Query Processing in Geo-Social Networks

Nikos Armenatzoglou
OUTLINE

• Geo-Social Networks (GeoSNs)

• Query Processing Framework

• Geo-Social Queries

• Geo-Social Ranking

• Real-Time Multi Criteria Graph Partitioning
 (Geo-Social Graph Partitioning)

• Conclusion & Future Work
GEO-SOCIAL NETWORKS (GeoSNs)

Social network functionality + Location-based services = Geo-Social Query

My Friends in range
CHALLENGE

Social Relations (Friendships)

Online Task
Geo-Social Query Processing

Geographical Information (current check-ins)

Large 😞
Complex 😞
Relatively Static 😊

Small 😊
Simple 😊
Dynamic 😞
INDUSTRY

Nearby Friends

“Which social event is better?”

“One of your friends is here!”

“New friends!!”

10K geo-tagged tweets/min
[http://geosocialfootprint.com/]

No white papers documenting the processing of queries.
No unanimously accepted social and spatial storage implementation.

<table>
<thead>
<tr>
<th>Application</th>
<th>Storage System</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjacency lists in a Distributed Memory Hash Table</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjacency lists in a Document-oriented database</td>
</tr>
<tr>
<td>Spatial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R*-Tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grids & Geohashes</td>
</tr>
</tbody>
</table>
ACADEMIA

Geo-Social Queries
- Nearby friends with common interests.
- Proximity detection among friends.
- k-Geo-Social Circle of Friend Query
- Socio-Spatial Group Query

Other tasks
- Metrics & Properties
- Link Prediction
- Recommendations
- Location Privacy

[Huang and Liu, Geoinformatics ’09]
[Yiu et al., PVLDB ‘10]
[Liu et al., DASFAA ‘12]
[Yang et al., SIGKDD ‘12]
[S. Scellato et al., ICWSM 2011]
[S. Scellato et al., WOSN 2010]
[Y. Mao et al., SIGIR 2011]
[A. Khoshgozaran et al., CSE 2009]
ACADEMIA

- No unanimously accepted social and spatial storage implementation.
- All data in a single machine.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Y. Doytsher et al., WWW 2012]</td>
<td>Adjacency lists in Neo4j</td>
</tr>
<tr>
<td>[W. Liu et al., DASFAA 2012]</td>
<td>Adjacency matrix</td>
</tr>
<tr>
<td>[Y. Doytsher et al., LSBN 2010]</td>
<td>Edge lists in a RDBMS</td>
</tr>
<tr>
<td>[J. Bao et al., ICDE 2012]</td>
<td>Grid</td>
</tr>
<tr>
<td>[A. Amir et al., PMC 2007]</td>
<td>Quad-Tree</td>
</tr>
<tr>
<td>[W. Liu et al., DASFAA 2012]</td>
<td>R*-Tree</td>
</tr>
</tbody>
</table>
OUR WORK ...

Data Management
A general framework for Geo-Social query processing.

Geo-Social Queries
Basic and advanced (novel) queries processed under the proposed framework.

Geo-Social Ranking
Rank the users based on their social and spatial attributes.

Graph Partitioning
Real-Time Multi-criteria Graph Partitioning task for partitioning the social graph of a GeoSN.
QUERY PROCESSING FRAMEWORK
SM and GM can be administrated by different entities.
- Implement GeoSN queries without owning geo-social data e.g., Agora app.

Fully **dynamic** geographical dataset vs. relatively **static** social structures
- Foursquare’s system downtime.

Easy **integration** of new, more efficient data structures without modifications.

Novel GeoSN query types = either a different combination of existing primitives or new ones.
Any primitive must be treated as an **atomic** operation.
- No *states*.
- *NextNearestUser* = multiple calls of *NearestUsers* – keep data locally.
- Find more!

Efficiency depends on the underlying **storage scheme**.
- *AreFriends* - Adjacency matrix
- *GetFriends* - Adjacency Lists
- *GetUserLocation* – Hash Table
- *RangeUsers & NearestUsers* – Spatial Indices

They are supported by commercial GeoSNs’ APIs.
GEO-SOCIAL QUERIES
QUERY PROCESSING

RANGE FRIENDS

Social Primitives

- GetFriends(u)
- AreFriends(u_i, u_j)
- GetDegree(u)

Geographical Primitives

- GetUserLocation(u)
- RangeUsers(q, r)
- NearestUsers(q, k)

Algorithm 1: $RF_1(u, r)$

1. $F = \text{GetFriends}(u)$
2. For each user $u_i \in F$
3. GetUserLocation(u_i)
4. If $||q, u|| \leq r$
5. add u_i into R
6. Return R

Algorithm 2: $RF_2(u, r)$

1. $R_1 = \text{GetFriends}(u)$
2. $R_2 = \text{RangeUsers}(q, r)$
3. $R = R_1 \cap R_2$
4. Return R

Algorithm 3: $RF_3(u, r)$

1. $U = \text{RangeUsers}(q, r)$
2. For each user $u_i \in U$
3. If $\text{AreFriends}(u, u_i)$
4. add u_i into R
5. Return R

Friends of user u within range r.

