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Comp 5311 Database Management Systems

10. B+-trees and Dynamic Hashing
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B+-Tree Index Files

• Disadvantage of indexed-sequential files: performance 
degrades as file grows, since many overflow blocks get 
created.  Periodic reorganization of entire file is required.

• Advantage of B+-tree index files:  automatically 
reorganizes itself with small, local, changes, in the face of 
insertions and deletions.  Reorganization of entire file is 
not required to maintain performance.

• Disadvantage of B+-trees: extra insertion and deletion 
overhead, space overhead.

• Advantages of B+-trees outweigh disadvantages, and they 
are used extensively in all commercial products.
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B+-Tree Index Files (Cont.)

• All paths from root to leaf are of the same length (i.e., 
balanced tree)

• Each node has between n/2 and n pointers. Each leaf 
node stores between (n–1)/2 and n–1 values.

• n is called fanout (it corresponds to the maximum 
number of pointers/children). The value (n-1)/2 is 
called order (it corresponds to the minimum number of 
values).

• Special cases: 

– If the root is not a leaf, it has at least 2 children.

– If the root is a leaf (that is, there are no other nodes in the tree), 
it can have between 0 and (n–1) values.
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Leaf Nodes in B+-Trees

• For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with 
search-key value Ki, or to a bucket of pointers to file records, each 
record having search-key value Ki. If Li, Lj are leaf nodes and i < j, 
Li’s search-key values are less than Lj’s search-key values

• Pn points to next leaf node in search-key order (right sibling node)
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Non-Leaf Nodes in B+-Trees

• Non leaf nodes form a multi-level sparse index on the 
leaf nodes.  For a non-leaf node with m pointers:

– All the search-keys in the subtree to which P1 points are less 
than K1

– For 2  i  n – 1, all the search-keys in the subtree to which 
Pi points have values greater than or equal to Ki–1 and less 
than Ki (example : P2 points to a node where the value v of 
each key is K1 <=v< k2)
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Example of B+-tree

• Leaf nodes must have between 2 and 4 values 
((n–1)/2 and n –1, with n = 5).

• Non-leaf nodes other than root must have between 3 
and 5 children ((n/2 and n with n =5).

• Root must have at least 2 children.

B+-tree for account file (n = 5)
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Observations about B+-trees

• Since the inter-node connections are done by 
pointers, the close blocks need not be “physically” 
close (i.e., no need for sequential storage).

• The non-leaf levels of the B+-tree form a hierarchy of 
sparse indices.

• The B+-tree contains a relatively small number of 
levels (logarithmic in the size of the main file), thus 
search can be conducted efficiently.

• Insertions and deletions to the main file can be 
handled efficiently, as the index can be restructured 
in logarithmic time (as we shall see).
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Example of clustering (primary) B+-tree on candidate key 

41

11 21 30 45 51

3 11 13 15 21 23 51 5330 33 41 43 45 471

record with

search key 1

record with

search key 3

FILE WITH RECORDS

This example corresponds to dense B+-tree index: 

Every search key value appears in a leaf node 

You may also have sparse B+-tree, e.g., entries in leaf nodes correspond to pages 
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Example of non-clustering (secondary) B+-tree on 
candidate key

41

11 21 30 45 51

3 11 13 15 21 23 51 5330 33 41 43 45 471

record with

search key 1

record with

search key 3

FILE WITH RECORDS

record with

search key 11
Should be always dense
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Example of clustering B+-tree on non-candidate key

41

11 21 30 45 51

3 11 13 15 21 23 51 5330 33 41 43 45 471

records with

search key 1
record with

search key 3

FILE WITH RECORDS
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Example of non-clustering B+-tree on non-candidate key

41

11 21 30 45 51

3 11 13 15 21 23 51 5330 33 41 43 45 471

FILE WITH RECORDS

records with
search key 1

pointers to
records with
search key 3

pointers to
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Queries on B+-Trees

• Find all records with a search-key value of k.
– Start with the root node

• If there is an entry with search-key value Kj = k, follow pointer Pj+1

• Otherwise, if k < Km–1 (there are m pointers in the node, i.e., k is 
not the larger than all values in the node) follow pointer Pj, where 
Kj is the smallest search-key value > k.

