10. B+-trees and Dynamic Hashing

e Disadvantage of indexed-sequential files: performance
degrades as file grows, since many overflow blocks get
created. Periodic reorganization of entire file is required.

e Advantage of B*-tree index files: automatically
reorganizes itself with small, local, changes, in the face of
insertions and deletions. Reorganization of entire file is
not required to maintain performance.

e Disadvantage of B*-trees: extra insertion and deletion
overhead, space overhead.

e Advantages of B*-trees outweigh disadvantages, and they
are used extensively in all commercial products.

2

o All paths from root to leaf are of the same length (i.e.,
balanced tree)

e Each node has between [772 | and n pointers. Each leaf
node stores between [(7-1)/2|and n-1 values.

e nis called fanout (it corresponds to the maximum
number of pointers/children). The value | (n-1)/21is
called order (it corresponds to the minimum number of
values).

e Special cases:
— If the root is not a leaf, it has at least 2 children.

— If the root is a leaf (that is, there are no other nodes in the tree),
it can have between 0 and (/1) values.

3

e For/=1,2,... n-1, pointer P either points to a file record with

search-key value K or to a bucket of pointers to file records, each
record having search-key value K. If L, L;are leaf nodes and / < j,
L;s search-key values are less than L/s search-key values

P. points to next leaf node in search-key order (right sibling node)

Brighton Downtown

leaf node

Brighton

Downtown

Downtown

account file

* Non leaf nodes form a multi-level sparse index on the
leaf nodes. For a non-leaf node with m pointers:

— All the search-keys in the subtree to which £, points are less
than K}

— For 2 < /< n—1, all the search-keys in the subtree to which
P; points have values greater than or equal to K., and less

than K (example : P, points to a node where the value v of
each key is K, <=v< k)

P, | K P, | ... | P,_1| K,_1 | P,

B*-tree for account file (n = 5)

e |eaf nodes must have between 2 and 4 values
((7-1)/21and n-1, with n = 5).

e Non-leaf nodes other than root must have between 3
and 5 children ([(721 and n with n =5).

e Root must have at least 2 children.

6

e Since the inter-node connections are done by
pointers, the close blocks need not be “physically”
close (i.e., no need for sequential storage).

e The non-leaf levels of the B*-tree form a hierarchy of
sparse indices.

e The B*-tree contains a relatively small number of
levels (logarithmic in the size of the main file), thus
search can be conducted efficiently.

e Insertions and deletions to the main file can be
handled efficiently, as the index can be restructured
in logarithmic time (as we shall see).

41
111121 |(30 45|51
113 +11(13(15| 21|23 1130 |33 1141 |43 45 (47 1151153

D

FILE WITH RECORDS

This example corresponds to dense B+-tree index:

record with record with _
Every search key value appears in a leaf node

search key 1 search key 3

You may also have sparse B+-tree, e.g., entries in leaf nodes correspond to pages

41
11)[21]{30 45|51
/ N\
1|3 111 (13(15| H21|23 113033 141 (43 45 | 47 15153
FILE WITH RECORDS
record with record with record with Should be always dense

search key 11 search key 3 search key 1

41
11 (21|30 451151
113 111(13|15| H21(23 113033 1141 |43 45 | 47 {5153
- | FILE WITH RECORDS
records with record with
search key 1 search key 3

10

41
11]|21]|30 45 || 51
113 111(13]|15| H21(23 13033 141 (43 145 |47 {51 (53
pointers to pointers to
-\ records with records with
— ch key 1 search key 3

FILE WITH RECORDS

11

e Find all records with a search-key value of «.
— Start with the root node

 If there is an entry with search-key value K; = &, follow pointer P;, ;

e Otherwise, if k< K, (there are m pointers in the node, i.e., kis
not the larger than all values in the node) follow pointer P, where
K;is the smallest search-key value > «.

e Otherwise, if k> K,_,, follow P, to the child node.
— If the node reached by following the pointer above is not a leaf

node, repeat the above procedure on the node, and follow the
corresponding pointer.

