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Comp 5311 Database Management Systems

7. Functional Dependencies
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Functional Dependencies (FD) - Definition

• Let R be a relation scheme and X, Y be sets of attributes in R.

• A functional dependency from X to Y exists if and only if:

– For every instance of |R| of R, if two tuples in |R| agree on 
the values of the attributes in X, then they agree on the values 
of the attributes in Y

• We write X → Y and say that X determines Y
• Example on PGStudent (sid, name, supervisor_id, specialization):

– {supervisor_id} → {specialization} means

• If two student records have the same supervisor (e.g., Dimitris), 
then their specialization (e.g., Databases) must be the same

• On the other hand, if the supervisors of 2 students are different, 
we do not care about their specializations (they may be the same 
or different). 

• Sometimes, we omit the brackets for simplicity: 
– supervisor_id → specialization
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Trivial FDs

• A functional dependency X → Y is trivial if Y is a subset of X

– {name, supervisor_id} → {name}

• If two records have the same values on both the name and 
supervisor_id attributes, then they obviously have the same 
supervisor_id. 

• Trivial dependencies hold for all relation instances  

• A functional dependency X → Y is non-trivial if YX = 

– {supervisor_id} → {specialization}

• Non-trivial FDs are given in the form of constraints when designing a 
database.

– For instance, the specialization of a students must be the same as 
that of the supervisor. 

• They constrain the set of legal relation instances. For instance, if I try 
to insert two students under the same supervisor with different 
specializations, the insertion will be rejected by the DBMS

• Some FDs are neither trivial nor non-trivial.
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Functional Dependencies and Keys

• A FD is a generalization of the notion of a key.

• For PGStudent (sid, name, supervisor_id, specialization), 
we write:

• {sid} → {name, supervisor_id, specialization}

– The sid determines all attributes (i.e., the entire 
record)

– If two tuples in the relation student have the same sid, 
then they must have the same values on all attributes. 

– In other words they must be the same tuple (since the 
relational model does not allow duplicate records)
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Superkeys and Candidate Keys using FD

• A set of attributes that determines the entire tuple is a 
superkey

– {sid, name} is a superkey for the PGstudent table. 

– Also {sid, name, supervisor_id} etc. 

• A minimal set of attributes that determines the entire tuple is a 
candidate key

– {sid, name} is not a candidate key because I can remove 
the name. 

– sid is a candidate key – so is HKID (provided that it is stored 
in the table). 

• If there are multiple candidate keys, the DB designer chooses 
designates one as the primary key.
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Closure of a Set of Functional Dependencies

• Given a set of functional dependencies F, there are certain other 
functional dependencies that are logically implied by F.

• The set of all functional dependencies logically implied by F is 
the closure of F.

• We denote the closure of F by F+.

• We can find all of F+ by applying Armstrong’s Axioms:

– if Y  X, then X → Y (reflexivity)

– if X → Y, then ZX → ZY (augmentation)

– if X → Y and Y→ Z, then X → Z (transitivity)

these rules are sound and complete.
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Examples of Armstrong’s Axioms

• if Y  X, then X → Y (reflexivity generates trivial FDs)
name → name
name, supervisor_id → name
name, supervisor_id → supervisor_id

• if X → Y, then ZX → ZY (augmentation)
sid → name (given)
supervisor_id, sid →supervisor_id, name

• if X → Y and Y→ Z, then X → Z (transitivity)
sid → supervisor_id (given) 
supervisor_id → specialization (given)
sid → specialization



8

Additional Rules

• We can further simplify computation of F+ by using the following 
additional rules.

– If X → Y holds and X → Z holds, then X → YZ holds (union)

– If X → YZ holds, then X → Y holds and X → Z holds (decomposition)

– If X→Y holds and ZY→W holds, then ZX→W holds (pseudotransitivity)

• The above rules can be inferred from Armstrong’s axioms.