• Otherwise, if k  Km–1, follow Pm to the child node.

– If the node reached by following the pointer above is not a leaf 
node, repeat the above procedure on the node, and follow the 
corresponding pointer.

– Eventually reach a leaf node.  If for some i, key Ki = k follow 
pointer Pi to the desired record or bucket.  Else no record with 
search-key value k exists.
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Queries on B+-Trees (Cont.)

• In processing a query, a path is traversed in the tree 
from the root to some leaf node.

• If there are K search-key values in the file, the path is 
no longer than  logn/2(K).

• A node is generally the same size as a disk page, 
typically 4 kilobytes, and n is typically around 100 (40 
bytes per index entry).

• With 1 million search key values and n = 100, at 
most 
log50(1,000,000) = 4 nodes are accessed in a lookup.
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Inserting a Data Entry into a B+ Tree

• Find correct leaf L.

• Put data entry onto L.

– If L has enough space, done!

– Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L.

• This can happen recursively

– To split index node, redistribute entries evenly, but push up
middle key.  (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.  

– Tree growth: gets wider or one level taller at top.
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Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.

• Remove the entry.

– If L is at least half-full, done! 

– If L less than half-full,

• Try to re-distribute, borrowing from sibling (adjacent node to 
the right).

• If re-distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L or 
sibling) from parent of L.

• Merge could propagate to root, decreasing height.
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B+-tree Updates
Consider the B+-tree below with order 2 (each node except for the root 
must contain at least two search key values – and 3 pointers). 

41

11 21 30 45 51

1 3 11 13 15 21 23 51 5330 33 41 43 45 47

Remove 1 

41

13 21 30 45 51

3 11 13 15 21 23 51 5330 33 41 43 45 47

Remove 41 
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B+-tree Updates (cont)

After removing 41 
30

13 21 43 51

3 11 13 15 21 23 51 5330 33 43 45 47

Remove 3 

21 30 43 51

11 13 15 21 23 51 5330 33 43 45 47

Insert 41 
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B+-tree Updates (cont)

After inserting 41 

Insert 1 

21 30 43 51

11 13 15 21 23 51 5330 33 43 45 473 41

30

13 21 43 51

3 11 13 15 21 23 51 5330 33 43 45 471 41
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B+-Tree File Organization

• Index file degradation problem is solved by using B+-Tree 
indices.  Data file degradation problem is solved by using 
B+-Tree File Organization.

• The leaf nodes in a B+-tree file organization store records, 
instead of pointers.

• Since records are larger than pointers, the maximum 
number of records that can be stored in a leaf node is less 
than the number of pointers in a nonleaf node.

• Leaf nodes are still required to be half full.

• Insertion and deletion are handled in the same way as 
insertion and deletion of entries in a B+-tree index.



20

Bulk Loading of a B+ Tree

• If we have a large collection of records, and we want to 
create a B+ tree on some field, doing so by repeatedly 
inserting records is very slow.

• Bulk Loading can be done much more efficiently.

• Initialization:  Sort all data entries (using external sorting –
will be discussed in the next class), insert pointer to first 
(leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root
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Bulk Loading (Cont.)

• Index entries for leaf 
pages always entered 
into right-most index 
page just above leaf 
level.  When this fills 
up, it splits.  (Split 
may go up right-most 
path to the root.)

• Much faster than 
repeated inserts!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages 

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages 
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Hash Indices

• Hashing can be used not only for file organization, but 
also for index-structure creation.  

• A hash index organizes the search keys, with their 
associated record pointers, into a hash file structure.