— Eventually reach a leaf node. If for some j key K; = k follow

pointer P; to the desired record or bucket. Else no record with
search-key value k exists.

12

e In processing a query, a path is traversed in the tree
from the root to some leaf node.

o If there are K'search-key values in the file, the path is
no longer than [logy,»1(K) |-

e A node is generally the same size as a disk page,

typically 4 kilobytes, and nis typically around 100 (40
bytes per index entry).

e With 1 million search key values and n = 100, at
most

10g:,(1,000,000) = 4 nodes are accessed in a lookup.

13

e Find correct leaf L.

e Put data entry onto L.
- If L has enough space, donél
- Else, must split L (into L and a new node L2)
o Redistribute entries evenly, copy up middle key.
e Insert index entry pointing to L2 into parent of L.
e This can happen recursively

- To split index node, redistribute entries evenly, but push up
middle key. (Contrast with leaf splits.)

o Splits “grow” tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

14

Start at root, find leaf L where entry belongs.

Remove the entry.
- If L is at least half-full, done!
— If L less than half-full,

e Try to re-distribute, borrowing from sibling (adjacent node to
the right).

o If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

Merge could propagate to root, decreasing height.

15

Consider the B+-tree below with order 2 (each node except for the root
must contain at least two search key values — and 3 pointers).

41

1111211|30 451]51
113 11113|15 21123 30133 41 (43 45 47 51153

Remove 1

Remove 41
41
131211130 45|51
3 |11 13|15 21|23 30|33 41143 45|47 51|53

16

After removing 41

30

13 || 21 43|51
3 |11 1315 2123 30(33 43 (45|47 5153
Remove 3 Insert 41
2111301{43}]| 51
11 (13|15 21123 30(33 4314547 51(53

17

After inserting 41 211130l 431l 51
3 |111113[15]121(23 3013341 4345147 51153
Insert 1
30
13|21 43 (51
1|3 11 13|15 2123 30(33[41 43|45 |47 51|53

18

Index file degradation problem is solved by using B*-Tree
indices. Data file degradation problem is solved by using

B+-Tree File Organization.

The leaf nodes in a B*-tree file organization store records,

instead of pointers.

Since records are larger than pointers, the maximum

number of records that can be storec
than the number of pointers in a non

in a leaf node is less
eaf node.

Leaf nodes are still required to be ha
Insertion and deletion are handled in

f full.
the same way as

insertion and deletion of entries in a B*-tree index.

19

e If we have a large collection of records, and we want to
create a B+ tree on some field, doing so by repeatedly
inserting records is very slow.

e Bulk Loading can be done much more efficiently.

o [Initialization. Sort all data entries (using external sorting —
will be discussed in the next class), insert pointer to first
(leaf) page in a new (root) page.

Rom

/

Sorted pages of data entries; not yet in B+ tree

-

3*

4*

6*

9*

10*

11*

12%

13% [20%22* [23*|31*% |35*|36*| |38*41*| (44*

20

e Index entries for leaf /
pages always entered y

Data entry pages

into right-most index l 1, 123 %], not yet in B+ tree
page just above leaf j / J / L
level. When this fills AV TV T T
up, it splits. (Split 3*| 4| | 6%| 9*| |101114 |121131 | 201221 |234311 |35436%||381411 |44
may go up right-most
Root 20
path to the root.) \
e Much faster than .
repeated inserts! [19], 1 35, Data entry pages
' / \ l \ not yet in B+ tree
6 i 12 23 . 38

ARV AR

3*| 4% | | 6% 9*| [10%11* |12913% |20%422% (23%31Y |35%36*| |38141%|44*
21

Hashing can be used not only for file organization, but
also for index-structure creation.

A hash index organizes the search keys, with their
associated record pointers, into a hash file structure.

Strictly speaking, hash indices are always secondary
indices
— if the file itself is organized using hashing, a separate primary
hash index on it using the same search-key is unnecessary.

The version that we discuss is for relatively static datasets

— We want to build a hash index for an existing dataset - we expect
the number of records not to change too much.

