Comp 5311 Database Management Systems

8. Relational Database Design - 3NF - BCNF

Looking for a "Good" Form

- Recall that the goal of a good database design are
- Lossless decomposition - necessary in order to ensure correctness of the data
- Dependency preservation - not necessary, but desirable in order to achieve efficiency of updates
- Good form - desirable in order to avoid redundancy.
- But what it means for a table to be in good form?
- If the domains of all attributes in a table contain only atomic values, then the table is in First Normal Form (1NF).
- In other words, there are no nested tables, multi-valued attributes, or complex structures such as lists.
- Relational tables are always in 1 NF , according to the definition of the relational model.

Third Normal Form (3NF)

- R is a relation schema, with the set F of $F D$
- R is in 3NF if and only if
- for each FD: $X \rightarrow\{A\}$ in $F+$
- Then
$\mathrm{A} \in \mathrm{X}$ (trivial FD), or
X is a superkey for R , or
A is prime attribute for R
- In words: For every FD that does not contain extraneous (useless) attributes:
- the LHS is a candidate key, or
- the RHS is a prime attribute, i.e., it is an attribute that is part of a candidate key

3NF Example

- $R=(B, C, E)$
$F=\{\{E\} \rightarrow\{B\},\{B, C\} \rightarrow\{E\}\}$
- Remember that you always have to find all candidate keys in order to determine the normal form of a table
- Two candidate keys: BC and EC $\{E\} \rightarrow\{B\} B$ is prime attribute $\{B, C\} \rightarrow\{E\} B C$ is a candidate key
- None of the FDs violates the rules of the previous slide. Therefore, R is in 3NF

Redundancy in 3NF

- Bank-schema = (Branch B, Customer C, Employee E)
- $F=\{\{E\} \rightarrow\{B\}$, e.g., an employee works in a single branch
- $\{B, C\} \rightarrow\{E\}\}$, e.g., when a customer goes to a certain branch s/he is always served by the same employee

Branch	Customer	Employee
HKUST	Wong	Au
HKUST	Chin	Au
Central	Wong	Jones
Central	null	Cheng

- A 3NF table still has problems
- redundancy (e.g., we repeat that Au works at HKUST branch)
- need to use null values (e.g., to represent that Cheng works at Central even though he is not assigned any customers).

Algorithm for 3NF Synthesis

Let R be the initial table with FDs F
Compute the canonical cover F_{c} of F
S= \varnothing
for each FD $X \rightarrow Y$ in the canonical cover F_{c} If none of the tables contains X, Y

$$
S=S \cup(X, Y)
$$

if none of the tables contains a candidate key for R
Choose any candidate key CN
$\mathrm{S}=\mathrm{S} \cup$ table with attributes of CN

The algorithm always creates a lossless-join, dependency-preserving, 3NF decomposition.

3NF Example

- Bank=(branch-name, customer-name, banker-name, office-number)
- Functional dependencies (also canonical cover):
\{banker-name\} \rightarrow \{branch-name, office-number $\}$ \{customer-name, branch-name\} \rightarrow \{banker-name\}
- Candidate Keys: \{customer-name, branch-name\} or \{customer-name, bankername\}
- \{banker-name\} \rightarrow \{office-number\} violates 3 NF
- $3 N F$ tables - for each FD in the canonical cover create a table

Banker = (banker-name, branch-name, office-number)
Customer-Branch = (customer-name, branch-name, banker-name)

- Since Customer-Branch contains a candidate key for Bank, we are done.
- Question: is the decomposition lossless and dependency preserving? Answer: Yes - all decompositions generated by this algorithm have these properties

Boyce-Codd Normal Form (BCNF)

- R is a relation schema, with the set F of $F D s$
- R is in BCNF if and only if for each FD: $X \rightarrow\{A\}$ in $F+$
- Then
$A \in X$ (trivial FD), or
X is a superkey for R
- In words: For every FD that does not contain extraneous (useless) attributes, the LHS of every FD is a candidate key.
- BCNF tables have no redundancy.
- If a table is in BCNF it is also in 3NF (and 2NF and 1NF)

BCNF Example

- $R=(B, C, E)$
$F=\{\{E\} \rightarrow\{B\},\{B, C\} \rightarrow\{E\}\}$
- Two candidate keys: BC and EC
$\{B, C\} \rightarrow\{E\}$ does not violate BCNF because $B C$ is a key $\{E\} \rightarrow\{B\}$ violates $B C N F$ because E is not a key
- In order to achieve BCNF we have to decompose the table but how?
Since the decomposition must be lossless, we only have one option: R1(B,E), and R2(C,E). The common attribute E should be key of one fragment, here R1.