Spatial Index

- Adjacency matrix
- Sparse check-ins
- # primitives

Dense social network

No Spatial Index

- Adjacency list
- Independent of check-ins

14
NEAREST STAR GROUP (NSG Query)

“the next group of five people who come to the restaurant will receive 20% discount”

Ideally:

Socially connected! \rightarrow Have a common friend (star).

Close to the restaurant \rightarrow Min. sum of distances to the restaurant

Output: k nearest groups of m users to q, such that the users in every group are connected through a common friend (star).
NEAREST STAR GROUP

Example \((k = 1, m = 3)\)

Result: \(\{u_5, u_1, u_3\}\)

Observation:
If user \(u\) is the center user, then his **best** group contains him and his \(m - 1\) closest friends to \(q\).

NSG is not an NP-Hard problem!
NSG QUERY PROCESSING

Basic Notation
\(b_s \): the current best aggregate distance achieved by the already examined users (seen).
\(b_{un} \): the lower aggregate distance that can be achieved by non-retrieved users (unseen).

Skeleton for NSG algorithms (Branch and Bound - BnB)
Input: Location \(q \), positive integers \(m, k \)
Output: Result set \(R \)

1. Initialize \(R, b_s, b_{un} \)
2. While \(b_{un} < b_s \)
3. Get the next nearest user to \(q \)
4. Construct his best group
5. Update result \(R \) and \(b_s, b_{un} \)
6. Refine \(R \)
7. Return \(R \)

<table>
<thead>
<tr>
<th>Eager</th>
<th>Lazy</th>
<th>Eager*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple (b_{un})</td>
<td>Simple (b_{un})</td>
<td>Aggressive (b_{un})</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Find the group</td>
<td>Construct the graph</td>
<td>Find the group</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
EXPERIMENTS

• Storage Schemes
 • Disk-based + Cache
 • Social:
 • Adjacency List: user → sorted list of friends’ ids. (document per user)
 • Geographical:
 • user → coordinates (document per user)
 • Index: Geohashes & Grids
 • Cache: Linux’s caching mechanism
 • Memory-based
 • Social:
 • (Hash Table) Adjacency List: user → sorted list of friends’ ids.
 • Geographical:
 • (Hash Table) user → coordinates
 • Index: Grid (CPM)

• Machine Architecture
 • Centralized: All modules at a single server.
 • Distributed: Separate server for each module (100 Mbps Ethernet)
EXPERIMENTS

- **Real Dataset (Foursquare & Twitter)**
 - **Check-ins**:
 - 12,652 users
 - *same* day (May 30th, 2012)
 - in New York City (1,112 km²).
 - **Social Graph**:
 - 12,652 + 2M (non checked-in friends) users
 - Avg. # of friends: 437.

- **Synthetic Dataset (1M, 2M, 3M, 4M, 5M)**
 - **Check-ins**
 - “The distribution of the distance between two friends follows a power law.”
 - BFS – assign locations: distance is randomly derived by the distribution in:
 - Area: 7,853 km²
 - **Social Graph**: Barabási-Albert preference model
 - Power-law degree distribution.
 - Small-world phenomenon.
 - Avg. # of friends: 100.
EXPERIMENTS

Friends of user \(u \) within range \(r \).

Algorithm 1: \(RF_1(u, r) \)
One GetFriends\((u)\)
Multiple GetUserLocation\((u_i)\)

Algorithm 2: \(RF_2(u, r) \)
GetFriends\((u)\) \(\cap \) RangeUsers\((q, r)\)

Algorithm 3: \(RF_3(u, r) \)
One RangeUsers\((q, r)\)
Multiple AreFriends\((u, u_i)\)

(Average over 100 random queries)

Real Dataset

Memory - Centralized

Real Dataset

Memory - Decentralized

Synthetic Dataset

Memory - Distributed

\(r = 2.5 \text{ km} \)
EXPERIMENTS
NEAREST STAR GROUP (NSG)

NSG\textsubscript{eager}
For each newly retrieved user compute his best group eagerly.