22

bucket 0

bucket 1 -
A215 Brighton

A-305 Downtown
Downtown

bucket 2
A-101
A-110

Mianus
Perryridge
Perryridge
bucket 3 Perryridge
A-217 _ Redwood
A-102 Round Hill

bucket 4
A-218

bucket 5

bucket 6
A-222

23

o In the worst case, the hash function maps all search-key
values to the same bucket; this makes access time
proportional to the number of search-key values in the file.

e Ideal hash function is random, so each bucket will have
the same number of records assigned to it irrespective of
the actual distribution of search-key values in the file.

e Typical hash functions perform computation on the internal
binary representation of the search-key.

— For example, for a string search-key, the binary representations of
all the characters in the string could be added and the sum modulo
the number of buckets could be returned.

24

e In static hashing, function /2 maps search-key values to a
fixed set of B of bucket addresses.

Databases grow with time. If initial number of buckets is too small,
performance will degrade due to too much overflows.

If file size at some point in the future is anticipated and number of
buckets allocated accordingly, significant amount of space will be
wasted initially.

If database shrinks, again space will be wasted.

One option is periodic re-organization of the file with a new hash
function, but it is very expensive.

e These problems can be avoided by using techniques that
allow the number of buckets to be modified dynamically.

25

e Situation: Bucket (primary page) becomes full. Why not
re-organize file by doubling # of buckets?

Reading and writing all pages is expensive!
Idea. Use directory of pointers to buckets, double # of buckets by
doubling the directory, splitting just the bucket that overflowed!

Directory much smaller than file, so doubling it is much cheaper.
Only one page of data entries is split. No overflow page!

Trick lies in how hash function is adjusted!

26

e Directory is array of size 4. %
e To find bucket for r, take last oL
global depth bits of h(r); we 10
denote rby h(r). 1
- If h(r) = 5 = binary 101, itis
in bucket pointed to by 01.

GLOBAL DEPTH

12* 32* 16*

/'

/

\5555*555

DIRECTORY

15* 7* 19*

DATA PAGES

Bucket A

Bucket B

Bucket C

Bucket D

v Insert: If bucket is full, split it (allocate new page, re-distribute).

v If necessary, double the directory. (As we will see, splitting a

bucket does not always require doubling; we can tell by

comparing global depth with local depth for the split bucket.)

27

LOCAL DEPTH/L"

GLOBAL DEPTH

Bucket A

Bucket B
00 / 1* 5% 21* 13*
01 |
10 - ' Bucket C
11 \\ 10*
*' “| BucketD
DIRECTORY s
15* 7* 19*

28

LOCAL DEPTH-Z—"

GLOBAL DEPTH

r

1* 5* 21*137 Bucket B

Bucket C

Bucket D

000 | 7

001 || —7

010 \7<

011 | |

100 | \/]

101 /&

mo || 7~

11 | —
DIRECTORY

Bucket A2
(‘splitimage’
of Bucket A)

e 20 = binary 10100. Last 2 bits (00) tell us rbelongs in A or
A2. Last 3 bits needed to tell which.

— Global depth of directory: Max # of bits needed to tell which bucket
an entry belongs to.

— Local depth of a bucket. # of bits used to determine if an entry
belongs to this bucket.

e When does bucket split cause directory doubling?

- Before insert, /ocal depth of bucket = global depth. Insert causes
local depth to become > global depth;, directory is doubled by copying
it overand " fixing’ pointer to split image page. (Use of least
significant bits enables efficient doubling via copying of directory!)

29

o Assume the following hash index where the hash
function is determined by the least significant bits.

global depth

00
01
10
11

2

local depth

16

64

13

10

7N

30

Insert: 3 (011), 4 (100)

local depth

global depth 16 | 64| 32
- /
00 2
01 11519 |13
10
11 \ >
10 | 18

31

Insert: 19 (10011), 17 (10001)

global depth

3

local depth

16

64

32

000

.