BCNF Example (cont)

- Bank-schema = (Branch B, Customer C, Employee E)
- $\mathrm{F}=\{\{\mathrm{E}\} \rightarrow\{\mathrm{B}\},\{\mathrm{B}, \mathrm{C}\} \rightarrow\{\mathrm{E}\}\}$
- Decompose into R1(B,E), and R2(C,E)

Branch	Customer	Employee
HKUST	Wong	Au
HKUST	Chin	Au
Central	Wong	Jones
Central	null	Cheng

- We have avoided the problems of redundancy and null values of 3NF

Branch	Employee		
HKUST	Au		
Central	Jones		
Central	Cheng		
Customer Employee Wong Au Chin Au Wong Jones		$.$	
:---			

BCNF Example (cont)

We can generate the original table by joining the two fragments, using an outer join

Branch	Employee
HKUST	Au
Central	Jones
Central	Cheng

Customer	Employee
Wong	Au
Chin	Au
Wong	Jones

$=$| Branch | Cust. | Empl. |
| :--- | :--- | :--- |
| HKUST | Wong | Au |
| HKUST | Chin | Au |
| Central | Wong | Jones |
| Central | null | Cheng |

- Is the decomposition dependency preserving?
- No. We loose $\{B, C\} \rightarrow\{E\}$
- Can we have a dependency preserving decomposition?
- No. No matter how we break we loose $\{B, C\} \rightarrow\{E\}$ since it involves all attributes

Observations about BCNF

- Best Normal Form
- Avoids the problems of redundancy and all anomalies
- There is always a lossless decomposition that generates BCNF tables
- However, we may not be able to preserve all dependencies
- Next step: an algorithm for automatically generating BCNF tables.

Algorithm for BCNF Decomposition

Let R be the initial table with FDs F
$S=\{R\}$
Until all relation schemes in S are in BCNF for each R in S for each $\mathrm{FD} X \rightarrow Y$ that violates BCNF for R

$$
S=(S-\{R\}) \cup(R-Y) \cup(X, Y)
$$

enduntil

- This is a simplified version. In words:
- When we find a table R with BCNF violation $X \rightarrow Y$ we:

1] Remove R from S
2] Add a table that has the same attributes as R except for Y
3] Add a second table that contains the attributes in X and Y

BCNF Decomposition Example

- Let us consider the relation scheme $\mathrm{R}=(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$ and the FDs:

$$
\{A\} \rightarrow\{B, E\},\{C\} \rightarrow\{D\}
$$

- Candidate key: AC
- Both functional dependencies violate BCNF because the LHS is not a candidate key
- Pick $\{A\} \rightarrow\{B, E\}$
- We can also choose $\{C\} \rightarrow\{D\}$ - different choices lead to different decompositions.
- (A,B,C,D,E) generates R1=(A,C,D) and R2=(A,B,E)
- Do we need to decompose further?

BCNF Decomposition Example (cont)

- (A,C,D) and (A,B,E)
- $\{A\} \rightarrow\{B, E\},\{C\} \rightarrow\{D\}$
- We need to decompose R1=(A,C,D) because of the FD $\{C\} \rightarrow\{D\}$
- Thus (A, C, D) is replaced with $R 3=(A, C)$ and $R 4=(C, D)$.
- Final decomposition: R2=(A,B,E), R3=(A,C), R4=(C,D)
- Is the decomposition lossless?
- Yes the algorithm always creates lossless decompositions. In step $S=(S-$ $\{R\}) \cup(R-Y) \cup(X, Y)$ we replace R with tables $(R-Y)$ and (X, Y) that have X as the common attribute and $X \rightarrow Y$, i.e., \mathbf{X} is the key of (\mathbf{X}, \mathbf{Y})
- Is the decomposition dependency preserving?
- Yes because $\mathrm{F} 2=\{\{\mathrm{A}\} \rightarrow\{\mathrm{B}, \mathrm{E}\}\}, \mathrm{F} 3=\varnothing, \mathrm{F} 4=\{\{\mathrm{C}\} \rightarrow\{\mathrm{D}\}\}$ and $(\mathrm{F} 2 \cup F 3 \cup F 4)^{+}=$ F^{+}
- But remember: sometimes we may not be able to preserve dependencies

Testing if a FD violates BCNF

- Important question: which dependencies to check for BCNF violations? F or F^{+}?
- Answer-Part 1: To check if a table R with a given set of FDs F is in BCNF, it suffices to check only the dependencies in F
- Consider R (A, B, C, D), with $F=\{\{A\} \rightarrow\{B\},\{B\} \rightarrow\{C\}\}$
- The key is $\{A, D\}$.
$-R$ violates $B C N F$ because the LHS of both $\{A\} \rightarrow\{B\}$ and $\{B\} \rightarrow\{C\}$. Neither A nor B is a key.
- We can see that by simply using F - we do not need F^{+}(e.g., we do not need to check the implicit FD $\{\mathrm{A}\} \rightarrow\{\mathrm{C}\}$)
- We can show that if none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F^{+}will cause a violation of BCNF either.

