
On the Expressivity of Linear Transductions

Markus Saers and Dekai Wu
Human Language Technology Center

Dept. of Computer Science and Engineering
Hong Kong University of Science and Technology

{masaers|dekai}@cs.ust.hk

Chris Quirk
Microsoft Research

One Microsoft Way, Redmond
Washington, USA

chrisq@microsoft.com

Abstract

We investigate the formal expressivity prop-
erties of linear transductions, the class of
transductions generated by linear transduc-
tion grammars, linear inversion transduction
grammars and preterminalized linear inver-
sion transduction grammars. While empiri-
cal results such as those in previous work are
of course an ultimate test of modeling ade-
quacy for machine translation applications, it
is equally important to understand the formal
theoretical properties of any such new repre-
sentation. An important part of the expressiv-
ity of a transduction is the possibility to align
tokens between the two languages generated.
We refer to the number of different alignments
that are allowed under a transduction as its
weak alignment capacity. This aspect of ex-
pressivity is quantified for linear transductions
using preterminalized linear inversion trans-
duction grammars, and compared to the ex-
pressivity of finite-state transductions, inver-
sion transductions and syntax-directed trans-
ductions.

1 Introduction

We investigate the formal expressivity properties
of linear transductions, the class of transductions
generated by linear transduction grammars (Saers,
2011, LTGs), linear inversion transduction gram-
mars (Saers et al., 2010, LITGs) and preterminal-
ized LITGs (Saers and Wu, 2011, PLITGs). While
empirical results such as those in previous work
are of course an ultimate test of modeling ade-
quacy for machine translation applications, it is

equally important to understand the formal theo-
retical properties of any such new representation.
In recent years, there has been a shift away from
surface-based translation method such as phrase-
based statistical machine translation (phrase-based
SMT) (Marcu and Wong, 2002; Koehn et al., 2003)
in favor of grammar-based SMT. Although most of
the grammar based methods still rely on surface-
based word alignments (Brown et al., 1993; Vo-
gel et al., 1996) and language specific parsers, the
grammar-based models themselves restrict reorder-
ing to a much higher degree than the surface-based
methods, which typically allow any permutation of
any segmentation of the input, and relies on heuris-
tic search methods such as beam search, to restrict
the exponential time to a tractable polynomial.

Although not always given the attention deserved,
the expressivity of different grammar-based meth-
ods varies quite a lot. Unlike monolingual gram-
mars, where all context-free grammars, for exam-
ple, fall into one class of languages, the bilingual
case is not as well-behaved. Syntax-directed trans-
duction grammars (Lewis and Stearns, 1968; Aho
and Ullman, 1972) form distinct transduction classes
for all ranks above 3, while ranks 2 and 3 form
a class of their own termed inversion transductions
(Wu, 1997), and rank 1 forms the class termed linear
transductions (Saers, 2011).

In this paper we will take a closer look at the ex-
pressive powers of transduction grammars in gen-
eral, noting that the concept of generative capac-
ity fails to capture all the relevant details. Instead,
we will propose a division of the expressivity into
a strong and weak transductive capacity and align-

Capacity Required equality
Weak

Transductive
Sentence pairs

Strong Biparse trees
Weak

Alignment
Token alignments

Strong Compositional alignments

Table 1: Capacities of transduction grammars.

ment capacity. The argument for this division is
given in our analysis of the expressive powers of
transduction grammars in Section 2. Having estab-
lished the analytical framework we will dive deeper
into the weak alignment capacity, and how our defi-
nition of this new concept fits into the existing body
of research (Section 3). After that we make a de-
tailed analysis of the very same capacity for preter-
minalized linear inversion transduction grammars
(Section 4). Finally, we offer some conclusions in
Section 5.

2 Expressivity of transduction grammars

Noting that a transduction grammar generates two
sentences instead of one, which a monolingual does,
is technically correct, but also fails to capture the
very essence of what a transduction grammar is. A
transduction grammar not only generates two sen-
tences, but also establishes a relation, not only be-
tween the sentences, but also between the parts of
the sentences.

A monolingual grammar has a weak and strong
generative capacity, corresponding to the sentences
and sentences paired with analyses (parse trees) re-
spectively, and not much attention has been paid to
how these two concepts generalize to the bilingual
case. In this paper we will argue that a finer dis-
tinction has to be made for transduction grammars.
Instead of a weak and strong generative capacity,
transduction grammars are characterized by a weak
and strong transductive capacity, as well as a weak
and strong alignment capacity. We believe that it
is possible and indeed imperative to separate these
concepts in order to correctly characterize different
transduction grammars. Table 1 shows a summary
of the different capacities, and the type of entities
used to establish equivalence.