• Strictly speaking, hash indices are always secondary 
indices 

– if the file itself is organized using hashing, a separate primary 
hash index on it using the same search-key is unnecessary.  

• The version that we discuss is for relatively static datasets

– We want to build a hash index for an existing dataset - we expect 
the number of records not to change too much. 
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Example of Hash Index
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Hash Functions

• In the worst case, the hash function maps all search-key 
values to the same bucket; this makes access time 
proportional to the number of search-key values in the file.

• Ideal hash function is random, so each bucket will have 
the same number of records assigned to it irrespective of 
the actual distribution of search-key values in the file.

• Typical hash functions perform computation on the internal 
binary representation of the search-key. 

– For example, for a string search-key, the binary representations of 
all the characters in the string could be added and the sum modulo 
the number of buckets could be returned.
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Deficiencies of Static Hashing

• In static hashing, function h maps search-key values to a 
fixed set of B of bucket addresses.

– Databases grow with time.  If initial number of buckets is too small, 
performance will degrade due to too much overflows.

– If file size at some point in the future is anticipated and number of 
buckets allocated accordingly, significant amount of space will be 
wasted initially.

– If database shrinks, again space will be wasted.

– One option is periodic re-organization of the file with a new hash 
function, but it is very expensive.

• These problems can be avoided by using techniques that 
allow the number of buckets to be modified dynamically. 
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Extendible Hashing

• Situation: Bucket (primary page) becomes full. Why not 
re-organize file by doubling # of buckets?

– Reading and writing all pages is expensive!

– Idea:  Use directory of pointers to buckets, double # of buckets by 
doubling the directory, splitting just the bucket that overflowed!

– Directory much smaller than file, so doubling it is much cheaper.  
Only one page of data entries is split.  No overflow page!

– Trick lies in how hash function is adjusted!
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Example

• Directory is array of size 4.

• To find bucket for r, take last 
global depth bits of h(r); we 
denote r by h(r).

– If h(r) = 5 = binary 101,  it is 
in bucket pointed to by 01.

v Insert:  If bucket is full, split it (allocate new page, re-distribute).

v If necessary, double the directory.  (As we will see, splitting a
bucket does not always require doubling; we can tell by 
comparing global depth with local depth for the split bucket.)

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*
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Insert h(r)=20 (10100)

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*
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Points to Note

• 20 = binary 10100.  Last 2 bits (00) tell us r belongs in A or 
A2.  Last 3 bits needed to tell which.

– Global depth of directory: Max # of  bits needed to tell which bucket 
an entry belongs to.

– Local depth of a bucket: # of bits used to determine if an entry 
belongs to this bucket.

• When does bucket split cause directory doubling?

– Before insert, local depth of bucket = global depth.  Insert causes 
local depth to become > global depth; directory is doubled by copying 
it over and `fixing’ pointer to split image page.  (Use of least 
significant bits enables efficient doubling via copying of directory!)
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Insert 18 (010010), 32 (100000)

• Assume the following hash index where the hash 
function is determined by the least significant bits. 

00

01

10

11

2

global depth

2local depth

8 16 64

2

1 5 9 13

2

6 10

2

7
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After the insertion of search keys: 18 (010010), 32 (100000).

• Insert: 3 (011), 4 (100) 

00

01

10

11

2

global depth

2local depth

8 16 64

2

1 5 9 13

2

6 10

2

7

18

32
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After the insertion of search keys: 4 (100), 3 (011).