NSG\textsubscript{lazy}
Construct the social graph around \(q \) iteratively.

NSG\textsubscript{*eager}
Similar to NSG\textsubscript{eager} but more aggressive bounds. Refinement step.

(Average over 100 random queries + warm up)

- In the most of the cases \(\text{NSG}^{*}\text{eager} \) is the best.
- Performance scales well with the dataset size.
GEO-SOCIAL RANKING
GEO-SOCIAL RANKING (GSR)

Motivation: Given a query location \(q \), rank the users based on their social and spatial attributes.

Possible Solution: Use NSG or any other existing Geo-Social Query.

Shortcomings:
- How many friends \(m \)? Do not restrict it.
- The top-1 NSG maybe really far from \(q \).
- Query issuer does not know the check-ins distribution.

OK, but:
- How can I assign a score?
- How far from \(q \) should I search?
- How many friends?

Key Application:
- Advertisement: A merchant posts an advertisement using a GeoSN: promising targets \(\rightarrow \) users with high scores \(\rightarrow \) nearby + influence their friends.
CHALLENGE
WHO IS THE TOP-1?

v_3 has 3 friends (v_4, v_6, v_7), reasonably close to q, and tightly connected to each other.

v_1 is the closest to q, and has two friends (v_2, v_4) that are very near q.

v_4 could influence 5 friends (v_1, v_3, v_5, v_7, v_8) in the area around q.
THE PROBLEM
FORMALLY

• Relevant Set

Given a query location \(q \), we denote with \(V_i \) the set of friends of user \(v_i \) who are *relevant* for \(q \) (e.g., the friends near \(q \)).

- Ranking score depends on \(V_i \).
- \(V_i \) should be the set of friends who maximize \(v_i \)'s score.
- We can also assume that \(V_i \) contains \(v_i \).

• Geo-Social ranking function \(f(q, v_i) \) assigns to each user \(v_i \) a score that considers:
 - the distance \(||q, v_i|| \) between the query and \(v_i \),
 - the distance between \(q \) and the users in \(V_i \),
 - the cardinality of \(V_i \), and
 - possibly the social connectivity of \(V_i \).

Given a query location \(q \), a Geo-Social ranking function \(f \) and a positive integer \(k \), **GSR** returns the top-\(k \) users according to \(f \).

• Result: \{\{v_i, V_i, score\}, \ldots\}
OUR CONTRIBUTIONS

• Introduce Geo-Social Ranking problem.

• Propose four ranking functions that cover several practical scenarios.
 • Linear Combination (LC)
 • Ratio Combination (RC)
 • H-Geo-Social (HGS)
 • Geo-Social Triangles (GST)

• For each ranking function, we design a top-k query processing technique.

• Qualitative Evaluation
 • Visualization (Real-World Dataset)
 • Rank Correlation

• Performance Evaluation
RANKING FUNCTIONS
LINEAR COMBINATION (LC)

Ranking function

\[
f_{LC}(q, v_i) = w \cdot \frac{|V_i|}{F} + (1 - w) \cdot (1 - \frac{\sum_{u \in V_i} \|q, u\|}{F \cdot C})
\]

\(w \in (0, 1), F, C: \) normalization factors

Goal: Find the relevant set \(V_i\) that maximizes \(f_{LC}(q, v_i)\).

Solution: Consider the inclusion of a friend \(v_j\) of \(v_i\) in \(V_i\).

\[\text{Social: } \Delta S_i = \frac{w}{F} \text{ vs. Spatial: } \Delta G_i = (1 - w) \frac{\|q, v_j\|}{F \cdot C}\]

Include \(v_j\) iff \(\Delta S_i > \Delta G_i\)

Relevant Set

\[V_i = \{v_i\} \cup \{v_j : v_j \text{ friend of } v_i \land \|q, v_j\| < \frac{w \cdot C}{1 - w}\}\]
RANKING FUNCTIONS
LINEAR COMBINATION (LC)

Example 1: \(w = 0.15, \ C = 30, \ F = 5, \ k = 3. \)
\[
\| q, v_j \| < \frac{w \cdot C}{1 - w} = 5.3
\]
Top-3 results:
1. \(v_1, V_1 = \{ v_1, v_2, v_4 \} \),
2. \(v_2, V_2 = \{ v_2, v_1 \} \), and
3. \(v_4, V_4 = \{ v_4, v_1, v_3 \} \).