Transduction grammars are generative grammars
that, from the start symbol, generate sentence pairs.

As such it is tempting to apply the monolingual
nomenclature and characterize them in terms of a
weak generative capacity—the sentence pairs gener-
ated, and a strong generative capacity—the analyzed
sentence pairs. This does, however, miss one crucial
point: transduction grammars relate not only the full
sentences to each other, but also their parts. In fact:
each node in a biparse tree conveys two messages:
“my yields are related” and “my immediate chil-
dren should be independently ordered such that . . . ”
This means that each node in the tree constitutes
one point where the two sentences are aligned—an
alignment point. By retaining only the alignment
information of a tree we get a compositional align-
ment, which is related to the strong alignment capac-
ity, and by retaining only the leaves of the compo-
sitional alignment we get a token alignment, which
is related to the weak alignment capacity. Both of
these alignments are given when a biparse tree of a
sentence pair is known. Since they not only generate
a sentence pair, but also this alignment information,
we will use the term weak and strong transductive
capacity to refer to the grammars capacity to gen-
erate sentence pairs and biparse trees. This serves
two purposes; first, the strong transductive capac-
ity of a transduction grammar includes its capacity
to generate alignments, making it markedly differ-
ent from the strong generative capacity of a mono-
lingual grammar; second, a sentence pair where the
pairing implies that a specific relation holds between
the two sentence is markedly different from merely
asserting membership.

3 Weak alignment capacity

In this section we operationalize the concept of weak
alignment capacity for transduction grammars, and
fit it to three classes of grammars: finite-state trans-
duction grammar, inversion transduction grammars
and syntax-directed transduction grammars.

The weak alignment capacity of a transduction
grammar is tightly related to token alignments, so
we will start by defining what we mean with the
term token alignment. Since all transduction gram-
mars considered in this paper can be put in a nor-
mal form where at most one token is produced in
either language with any one rule, we will consider
only grammars which have been normalized in this

way. It has the benefit of sparing us from consid-
ering multiple segmentations of the same sentence
pair when determining the weak alignment capacity
of a grammar. The token-to-token alignments are
matrices with dimensions equal to the two sentences
being generated. Since the grammar may contain
singletons (biterminals where one of the sides are
empty) we may encounter sentence pairs where the
two sentences are of different length. Singletons in
themselves tell us nothing of the relation between
the two languages, and add no information to the
concept of weak alignment capacity, prompting us
to exclude them from the alignments matrices. This
leaves us with a bijection between the related tokens,
which we will use as our operationalization of token
alignment. The weak alignment capacity is simply
the set of token alignments that a transduction gram-
mar can generate.

Turning to the specific grammar classes, we will
start with the most efficient grammar type: the finite-
state transduction grammars (FSTGs). These are the
grammar form of finite-state transducers, and gener-
ate finite-state transductions. Since they are inher-
ently monotonic, the only token alignments that can
be generated are perfectly straight diagonals. Given
a grammar that can generate infinitely long sentence
pairs, the set of these token alignments (one for ev-
ery possible sentence length) is also infinitely large,
which means that we cannot compare the absolute
sizes of the sets. Instead we will observe how the
number of token alignment grows as a function of
their length, and for easy comparison to following
grammars, we will express it as a recurrence for-
mula:

aF1 = 1, aFn = aFn−1 + 1

Moving on to inversion transduction grammars
(ITGs), we know from previous work (Wu, 1997;
Huang et al., 2009) that the number of token align-
ments up to and including length n is equal to the
nth large Schröder numbers (Schröder, 1870), which
can be expressed as:

aI1 = 1, aI2 = 2, aIn = 6n−9
n aIn−1 − n−3

n aIn−2

Finally, we have the arbitrary rank syntax-directed
transduction grammars (SDTGs), which are capable
of generating any permutation (Lewis and Stearns,

1968; Aho and Ullman, 1972). The number of per-
mutations are n!, which we can also formulate as a
recurrence formula:

aT1 = 1, aTn = naTn−1

It should be clear that these series grow at different
paces, and that:

aFn < aIn < aTn

4 Weak alignment capacity of PLITGs

In this section we investigate the weak alignment
capacity of preterminalized linear inversion trans-
duction grammars (PLITGs). The grammar class
was introduced in Saers and Wu (2011), as a way
to treat phrasal bilexicon induction as a transduc-
tion grammar induction problem, treating the par-
allel corpus as a linear transduction. Linear trans-
ductions have been studied previously through linear
inversion transduction grammars (Saers et al., 2010)
and linear transduction grammars (Saers, 2011). It is
reasonable to believe that the findings in this section
apply equally to these grammar formalisms, since
the equivalence of their weak transductive capacity
has been established.