• Insert: 19 (10011), 17 (10001) 

000

001

010

011

3

global depth

3local depth

8 16 64

2

1 5 9 13

2

6 10

2

7

18

32

100

101

110

111

3

4

3
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After the insertion of: 19 (10011), 17 (10001)

• Insert 24 (11000)

000

001

010

011

3

global depth

3local depth

8 16 64

3

1 9 17

2

6 10

2

7

18

32

100

101

110

111

3

4

3

3

5 13

19
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After the insertion of search key: 24 (11000)

0000

0001

0010

0011

4

global depth

4local depth

16

3

1 9 17

2

6 10

2

7

18

32

0100

0101

0110

0111

3

4

3

3

5 13

191000

1001

1010

1011

1100

1101

1110

1111

4

8 24
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Comments on Extendible Hashing

• If directory fits in memory, equality search answered with 
one disk access; else two.

– 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as 
data entries) and 25,000 directory elements; chances are high that 
directory will fit in memory.

– Directory grows in spurts, and, if the distribution of hash values is 
skewed, directory can grow large.

– Multiple entries with same hash value cause problems!

• Delete:  If removal of data entry makes bucket empty, can 
be merged with `split image’.  If each directory element 
points to same bucket as its split image, can halve directory. 



36

Linear Hashing

• This is another dynamic hashing scheme, an alternative to 
Extendible Hashing.

• LH handles the problem of long overflow chains without using 
a directory, and handles duplicates.

• Idea:  Use a family of hash functions h0, h1, h2, ...

– hi(key) = h(key) mod(2iN);  N = initial # buckets

– h is some hash function (range is not 0 to N-1)

– If N = 2d0, for some d0, hi consists of applying h and looking at the 
last di bits, where di = d0 + i.

– hi+1 doubles the range of hi (similar to directory doubling)
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Linear Hashing (Contd.)

• Directory avoided in LH by using overflow pages, and 
choosing bucket to split round-robin.

– Splitting proceeds in `rounds’. Round ends when all NR initial (for 
round R) buckets are split.  Buckets 0 to Next-1 have been split;  
Next to NR yet to be split.

– Current round number is Level.

– Search: To find bucket for data entry r, find hLevel(r):

• If hLevel(r) in range `Next to NR’ , r belongs here.

• Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + NR; 
must apply hLevel+1(r) to find out.
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Overview of LH File 

• In the middle of a round.

Levelh 

Buckets that existed at the

beginning of this round: 

this is the range of

Next

Bucket to be split 

of other buckets) in this round

Levelh search key value )(

search key value )(

Buckets split in this round:

If 

is in this range, must use

h Level+1

`split image' bucket.

to decide if entry is in 

created (through splitting

`split image' buckets:
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Example of Linear Hashing

• On split, hLevel+1 is used to re-
distribute entries.

0
hh

1

(This info

is for illustration

only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents

of the linear hashed

file)

Next=0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary 

bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

0
hh

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY

PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW

PAGES

43*

00100

insert

h(r)=43

• insert 43 (101011)

• insert 37(..101), 

• insert 29 (..101)

37*
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After inserting 29: 11101

level 0

Primary Pages Overflow Pageshash fun. 0hash fun. 1

32

9 25

14 18 10 30

31 35 7 11

next 2

43

00

01

10

11

00 44 36

000

001

010

011

100

01101 5 37 29

LETS INSERT 22: 10110
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After inserting 22: 10110

level 0

Primary Pages Overflow Pageshash fun. 0hash fun. 1

32

9 25

18 10

31 35 7 11 43

00

01

10

11

00 44 36

000

001

010

011

100

01101 5 37 29

next 3

10110 14 30 22

LETS INSERT 66: 1000010   AND 34: 100010
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After inserting 66: 1000010   AND 34: 100010

Primary Pages Overflow Pageshash fun. 0hash fun. 1

32

9 25

18 10

31 35 7 11 43

00

01

10

11

00 44 36

000

001

010

011

100

01101 5 37 29

next 3

10110 14 30 22

66 34

LETS INSERT 50: 110010
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After inserting 50: 110010

Primary Pages Overflow Pageshash fun. 1

32

9 25

18 10

35 11 43

44 36

000

001

010

011

100

101 5 37 29

next 0

110 14 30 22

66 34 50

111 31 7


