
1

Comp 5311 Database Management Systems

5. SQL 3

SQL as Data Definition Language

2

SQL as Data Definition Language

• Creates the Students relation. The type (domain) of each field is
specified, and enforced by the DBMS whenever tuples are added or
modified.
CREATE TABLE Students

(sid: CHAR(20),

name: CHAR(20),

login: CHAR(10),

age: INT,

gpa: REAL)

• As another example, the Enrolled table holds information about
courses that students take.
CREATE TABLE Enrolled

(sid: CHAR(20),

cid: CHAR(20),

grade: CHAR(2))

3

Integrity Constraints (IC)

IC guard against accidental damage to the database, by ensuring

that authorized changes to the database do not result in a loss of

data consistency.

• Integrity constraints are based upon the semantics of the real-
world enterprise that is being described in the database
relations.

• We can check a database instance to see if an IC is violated, but
we can NEVER infer that an IC is true by looking at an instance.

– An IC is a statement about all possible instances!

– From example, we know name is not a key, but the assertion that
sid is a key is given to us.

4

Domain Constraints

condition must be TRUE
name of constraint

new domain name

• The check clause in SQL-92 permits domains to be restricted

• use check clause to ensure that an hourly-wage domain allows
only values greater than a specified value.

create domain hourly-wage numeric(5,2)
constraint value-test check (value>=4.00)

• The domain hourly-wage is declared to be a decimal number
with 5 digits, 2 of which are after the decimal point

• The domain has a constraint that ensures that the hourly-wage
is greater than 4.00.

• constraint value-test is optional; useful to indicate which
constraint an update violated.

5

Primary and Candidate Keys in SQL

• Possibly many candidate keys (specified using UNIQUE),
one of which is chosen as the primary key.

CREATE TABLE Enrolled
(sid CHAR(20)

cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

• Used carelessly, an IC can prevent the storage of
database instances that arise in practice!

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

6

Foreign Keys in SQL

• Only students listed in the Students relation should be
allowed to enroll for courses.

CREATE TABLE Enrolled
(sid CHAR(20), cid CHAR(20), grade CHAR(2),

PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 Carnatic101 C

53666 Reggae203 B

53650 Topology112 A

53666 History105 B

Enrolled
Students

7

Enforcing Referential Integrity

• Consider Students and Enrolled; sid in Enrolled is a foreign
key that references Students.

• What should be done if an Enrolled tuple with a non-existent
student id is inserted? (Reject it!)

• What should be done if a Students tuple is deleted?
– Also delete all Enrolled tuples that refer to it (cascading deletion).

– Disallow deletion of a Student tuple that is referred to by an Enrolled
tuple.

– Set sid in Enrolled tuples that refer to it to a default sid.

– Set sid in Enrolled tuples that refer to it to a special value null (not
applicable in this example because sid is part of the primary key).

• If primary key of Students tuple is updated, you must also
update the classes taken by the student

8

Referential Integrity in SQL/92

•SQL/92 supports all 4 options on
deletes and updates.

–Default is NO ACTION (delete
is rejected)

–CASCADE (also delete all
tuples that refer to deleted
tuple)

–SET NULL / SET DEFAULT (sets
foreign key value of
referencing tuple)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)
REFERENCES Students

ON DELETE CASCADE
ON UPDATE CASCADE)

9

Participation Constraints in SQL

We can capture total participation constraints using NOT
NULL.

CREATE TABLE Dept_Mgr(
did INTEGER,

dname CHAR(20),
budget REAL,
HKID CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (HKID) REFERENCES Employees,

ON DELETE NO ACTION)

10

Destroying and Altering Relations

DROP TABLE Students

Destroys the relation Students. The schema information and the
tuples are deleted.

ALTER TABLE Students
ADD COLUMN firstYear: integer

The schema of Students is altered by adding a new field; every
tuple in the current instance is extended with a null value in the
new field.

11

Provide a mechanism to hide certain data from the view of certain users. To
create a view we use the command:

create view view-name as <query expression>

where: <query expression> is any legal SQL query

EXAMPLE: Create a view from loan(loan-number, branch-name, amount)
that hides the amount.
create view branch-loan as

select branch-name, loan-number
from loan

QUERY: Find all loans in the Perryridge branch
select loan-number
from branch-loan
where branch-name = “Perryridge”

A user who has access to the view, but not the loan table, cannot see the
amount.

Views

Useful when more general ICs than keys are involved.

Are created in the definition of table - checked whenever
there is an update within the table

CREATE TABLE Loan

(loan-number INTEGER,
amount INTEGER,
branch-name CHAR(20),
PRIMARY KEY (loan-number),
FOREIGN KEY (branch-name) REFERENCES Branch,

ON DELETE CASCADE
CHECK (amount >= 1 AND amount <= 10000)
CHECK (branch-name <> "Choi Hung"))

General Constraints

13

Assertions

• An assertion is a complex constraint that the database must
always satisfy.

• An assertion in SQL-92 takes the form
create assertion <assertion-name> check <predicate>

• Difference from general constraints:
– A constraint is associated with a single table and checked when there is an

update on this specific table

– An assertion may be associated with several tables, and is checked every
time there is an update anywhere.

• Assertion testing may introduce a significant amount of
overhead; hence assertions should be used with great care.

• Any predicate allowed in SQL can be used.

14

• The sum of all loan amounts for each branch must be less than the
sum of all account balances at the branch.

create assertion sum-constraint check
(not exists (select * from branch

where (select sum(amount) from loan
where loan.branch-name=branch.branch-name)

>=
(select sum(amount) from account
where loan.number-name=branch.branch-name)))

• Note that the assertion refers to multiple tables. Therefore it cannot
be included as a constraint in the definition of loan or amount.

Assertion Example