Definition 1. A PLITG over languages L1 and L2

is a tuple G = 〈N,P,Σ,∆, S,R〉, where N is a
finite, nonempty set of nonterminal symbols, P is
a finite, nonempty set of preterminal symbols , Σ
and ∆ are the alphabets of L1 and L2 respectively,
S ∈ N is the designated start symbol and R is a
finite, nonempty set of preterminal linear inversion
transduction rules on the forms:

A→ [BY], A→ 〈BY 〉, A→ ε/ε,

A→ [Y B], A→ 〈Y B〉, X → a/x

where A,B ∈ N , X,Y ∈ P , a ∈ Σ∗ and x ∈ ∆∗.

In this paper, we are working with a normal form,
where a and x may only consist of zero or one to-
kens, and one of them must be nonempty for any
rule.

To illustrate how the application of PLITG rules
corresponds to the generation of a token alignment,
consider the rule A → [Y B]. Whenever it is ap-
plied, we know that A corresponds to some token

alignment, and the rule states that that token align-
ment will have a biterminal generated by Y in its top
left corner, and the rest of it will be the token align-
ment generated by B. Graphically, we can view it
as: [

A
]
→
[
1 0
0 B

]
The other three nonterminal rules can be viewed in
the same way, but with the 1 in one of the other three
corners.

We will denote the number of permutations in a
linear transduction as aLn, and using a PLITG to gen-
erate them, we can easily determine the value for
low ns by enumeration:

aL1 = 1 :
[
1
]

aL2 = 2 :

[
1 0
0 1

]
,

[
0 1
1 0

]

aL3 = 6 :

1 0 0
0 1 0
0 0 1

 ,
1 0 0

0 0 1
0 1 0

 ,
0 1 0

1 0 0
0 0 1

 ,0 1 0
0 0 1
1 0 0

 ,
0 0 1

1 0 0
0 1 0

 ,
0 0 1

0 1 0
1 0 0

At this point, the enumeration approach starts to be
cumbersome, but so far we have managed to cover
all possible permutations. We saw that PLITGs are
limited to adding new preterminals (and thus biter-
minals, and thus alignment points) in the corners of
the token alignments. Since we have, at n = 3, all
possible corner configurations, we will work with
generic corner configurations from now on.

The six different corner configurations can be
classified into two different classes: those with two
corners aligned (the maximum number of aligned
corners in a token alignment) which we will call type
A, and those with one corner aligned which we will
call type B. The six different corner configurations
can be found in Figure 2.

By rotating an A alignment 90◦ it becomes the
other A alignment, which means that anything that
holds for A1 also holds for A2 if rotated. The same
rotation argument can be made for the B align-
ments. This is important when we want to count
the total number of token alignments that a PLITG

can generate—the counts have to be equal for all A

A1 =

1 . . . 0
...

. . .
...

0 . . . 1

 , A2 =

0 . . . 1
...

. . .
...

1 . . . 0

 ,
B1 =

1 . . . 0
...

. . .
...

0 . . . 0

 , B2 =

0 . . . 0
...

. . .
...

0 . . . 1

 ,
B3 =

0 . . . 0
...

. . .
...

1 . . . 0

 , B4 =

0 . . . 1
...

. . .
...

0 . . . 0

Figure 2: The six different corner configurations that can
be generated with a PLITG.

alignments of a certain length, and all B alignments
of that length. Using the equalities:

c(A1, n) = c(A2, n) = c(A,n)

and

c(B1, n) = · · · = c(B4, n) = c(B,n)

The total number of permutations of length n can be
calculated as:

aLn = 2c(A,n) + 4c(B,n) (1)

where c(X,n) is the number of alignments of type
X and length n.

Let us start by determining c(A,n). This quantity
depends on the number of different permutations of
length n−1. Permutations of typeA1 can be formed
from shorter permutations of type A1 like this:1 . . . 0

...
. . .

...
0 . . . 1

→

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 1

but not from permutations of type A2. In fact, any A
permutation can be formed from exactly one shorter
A permutation. For any A permutation there is also
a shorter B permutation it could be formed from:1 . . . 0

...
. . .