Example 2: \(w = 0.8 \)
Issue: \(\| q, v_j \| < \frac{w \cdot C}{1 - w} = 200 \)
Solution: Define a range
i) User-defined
ii) Data-dependent
RANKING FUNCTIONS
RATIO COMBINATION (RC)

Ranking function

\[f_{RC}(q, v_i) = \frac{|V_i| - w}{\sum_{u \in V_i} ||q, u||} \quad w \in (0, 1) \]

Goal: Find the relevant set \(V_i \) that maximizes \(f_{L^C}(q, v_i) \).

Solution: Add a friend \(v_j \) of \(v_i \) in \(V_i \) iff:

\[\frac{|V_i| - w}{\sum_{u \in V_i} ||q, u||} \leq \frac{|V_i| - w + 1}{\sum_{u \in V_i} ||q, u|| + ||q, v_j||} \]

Relevant Set

Starting from the nearest friend, keep adding friends to \(V_i \) until:

\[||q, v_j|| < \frac{|V_i|}{|V_i| - w} \cdot \frac{\sum_{u \in V_i} ||q, u||}{|V_i|} \]
RANKING FUNCTIONS
RATIO COMBINATION (RC)

Example: $w = 0.001$

Compute V_2
Initially, $V_2 = \{v_2\}, f_{RC}(v_2, V_2) = \frac{2}{1} = 2$.
Include v_4? ($||q, v_4|| > 2$)

Compute V_4
Initially, $V_4 = \{v_4\}, f_{RC}(v_4, V_4) = \frac{4}{1} = 4$.
Include v_1? ($||q, v_1|| < 4$) : $V_4 = \{v_4, v_1\}, f_{RC}(v_4, V_4) = \frac{5}{2} = 2.5$
Include v_2? ($||q, v_2|| < 2.5$) : $V_4 = \{v_4, v_1, v_2\}, f_{RC}(v_4, V_4) = \frac{7}{3} = 2.33$

Algorithmic tip:
For each user, consider only his friends who are closer to q than him.
RANKING FUNCTIONS
H-GEO-SOCIAL (HGS)

The *h*-index of an author corresponds to the maximum number *h* of his papers that have at least *h* citations.

- Let $D_1, D_2, \ldots, D_l, \ldots$ be an increasing sequence of positive numbers.

- **HGS index h_i of user v_i:** the largest value l such that:
 - $||q, v_i|| \leq D_l$ and,
 - v_i has at least m friends within distance D_m from q, $\forall m \in [1, l]$.
RANKING FUNCTIONS
H-GEO-SOCIAL (HGS)

Examples

\[D_l = \sum_{b=1}^{l} \frac{w+(b-1)w}{2^{b-1}}, \ w > 0 \]

- \(h_1 = 2, \ V_1 = \{v_2, v_4\} \)
- \(h_2 = 1, \ V_2 = \{v_1\} \)
- \(h_4 = 5, \ V_4 = \{v_1, v_3, v_5, v_7, v_8\} \)
- \(h_3 = 0 \)

Algorithmic tip: Candidate Results:
Users within \(D_1 \) and their friends.
RANKING FUNCTIONS
GEO-SOCIAL TRIANGLES (GST)

Ranking function
\[f_{GST}(q, v_i) = \sum_{\text{triangles } (v_i, u_j, u_p)} e^{-\frac{||q,v_i||+||q,u_j||+||q,u_p||}{w}} \quad w > 0 \]

- Comparable scores to triangles close to \(q \), and exponentially lower scores to triangles with large total distances.

- Relevant friends: All friends of \(v_i \) who participate in triangles with \(v_i \).

Algorithmic Tip:
BnB that generates a candidate set by only considering triangles near \(q \).
VISUALIZATION

- Real dataset: Gowalla
- 6K users
- Checked-in on the same day in Austin (Texas, US).
- Avg. degree 7.6
- Max. degree 390
- Max distance: 32km
VISUALIZATION

SPARSE AREA

LC: Set Constraints
A restaurant sending lunch promotions to potential customers within 1km.

RC: Locality is crucial
A cinema has empty seats for a film starting soon, and sends coupons to users in close proximity.

HGS: Far but many
A concert promotion targeting users with many friends in the wider area of the concert.