001

13

010

011

100

101

10

18

110

111

32

e Insert 24 (11000)

local depth

global depth 1664132
3 /
000 3
001 119 |17
010
011
100 6 |10] 18
101
110
111 2
7 13 19
13
33

local depth | 4
global depth 1632 | |
4—| /
0000 3
0001 HEREI
0010
0011 >
0100 6 [10]18] |
0101
0110
0111 2
1000 7 |3 |19 |
1001
1010 3
1011
4
1100 L | |
1101 3
1110 5 13| | |
1111
4
s [1]

e If directory fits in memory, equality search answered with
one disk access; else two.

- 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as
data entries) and 25,000 directory elements; chances are high that
directory will fit in memory.

— Directory grows in spurts, and, if the distribution of hash values is
skewed, directory can grow large.

— Multiple entries with same hash value cause problems!

e Delete: If removal of data entry makes bucket empty, can
be merged with " split image’. If each directory element
points to same bucket as its split image, can halve directory.

35

e This is another dynamic hashing scheme, an alternative to
Extendible Hashing.

e |H handles the problem of long overflow chains without using
a directory, and handles duplicates.

e Jdea. Use a family of hash functions h,, hy, h,, ...
- hi(key) = h(key) mod(2N); N = initial # buckets
- his some hash function (range is not0 to N-1)

- If N = 29, for some d0, h. consists of applying h and looking at the
last 4l bits, where di = d0 + i

- h,, doubles the range of h, (similar to directory doubling)

36

e Directory avoided in LH by using overflow pages, and
choosing bucket to split round-robin.

~ Splitting proceeds in "rounds’. Round ends when all N initial (for
round R) buckets are split. Buckets 0 to NVext-1 have been split;
Next to N, yet to be split.

— Current round number is Level.
- Search: To find bucket for data entry 7, find h,_ (/)
e Ifh,_ . (7) inrange " Nextto N,’, rbelongs here.

e Else, r could belong to bucket h,_ (r) or bucket h,_ () + N,
must apply h,_ .. (r) to find out.

37

e In the middle of a round.

Bucket to be split
Next

Buckets that existed at the

beginning of this round: +—
this is the range of

hLeveI

38

Buckets split in this round:

If h| eyve| (Search key value)
Is in this range, must use

h | evel+1 (search key value)

to decide if entry is in
‘split image' bucket.

‘split image' buckets:
created (through splitting
of other buckets) in this round

e On split, h .1 is used to re-
distribute entries.

000

001

010

011
(This info

is for illustration

only!)

00

01

10

11

Level=0, N=4

PRIMARY

Next=0 PAGES

32144* 36%

9*| 254 5*

!

~—

14%18%10%307

317357 7*| 11%4

Data entry r
with h(r)=5

Y. Primary

bucket page

(The actual contents
of the linear hashed

file)

000

001

010

011

100
39

00

01

10

11

00

insert 43 (101011)
insert 37(..101),
insert 29 (..101)

Level=0

PRIMARY
PAGES

32%

t=1

9*| 25%

5*

374

1474 18%

10*

30#:

3171357

7*

114

444 36*

v

OVERFLOW
PAGES

insert
h(r)=43

434

level O

hash fun. 1 | hash fun. 0 Primary Pages Overflow Pages
000 00 32
001 01 9 |25
010 10 "N 14118 10| 30
011 11 311357 |11 43
100 00 44 | 36
101 01 5 | 37|29

LETS INSERT 22: 10110

40

hash fun. 1
000

001

010

011

100

101

110

level 0

hash fun. O
00

01

10

11

00

01

10

Primary Pages

32

9

25

18

10

Overflow Pages

next\3

31

35

11

43

44

36

5

37

29

14

30

22

LETS INSERT 66: 1000010 AND 34: 100010

41

hash fun. 1 | hash fun. O

000

001

010

011

100

101

110

00

01

10

11

00

01

10

Primary Pages

32

9

25

18

10

66

34

ner

Overflow Pages

31

35

11

43

44

36

37

29

14

30

22

LETS INSERT 50: 110010

42

hash fun. 1
000

001

010

011

100

101

110

111

ne

0

Primary Pages

32

9

25

Overflow Pages

18

10

66

34

50

35

11

43

44

36

37

29

14

30

22

31

43