E.g., pseudotransitivity

X→Y, ZY→W (given)

ZX→ZY (by augmentation)

ZX→W (by transitivity)
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A → C; AG → CG; CG → I

A → B; B → H

• R = (A, B, C, G, H, I)

• F = {A → B

A → C

CG → H

CG → I

B → H}

• some members of F+

A → H

AG → I

CG → HI

Example of FDs in the closure F+
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Closure of Attribute Sets

• The closure of X under F (denoted by X+) is the set of attributes 
that are functionally determined by X under F:

X → Y is in F+  Y  X+

Given sid
If sid → name
then name is part of sid+

i.e., sid+= {sid, name, …}

If sid → supervisor_id
then supervisor_id is part of sid+

i.e., sid+= {sid, name, supervisor_id, …}

If sid → specialization then continue ….
Else stop

X is a set of attributes
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Algorithm for Computing Attribute Closure 

• Input: 
R a relation scheme

F a set of functional dependencies

X  R (the set of attributes for which we want to compute the 
closure)

• Output:
X+ the closure of X w.r.t. F

X(0) := X

Repeat

X(i+1) := X(i)  Z, where Z is the set of attributes such that 
there exists Y→Z in F, and Y  X(i) 

Until X(i+1) := X(i) 

Return X(i+1)
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Closure of a Set of Attributes: Example

• R = {A,B,C,D,E,G}

• F = { {A,B}→{C}, {C}→{A}, {B,C}→{D}, {A,C,D}→{B}, 
{D}→{E,G}, {B,E}→{C}, {C,G}→{B,D}, {C,E}→{A,G}}

• X = {B,D} 

• X(0) = {B,D} 

{D}→{E,G}, 

• X(1) = {B,D,E,G}, 

{B,E}→{C}

• X(2) = {B,C,D,E,G}, 

{C}→{A}

• X(3) = {A,B,C,D,E,G}

• X(4) = X(3)
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Uses of Attribute Closure

• Testing for superkey
– To test if X is a superkey, we compute X+, and check if X+ contains 

all attributes of R.

• Testing functional dependencies
– To check if a functional dependency X → Y holds (or, in other 

words, X → Y is in F+), just check if Y  X+. 

• Computing the closure of F
– For each subset X  R, we find the closure X+, and for each Y X+, 

we output a functional dependency X → Y.

• Computing if two sets of functional dependencies F and G are 
equivalent, i.e., F+ = G+
– For each functional dependency Y→Z in F 

• Compute Y+ with respect to G
• If Z  Y+ then Y→Z is in G+

– And vice versa



14

Redundancy of FDs

• Sets of functional dependencies may have redundant
dependencies that can be inferred from the others
– {A}→{C} is redundant in: {{A}→{B}, {B}→{C},{A}→ {C}}

• Parts of a functional dependency may be redundant
– Example of extraneous/redundant attribute on RHS:    

{{A}→{B}, {B}→{C}, {A}→{C,D}}  can be simplified to 

{{A}→{B}, {B}→{C}, {A}→{D}}  

(because {A}→{C} is inferred from {A} → {B}, {B}→{C})

– Example of extraneous/redundant attribute on LHS:    

{{A}→{B}, {B}→{C}, {A,C}→{D}}  can be simplified to 

{{A}→{B}, {B}→{C}, {A}→{D}} 

(because of {A}→{C})
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Canonical Cover

• A canonical cover for F is a set of dependencies Fc such that 

– F and Fc are equivalent 

– Fc contains no redundancy

– Each left side of functional dependency in Fc is unique.

• For instance, if we have two FD X→Y, X→Z, we convert them to X→YZ.

• Algorithm for canonical cover of F:
repeat

Use the union rule to replace any dependencies in F
X1 → Y1 and X1 → Y2 with X1 → Y1 Y2

Find a functional dependency X → Y with an 
extraneous attribute either in X or in Y

If an extraneous attribute is found, delete it from X → Y
until F does not change

• Note: Union rule may become applicable after some extraneous 
attributes have been deleted, so it has to be re-applied
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Example of Computing a Canonical Cover

• R = (A, B, C)
F = {A → BC

B → C
A → B

AB → C}

• Combine A → BC and A → B into A → BC
– Set is now {A → BC, B → C, AB → C}

• A is extraneous in AB → C because of B → C.
– Set is now {A → BC, B → C}

• C is extraneous in A → BC because of A → B and B → C.

• The canonical cover is:

A → B
B → C
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Pitfalls in Relational Database Design

• Relational database design requires that we find a 
“good” collection of relation schemas. 

• Functional dependencies can be used to refine ER 
diagrams or independently (i.e., by performing 
repetitive decompositions on a "universal" relation 
that contains all attributes).