GST: Connectivity is essential
Similar to concert, but this time for an event (party) that involves social interaction among the various users.
CORRELATION

KENDALL’S TAU-B (τ_b) RANK CORRELATION COEFFICIENT

Statistical dependence between **two** ranking functions.

No positive correlation! ➔ Uniqueness of each ranking function ➔ Need for different functions to accommodate various application requirements.
EXPERIMENTS

Centralized Architecture, Main Memory, C++, Real Dataset (Visualization) ($k = 32$)

(a) Sparse

(b) Dense
GRAPH PARTITIONING
THE PROBLEM

EXAMPLE

A GeoSN wishes to **promote** (recommend) upcoming events. Assign each user to an event that minimizes

- the distance/travel time between the user and the event, and
- the social connectivity between users assigned to different events.

- Another criterion: Textual (dis)similarity
- Combination of criteria: Euclidean distance + Textual dissimilarity
THE PROBLEM
REAL-TIME MULTI-CRITERIA GRAPH PARTITIONING

Input:
- A weighted undirected graph $G = (V, E, W)$
- A set of classes P.
- Function $c: V \times P \rightarrow \mathbb{R}^+$: cost of assigning a user to a class,
 i.e., $c(v, s_v)$ is the cost of assigning $v \in V$ to $s_v \in P$.

Goal: Assign each user to a class such that the following equation is minimized.

$$RMGP(G, P, a) = c_n \cdot a \cdot \sum_{v \in V} c(v, s_v) + (1 - a) \cdot \sum_{e = (u, f) \in E \land s_u \neq s_f} w_e$$

$a \in (0,1)$
c_n: normalization factor
CHALLENGES

NP-Hard

Scalability

Recommendations

Real-Time

Decentralized Environment
RELATED WORK
GRAPH PARTITIONING

Attribute-based
Partition based on similarity of node attributes
[J. Sun et al., SIGKDD ’07]

Connectivity-based
Partition based on connectivity
• Normalized cut [J. Shi et al., TPAMI ’00]
• Modularity.
[M. E. Newman et al., Physical Review ‘04]

Attribute & Connectivity-based
Partition based on both connectivity and attribute similarity
• Connectivity + Eucl. Distance [Y. van Gennip et al. SIAM JAP ‘13]

Platforms for offline processing
RELATED WORK

GRAPH PARTITIONING

Uniform Metric Labeling (UML)

Input: (i) Undirected $G(V, E, W)$, (ii) a set L of k labels, (iii) assignment cost function $c: V \times L \to \mathbb{R}^+$, and (iv) a uniform function $d(l, l')$, where $l, l' \in L$, that returns 1 if $l \neq l'$; 0 otherwise.

Goal: Minimize

$$\sum_{v \in V} c(v, v_l) + \sum_{e=(u,v)\in E} w_e \cdot d(u_l, v_l)$$

NP-Hard

Same objective function, **but:**

- No preferences and normalization.
- Existing solutions focus only on theory and they are not scalable
 - [J. Kleinberg and E. Tardos, JACM ‘02]: ILP 2-approx. ratio. $O((|E| + k|V|)^{3.5})$
 - [C. Chekuri et al., SODA ‘01]: ILP 2-approx. ratio. $O((k|V| + k|E|)^{3.5}))$
 - [E. C. Bracht et al., JEA ‘04]: Greedy $8logV$-approx. ratio. $O(k|V|^{3.6})$
- No Real-time and decentralized solution.
BASELINE SOLUTION

GAME THEORY – BEST RESPONSE DYNAMICS

• Each node/user is a player who has a cost function that depends on the event \(s_v \) that he will attend and his friends’ decisions.
• His goal is to attend the event \(s_v \) that minimizes his cost function.

\[
C_v(s_v, s_v) = c_n \cdot a \cdot c(v, s_v) + (1 - a) \cdot \sum_{f \in \text{adj}(v) \land s_v \neq s_f} w(v, f)
\]

Algorithm (Best-Responses)
1. Assign a random strategy (event) to each player
2. Repeat
3. For each player \(v \in V \)
4. compute \(v \)'s best strategy (event) wrt the other players’ strategies
5. let \(v \) follow his best strategy
6. Until no player has incentive to change his strategy (Nash equilibrium)
7. Return the strategy of each player
BASELINE SOLUTION