Testing if a FD violates BCNF (cont)

- Answer-Part 2: However, using only F is insufficient when testing a fragment in the decomposition of R
- Consider again $R(A, B, C, D)$, with $F=\{\{A\} \rightarrow\{B\},\{B\} \rightarrow\{C\}\}$ that violates BCNF
- Decompose R into and R1(A,C,D) and R2(A,B)
- There is no FD in F that contains only attributes from R1(A,C,D) so we might be mislead into thinking that R1 is in BCNF.
- In fact, dependency $\{A\} \rightarrow\{C\}$ in F^{+}shows that R1 is not in BCNF.
- Therefore, for the decomposed relations we also need to consider dependencies in F^{+}

Different BCNF Decompositions

- The different possible orders in which we consider FDs violating BCNF in the algorithm may lead to different decompositions
- Previous example: $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}), \mathrm{F}=\{\{\mathrm{A}\} \rightarrow\{\mathrm{B}\},\{\mathrm{B}\} \rightarrow\{\mathrm{C}\}\}$
- Previous BCNF decomposition: R2(A,B), R3(A,D), R4(A,C)
- Question: is the decomposition dependency preserving?
- Answer: No - we lost the dependency $\{\mathrm{B}\} \rightarrow\{\mathrm{C}\}$
- Question: Can you obtain a dependency preserving decomposition?
- Answer: Yes - in the first decomposition we first applied violation $\{A\} \rightarrow\{B\}$. If, instead, we apply $\{B\} \rightarrow\{C\}$ we obtain:
- $R 1=(A, B, D)$ and $R 2=(B, C)$
- We decompose $R 1=(A, B, D)$ further using $\{A\} \rightarrow\{B\}$ to obtain:
- R3=(A,D) and R4=(A,B)
- The final decomposition $R 2=(B, C), R 3=(A, D), R 4=(A, B)$ is dependency preserving.

Normalization Goals

- Goal for a relational database design is:
- BCNF.
- Lossless join.
- Dependency preservation.
- If we cannot achieve this, we accept one of
- Lack of dependency preservation in BCNF
- Redundancy due to use of 3NF

ER Model and Normalization

- When an E-R diagram is carefully designed, the tables generated from the E-R diagram should not need further normalization.
- However, in a real (imperfect) design there can be FDs from non-key attributes of an entity to other attributes of the entity
- E.g. employee entity with attributes department-number and department-address, and an FD department-number \rightarrow departmentaddress
- Good design would have made department an entity

Universal Relation Approach

- We start with a single universal relation and we decompose it using the FDs (no ER diagrams)
- Assume Loans(branch-name, loan-number, amount, customer-id, customer-name) and FDs:
- \{loan-number\} \rightarrow \{branch-name, amount, customer-id\}
- \{customer-id\} \rightarrow \{customer-name\}
- We apply existing decomposition algorithms to generate tables
- Loan(loan-number, branch-name, amount, customer-id)
- Customer(customer-id,customer-name)

Denormalization for Performance

- May want to use non-normalized schema for performance
- E.g. displaying customer-name along with loan-number and amount requires join of loan with customer
- Alternative 1: Use denormalized relation containing attributes of loan as well as customer with all above attributes
- faster lookup
- Extra space and extra execution time for updates
- extra coding work for programmer and possibility of error in extra code
- Alternative 2: use a materialized view defined as

Ioan JOIN customer

- Benefits and drawbacks same as above, except no extra coding work for programmer and avoids possible errors

Other Design Issues

- Some aspects of database design are not caught by normalization
- Examples of bad database design, to be avoided:
- Instead of earnings(company-id, year, amount), use
- earnings-2000, earnings-2001, earnings-2002, etc., all on the schema (company-id, earnings).
- Above are in BCNF, but make querying across years difficult and needs new table each year
- company-year(company-id, earnings-2000, earnings-2001, earnings-2002)
- Also in BCNF, but also makes querying across years difficult and requires new attribute each year.