• A bad design may lead to several problems.
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Problems of Bad Design

first_name last_name address department position salary

Dewi Srijaya 12a Jln Lempeng Toys clerk 2000

Izabel Leong 10 Outram Park Sports trainee 1200

John Smith 107 Clementi Rd Toys clerk 2000

Axel Bayer 55 Cuscaden Rd Sports trainee 1200

Winny Lee 10 West Coast Rd Sports manager 2500

Sylvia Tok 22 East Coast Lane Toys manager 2600

Eric Wei 100 Jurong drive Toys assistant manager 2200

? ? ? ? security guard 1500

Redundant storage

Update anomaly

Potential deletion anomaly

Insertion anomaly

Assume the position determines the salary:

position → salary

key

T1
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Decomposition Example

first_name last_name address department position

Dewi Srijaya 12a Jln lempeng Toys clerk

Izabel Leong 10 Outram Park Sports trainee

John Smith 107 Clementi Rd Toys clerk

Axel Bayer 55 Cuscaden Rd Sports trainee

Winny Lee 10 West Coast Rd Sports manager

Sylvia Tok 22 East Coast Lane Toys manager

Eric Wei 100 Jurong drive Toys assistant manager

position salary

clerk 2000

trainee 1200

manager 2500

assistant manager 2200

security guard 1500

T2

T3

No Redundant storage

No Update anomaly

No Deletion anomaly 

No Insertion anomaly
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Normalization

• Normalization is the process of decomposing a 
relation schema R into fragments (i.e., smaller 
tables) R1, R2,.., Rn. Our goals are:
– Lossless decomposition:  The fragments should contain the 

same information as the original table. Otherwise 
decomposition results in information loss.

– Dependency preservation: Dependencies should be 
preserved within each Ri , i.e., otherwise, checking updates 
for violation of functional dependencies may require 
computing joins, which is expensive.

– Good form:  The fragments Ri should not involve 
redundancy. Roughly speaking, a table has redundancy if 
there is a FD where the LHS is not a key (more on this 
later). 
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Lossless Join Decomposition

• A decomposition is lossless (aka lossless join) if we can recover 
the initial table

• In general a decomposition of R into R1 and R2 is lossless if and 
only if at least one of the following dependencies is in F+:
– R1  R2 → R1

– R1  R2 → R2

– In other words, the common attribute of R1 and R2 must be 
a candidate key for R1 or R2.  

• Is the previous decomposition example (T2, T3) lossless?
– Yes because the common attribute of T2, T3 is position and it 

determines the salary; therefore it is a key for T3.
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Example of a Lossy Decomposition

• Decompose R = (A,B,C) into R1 = (A,B) and R2 = (B,C)

,B(r)     B,C(r)
It is a lossy decomposition:

two extraneous tuples.

You get more, not less!!

B is not a key of either small table

,B(r) B,C(r)A B

a 1

a 2

b 1

B C

1 m

2 n

1 p

r A B C

a 1 m

a 2 n

b 1 p

A B C

a 1 m

a 2 n

b 1 p

a 1 p

b 1 m
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Dependency Preserving Decomposition

• The decomposition of a relation scheme R with FDs F 
is a set of tables (fragments) Ri with FDs Fi

• Fi is the subset of dependencies in F+ (the closure of 
F) that include only attributes in Ri. 

• The decomposition is dependency preserving if and 
only if 

(i Fi)
+ = F+
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Non-Dependency Preserving Decomposition Example

R = (A, B, C), F = {{A}→{B}, {B}→{C}, {A}→{C}}. Key: A

There is a dependency {B}→ {C}, where the LHS is not the key, meaning that there can be 

considerable redundancy in R. 

Solution: Break it in two tables R1(A,B), R2(A,C) (normalization)

A B C

1 2 3

2 2 3

3 2 3

4 2 4

The decomposition is lossless because the common attribute A is a key for R1 (and R2)

The decomposition is not dependency preserving because F1={{A}→{B}}, F2={{A}→{C}} and 

(F1F2)+F+. We lost the FD {B}→{C}. 

In practical terms, each FD is implemented as an assertion, which it is checked when there 

are updates. In the above example, in order to find violations, we have to join R1 and 

R2. Can be very expensive. 

A C

1 3

2 3

3 3

4 4

A B

1 2

2 2

3 2

4 2
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Dependency Preserving Decomposition Example

R = (A, B, C), F = {{A}→{B}, {B}→{C}, {A}→{C}}. Key: A

Break R in two tables R1(A,B), R2(B,C)

A B C

1 2 3

2 2 3

3 2 3

4 2 4

A B

1 2

2 2

3 2

4 2

B C

2 3

2 4

The decomposition is lossless because the common attribute B is a key for R2

The decomposition is dependency preserving because F1={{A}→{B}}, F2={{B}→{C}} and 

(F1F2)+=F+ 

Violations can be found by inspecting the individual tables, without performing a join. 