EXAMPLE

$$a = 0.5$$

Simple but effective for recommendations and gives space for optimizations

<table>
<thead>
<tr>
<th>Steps</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>$v_1(0.29), v_4(0.735)$</td>
<td>$v_2(0.27), v_5(0.15), v_6(0.385)$</td>
<td>$v_3(0.735)$</td>
</tr>
<tr>
<td>$v_1(0.29, 0.35, 0.235)$</td>
<td>$v_4(0.735)$</td>
<td>$v_2(0.27), v_5(0.15), v_6(0.385)$</td>
<td>$v_1(0.235), v_3(0.735)$</td>
</tr>
<tr>
<td>$v_2(0.65, 0.27, 0.47)$</td>
<td>$v_4(0.735)$</td>
<td>$v_2(0.27), v_5(0.15), v_6(0.385)$</td>
<td>$v_1(0.235)$</td>
</tr>
<tr>
<td>$v_3(0.05, 0.67, 0.735)$</td>
<td>$v_3(0.05), v_4(0.385)$</td>
<td>$v_2(0.27), v_5(0.15), v_6(0.385)$</td>
<td>$v_1(0.235), v_3(0.735)$</td>
</tr>
<tr>
<td>$v_4(0.385, 0.55, 0.77)$</td>
<td>$v_3(0.05), v_4(0.385)$</td>
<td>$v_2(0.27), v_5(0.15), v_6(0.385)$</td>
<td>$v_1(0.235)$</td>
</tr>
<tr>
<td>$v_5(0.77, 0.15, 0.7)$</td>
<td>$v_3(0.05), v_4(0.385)$</td>
<td>$v_2(0.27), v_5(0.15), v_6(0.385)$</td>
<td>$v_1(0.235)$</td>
</tr>
<tr>
<td>$v_6(0.27, 0.385, 0.645)$</td>
<td>$v_3(0.05), v_4(0.385), v_6(0.27)$</td>
<td>$v_2(0.27), v_5(0.15)$</td>
<td>$v_1(0.235)$</td>
</tr>
<tr>
<td>Round 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$v_1(0.29, 0.35, 0.235)$</td>
<td>$v_3(0.05), v_4(0.385), v_6(0.27)$</td>
<td>$v_2(0.27), v_5(0.15)$</td>
<td>$v_1(0.235)$</td>
</tr>
<tr>
<td>$v_2(0.65, 0.27, 0.47)$</td>
<td>$v_3(0.05), v_4(0.385), v_6(0.27)$</td>
<td>$v_2(0.27), v_5(0.15)$</td>
<td>$v_1(0.235)$</td>
</tr>
<tr>
<td>$v_3(0.05, 0.67, 0.735)$</td>
<td>$v_3(0.05), v_4(0.385), v_6(0.27)$</td>
<td>$v_2(0.27), v_5(0.15)$</td>
<td>$v_1(0.235)$</td>
</tr>
<tr>
<td>$v_4(0.335, 0.6, 0.77)$</td>
<td>$v_3(0.05), v_4(0.335), v_6(0.27)$</td>
<td>$v_2(0.27), v_5(0.15)$</td>
<td>$v_1(0.235)$</td>
</tr>
<tr>
<td>$v_5(0.67, 0.25, 0.7)$</td>
<td>$v_3(0.05), v_4(0.335), v_6(0.27)$</td>
<td>$v_2(0.27), v_5(0.25)$</td>
<td>$v_1(0.235)$</td>
</tr>
<tr>
<td>$v_6(0.27, 0.385, 0.645)$</td>
<td>$v_3(0.05), v_4(0.335), v_6(0.27)$</td>
<td>$v_2(0.27), v_5(0.25)$</td>
<td>$v_1(0.235)$</td>
</tr>
</tbody>
</table>
Baseline solution always terminates

- Our game is an exact potential game.
 - i.e., \(\exists \) function \(\Phi \) that expresses the objective functions of all the players.
 - \(C_v(s_v, \bar{s}_v) - C_v(s'_v, \bar{s}_v) = \Phi(s_v, \bar{s}_v) - \Phi(s'_v, \bar{s}_v) \)
- Potential games **always converge**.
- Solution = Local minimum of \(\Phi \).

Time Complexity

- Number of rounds \(\times \) Complexity of each round
- \(O(\max\{|V|, |E|\} \cdot (k \cdot |V| + |E|)) \)

Price of Stability (Best Possible Solution)

- \(PoS = \frac{\text{best equilibrium}}{OPT} = 2 \)
 - best equilibrium = Global minimum of \(\Phi \).

Price of Anarchy (Worst Possible Solution)

- \(PoA = \frac{\text{worst equilibrium}}{OPT} = \text{unbounded} \)

[D. Monderer et al., GEB 1996]
Observation: There are events that a user v will never attend.

