- We want to build a hash index for an existing dataset - we expect the number of records not to change too much.

Example of Hash Index

Hash Functions

- In the worst case, the hash function maps all search-key values to the same bucket; this makes access time proportional to the number of search-key values in the file.
- Ideal hash function is random, so each bucket will have the same number of records assigned to it irrespective of the actual distribution of search-key values in the file.
- Typical hash functions perform computation on the internal binary representation of the search-key.
- For example, for a string search-key, the binary representations of all the characters in the string could be added and the sum modulo the number of buckets could be returned.

Deficiencies of Static Hashing

- In static hashing, function h maps search-key values to a fixed set of B of bucket addresses.
- Databases grow with time. If initial number of buckets is too small, performance will degrade due to too much overflows.
- If file size at some point in the future is anticipated and number of buckets allocated accordingly, significant amount of space will be wasted initially.
- If database shrinks, again space will be wasted.
- One option is periodic re-organization of the file with a new hash function, but it is very expensive.
- These problems can be avoided by using techniques that allow the number of buckets to be modified dynamically.

Extendible Hashing

- Situation: Bucket (primary page) becomes full. Why not re-organize file by doubling \# of buckets?
- Reading and writing all pages is expensive!
- Idea: Use directory of pointers to buckets, double \# of buckets by doubling the directory, splitting just the bucket that overflowed!
- Directory much smaller than file, so doubling it is much cheaper. Only one page of data entries is split. No overflow page!
- Trick lies in how hash function is adjusted!
- Directory is array of size 4.
- To find bucket for r, take last global depth bits of $\mathbf{h}(r)$; we denote r by $\mathbf{h}(r)$.
- If $\mathbf{h}(r)=5=$ binary 101 , it is in bucket pointed to by 01 .

DATA PAGES
v Insert: If bucket is full, split it (allocate new page, re-distribute).
v If necessary, double the directory. (As we will see, splitting a bucket does not always require doubling; we can tell by comparing global depth with local depth for the split bucket.)

Insert $\mathbf{h}(r)=20(10100)$

Points to Note

- $20=$ binary 10100 . Last 2 bits (00) tell us r belongs in A or A2. Last $\mathbf{3}$ bits needed to tell which.
- Global depth of directory. Max \# of bits needed to tell which bucket an entry belongs to.
- Local depth of a bucket. \# of bits used to determine if an entry belongs to this bucket.
- When does bucket split cause directory doubling?
- Before insert, local depth of bucket = global depth. Insert causes local depth to become > global depth; directory is doubled by copying it over and ` fixing' pointer to split image page. (Use of least significant bits enables efficient doubling via copying of directory!)

Insert 18 (010010), 32 (100000)

- Assume the following hash index where the hash function is determined by the least significant bits.

After the insertion of search keys: 18 (010010), 32 (100000).

- Insert: 3 (011), 4 (100)

After the insertion of search keys: 4 (100), 3 (011).

- Insert: 19 (10011), 17 (10001)

After the insertion of: 19 (10011), 17 (10001)

- Insert 24 (11000)

After the insertion of search key: 24 (11000)

Comments on Extendible Hashing

- If directory fits in memory, equality search answered with one disk access; else two.
- 100MB file, 100 bytes/rec, 4 K pages contains 1,000,000 records (as data entries) and 25,000 directory elements; chances are high that directory will fit in memory.
- Directory grows in spurts, and, if the distribution of hash values is skewed, directory can grow large.
- Multiple entries with same hash value cause problems!
- Delete: If removal of data entry makes bucket empty, can be merged with `split image'. If each directory element points to same bucket as its split image, can halve directory.

Linear Hashing

- This is another dynamic hashing scheme, an alternative to Extendible Hashing.
- LH handles the problem of long overflow chains without using a directory, and handles duplicates.
- Idea: Use a family of hash functions $\mathbf{h}_{0}, \mathbf{h}_{1}, \mathbf{h}_{2}, \ldots$
- $\mathbf{h}_{\mathbf{i}}($ key $)=\mathbf{h}($ key $) \bmod \left(2^{i} \mathrm{~N}\right) ; \mathrm{N}=$ initial \# buckets
- \mathbf{h} is some hash function (range is not 0 to $\mathrm{N}-1$)
- If $N=2^{d 0}$, for some dO, \mathbf{h}_{i} consists of applying \mathbf{h} and looking at the last $d i$ bits, where $d i=d 0+i$.
- \mathbf{h}_{i+1} doubles the range of \mathbf{h}_{i} (similar to directory doubling)

Linear Hashing (Contd.)

- Directory avoided in LH by using overflow pages, and choosing bucket to split round-robin.
- Splitting proceeds in `rounds'. Round ends when all N_{R} initial (for round R) buckets are split. Buckets 0 to Next-1 have been split; Next to N_{R} yet to be split.
- Current round number is Level.
- Search: To find bucket for data entry r, find $\mathbf{h}_{\text {Leve }}(r)$:
- If $\mathbf{h}_{\text {Leve }}(r)$ in range ${ }^{\prime} N e x t$ to $N_{R}{ }^{\prime}$, r belongs here.
- Else, r could belong to bucket $\mathbf{h}_{\text {Leve }}(r)$ or bucket $\mathbf{h}_{\text {Leve }}(r)+N_{R i}$ must apply $\mathbf{h}_{\text {Level }+1}(r)$ to find out.

Overview of LH File

- In the middle of a round.

Buckets split in this round: If h Level (search key value) is in this range, must use h Level+1 (search key value) to decide if entry is in 'split image' bucket.
‘split image' buckets: created (through splitting of other buckets) in this round

Example of Linear Hashing

- On split, $\mathbf{h}_{\text {Level }+1}$ is used to redistribute entries.

Level=0, $\mathrm{N}=4$

- insert 43 (101011)
- insert 37(..101),
- insert 29 (..101)

Level=0

After inserting 29: 11101

level 0

LETS INSERT 22: 10110

After inserting 22: 10110

level 0

hash fun. 1	hash fun. 0	Primary Pages				Overflow Pages	
000	00	32					
001	01	9	25				
010	10	18	10				
011	11	31	35	7	11	43	
100	00	44	36				
101	01	5	37	29			
110	10	14	30	22			

LETS INSERT 66: 1000010 AND 34: 100010

After inserting 66: 1000010 AND 34: 100010

After inserting 50: 110010