- Assume that none of his friends will attend his closest event $s_{v,min}$.
- Cost: $c_{v,min} = a \cdot c(v, s_{v,min}) + (1 - a) \cdot \sum_{f \in \text{adj}(v)} w(v,f)$
- How far he can go in order to meet them?
- User v will attend an event p iff $a \cdot c(v, p) + 0 \leq c_{v,min}$

Valid region of user $v \leq \frac{c_{v,min}}{a}$

Example: $a = 0.5$
OPTIMIZATIONS
PARALLELISM WITH INDEPENDENT STRATEGIES

Observation: if two users are not socially connected, the strategic deviations of one will not affect the best-response of the other.

- \(v_1 \)'s decision influences \(v_4 \).
- But, \(v_1 \)'s decision does not influence \(v_3 \).
- Consequently, \(v_1 \) and \(v_3 \) can select their best response simultaneously.

Main idea:
- Partition the users in groups such that no two users in the same group share an edge. [Graph Coloring]
- The best responses of the users in the same group are computed in parallel.
- Until examined all colors and no strategic deviations happened.

OPTIMIZATIONS
SCHEDULING WITH GLOBAL TABLE

Observation: Numerous redundant computations can be eliminated.

- If the set of v's friends, who follow event p does not change, then the cost of assigning v to p remains the same.
- Even if some of his friends have switched events, it is possible that v is not affected.

Solution: Global Table (GT) index:

Randomly assign each user to an event.

For all users and events, compute their cost and store them to GT.

If a user attends the minimum cost event then he is happy 😊; unhappy ☹ otherwise.

When a user deviates, it updates GT (his and his friend’s records)

During the update, users may become unhappy 😞

Examine only the unhappy users.
DECENTRALIZED GAME

1. Initialize, Q
2. Create a table T with assignments and store users’ colors.
3. Compute blue users.
4. Update T.
5. Compute red users.
6. Deviations

Query Q

1. Assignments, & users’ colors
2. Store T.
4. Update T.
2. ACK
4. ACK
3. Deviations

Master/Coordinator

Slave/Player

Slave/Player
EXPERIMENTS

RMGP VS. UML

Centralized – Main Memory – Real Dataset (Gowalla - Sampling) - C++

$k = 7$, average degree $= 7$
EXPERIMENTS
RMGP CENTRALIZED

Real Dataset (Gowalla): 13K users, 50K edges

Centralized Setting – Main Memory - C++

![Graphs showing performance comparison for different RMGP variants with varying k values and number of rounds. The graphs illustrate the time (sec) and time (ms) for each variant.]
EXPERIMENTS
RMGP: DECENTRALIZED

Real Dataset (Foursquare): 2.2 M users, 27M edges
3 Machines (100Mbps Ethernet)
CONCLUSION AND FUTURE WORK
CONCLUSION

Data Management
A general framework for Geo-Social query processing.

Geo-Social Queries
Basic and advanced (novel) queries processed under the proposed framework.

Geo-Social Ranking
Rank the users based on their social and spatial attributes.

Graph Partitioning
Real-Time Multi-criteria Graph Partitioning task for partitioning the social graph of a GeoSN.
FUTURE WORK

Geo-Social Query Optimization

Translate a GeoSN task T (e.g., range friends) into a structured (language) query Q_T, and apply multiple query optimizations techniques over Q_T automatically.

Real Dataset

Memory - Centralized

Real Dataset

Memory - Decentralized

Synthetic Dataset

Memory - Decentralized
THANK YOU
APPENDIX
LC: DATA DEPENDENT
RC: VALUE OF W
HGS DISTANCES

The graph illustrates the relationship between the distance (d/i) and the index (i). The graph shows three different types of distances:

- **d/i** (grey line)
- **geometric** (yellow line)
- **arith o geom** (blue line)
- **arithmetic** (purple line)

The x-axis represents the index (i), and the y-axis represents the distance. The graph demonstrates how the distance changes as the index increases.
EXAMPLE GST W

- Consider two users, v_1 and v_2, where
 - v_1 participates in exactly one triangle with total distance 2, and
 - v_2 is a member of two triangles each having total distance 2.1.

- If $w = 0.1$, then the scores of
 - v_1 is $2.2 \cdot 10^{-9}$ and
 - v_2 is $1.6 \cdot 10^{-9}$.

- On the other hand, when $w = 1$, the score of
 - v_1 (0.13) is lower than that of
 - v_2 (0.24).
NSG LAZY
NEAREST STAR GROUP
EAGER SOLUTION

Iteration 1
31.3
31.3
u1
u5
q
u6
u2

b_{un} = 15 < b_s = 31.3

Iteration 2
u4
u2

b_{un} = 17.8 < b_s = 29

Iteration 3
u3
u2
u1
u5

b_{un} = 21.4 < b_s = 29

Iteration 4
u4
u2
u1
u5

b_{un} = 21.8 < b_s = 26.8

Iteration 5
u3
u5
u4
u1
u7

b_{un} = 22.7 < b_s = 26.3

Iteration 6
u4
u2
u1
u5

b_{un} = 23.6 < b_s = 26.3

Iteration 7
u3
u1
u5
u7

b_{un} = 26.4 > b_s = 26.3
NSG EAGER
NORMALIZATION ISSUES

- In several applications, the assignment and social costs may not be comparable.
 - Distance vs. Edge weights
- Direct application maybe meaningless.

Goal: When $a = 0.5$,

$$
\sum_{v \in V} c(v, s_v) = \sum_{e=(u,f) \in E \land s_u \neq s_f} w_e
$$

$$
|V| \cdot AC_v = \frac{1}{2} \cdot |V| \cdot SC_v
$$

$$
c_n = \frac{SC_v}{2 \cdot AC_v}
$$
CONCLUSION

• General framework for GeoSN Query Processing
 • Segregate social, geographical and query processing modes.
 • GeoSN query is processed via a combination of primitive operations.
 • Flexible data management and algorithmic design.

• Novel GeoSN queries
 • Nearest Star Group: Social Location-based Advertisement
 • Various solutions based on different sets of primitives.

• Exhaustive Experimental Evaluation
 • Real and Synthetic Datasets.
 • Viability of our framework.
 • Practicality of our GeoSN queries and algorithms.
ACADEMIA

Geo-Social Queries

- Nearby friends with common interests.
 - No concrete processing algorithms.

- Proximity detection among friends.
 - Goal: to minimize the communication cost.

- **k-Geo-Social Circle of Friend Query (k-gCoFQ (u, k))**:
 - Returns a strong socially connected and spatially close group of $k+1$ users that contains a given user u.

- **Socio-Spatial Group Query (SSGQ(n, k, q))**:
 - Returns a group of n users, such that each member is socially connected with at least $(n - k)$ members, and the sum of distances of all members to q is minimized.

[Huang and Liu, *Geoinformatics* ‘09]

[Amir et al., *Pervasive and Mobile Computing* ‘07]

[Yiu et al., *PVLDB* ‘10]

[Liu et al., *DASFAA* ‘12]

[Yang et al., *SIGKDD* ‘12]
ACADEMIA

Metrics & Properties

• Geo-Social Influence [C. Zhang et al., CIKM 2012]
• Node Locality & Geographic Clustering Coefficient [S. Scellato et al., WOSN 2010]

Other Tasks

• Link Prediction [S. Scellato et al., WOSN 2010]
• Recommendations Y. Mao et al., SIGIR 2011]
• Location Privacy [A. Khoshgozaran et al., CSE 2009]
QUERY PROCESSING

NEAREST FRIENDS

Social Primitives
- GetFriends(u)
- AreFriends(u_i, u_j)
- GetDegree(u)

Geographical Primitives
- GetUserLocation(u)
- RangeUsers(q, r)
- NearestUsers(q, k)

1. \(F = \text{GetFriends}(u) \)
2. For each user \(u_i \in F \)
3. \(\text{GetUserLocation}(u_i) \)
4. Sort \(F \) (asc. ||q, u_i||)
5. \(R = \) top-k of \(F \)
6. Return \(R \)

Algorithm 1: \(NF_1(u, q, k) \)

Spatial Index
- Adjacency list
- Independent of check-ins
- Dense social network

Algorithm 2: \(NF_2(u, q, k) \)

1. \(F = \text{GetFriends}(u) \)
2. While \(|R| < k \)
3. \(u_i = \text{NextNearestUser}(q) \)
4. If \(u_i \in F \), add \(u_i \) into \(R \)
5. Return \(R \)

Algorithm 3: \(NF_3(u, q, k) \)

1. While \(|R| < k \)
2. \(u_i = \text{NextNearestUser}(q) \)
3. If \(\text{AreFriends}(u, u_i) \)
4. add \(u_i \) into \(R \)
5. Return \(R \)

k nearest friends of user u to location q.