...
0 . . . 0

→

1 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 1

aLn = 2c(A,n) + 4c(B,n)

= 2(c(A,n− 1) + c(B,n− 1)) + 4(c(A,n− 1) + 3c(B,n− 1))

= 2c(A,n− 1) + 2c(B,n− 1) + 4c(A,n− 1) + 12c(B,n− 1)

= 6c(A,n− 1) + 14c(B,n− 1)

= 8c(A,n− 1) + 16c(B,n− 1)− 2(c(A,n− 1) + c(B,n− 1))

= 4(2c(A,n− 1) + 4c(B,n− 1))− 2(c(A,n− 1) + c(B,n− 1))

= 4aLn−1 − 2(c(A,n− 2) + c(B,n− 2) + c(A,n− 2) + 3c(B,n− 2))

= 4aLn−1 − 2(2c(A,n− 2) + 4c(B,n− 2))

= 4aLn−1 − 2aLn−2

Figure 1: Derivation of the recurrence formula for the number of permutations a PLITG can generate.

It is clear that for any A permutation there is exactly
one shorter B permutation it could be formed from.
From this we have:

c(A,n) = c(A,n− 1) + c(B,n− 1) (2)

The B class permutations can also be built from
shorter A and B permutations. Specifically, there is
one shorter type of A permutations that can be used
to build a B permutation:0 . . . 1

...
. . .

...
1 . . . 0

→

0 . . . 1 0
...

. . .
...

...
1 . . . 0 0
0 . . . 0 1

Building B permutations from shorter B permuta-
tions is easier, and there are a total of three different
types of B permutation to use:0 . . . 0

...
. . .

...
0 . . . 1

→

0 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 1

0 . . . 0

...
. . .

...
1 . . . 0

→

0 . . . 0 0
...

. . .
...

...
1 . . . 0 0
0 . . . 0 1

0 . . . 1

...
. . .

...
0 . . . 0

→

0 . . . 1 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 1

The fourth type of B permutations would result in
an A type permutation. From this we have:

c(B,n) = c(A,n− 1) + 3c(B,n− 1) (3)

Plugging equations (2) and (3) into equation (1) and
performing the derivations steps shown in Figure 1,
we get:

aLn = 4aLn−1 − 2aLn−2

Comparing this recurrence formula,1 to the ones for
finite-state transduction grammars (aF), inversion
transduction grammars (aI) and syntax-directed
transduction grammars (aT) , we have:

aF1 = 1, aFn = aFn−1 + 1

aL1 = 1, aL2 = 2, aLn = 4aLn−1 − 2aLn−2

aI1 = 1, aI2 = 2, aIn = 6n−9
n aIn−1 − n−3

n aIn−2

aT1 = 1, aTn = naTn−1

Table 2 contains the number of permutations for
n ≤ 20, and Figure 3 contains a plot in logarith-
mic space of the numbers for n ≤ 40. It is clear
that linear transductions contain several orders of
magnitude fewer permutations for any non-toy sen-
tences than inversion transductions, but it is also
clear that a very large number of permutations are
represented—clearly more than for finite-state trans-
duction grammars. Comparing the weak alignment

1This is the integer series A006012 in The On-Line Encyclo-
pedia of Integer Series (www.oeis.org/A006012).

n Linear transductions Inversion transductions Syntax-directed transductions
1 1 1 1
2 2 2 2
3 6 6 6
4 20 22 24
5 68 90 120
6 232 394 720
7 792 1,806 5,040
8 2,704 8,558 40,320
9 9,232 41,586 362,880

10 31,520 206,098 3,628,800
11 107,616 1,037,718 39,916,800
12 367,424 5,293,446 479,001,600
13 1,254,464 27,297,738 6,227,020,800
14 4,283,008 142,078,746 87,178,291,200
15 14,623,104 745,387,038 1,307,674,368,000
16 49,926,400 3,937,603,038 20,922,789,888,000
17 170,459,392 20,927,156,706 355,687,428,096,000
18 581,984,768 111,818,026,018 6,402,373,705,728,000
19 1,987,020,288 600,318,853,926 121,645,100,408,832,000
20 6,784,111,616 3,236,724,317,174 2,432,902,008,176,640,000

Table 2: The number of permutations in different transductions for the first 20 values of n.

Figure 3: Number of permutations in syntax-directed transductions (dotted line), inversion transductions (solid line)
and linear transductions (dashed line) as a function of the length of the sentence pair.

[0, 1, 2, 3] [0, 1, 3, 2] [0, 2, 1, 3] [0, 2, 3, 1] [0, 3, 1, 2] [0, 3, 2, 1]

[1, 0, 2, 3] ∗ [1, 0, 3, 2] [1, 2, 0, 3] [1, 2, 3, 0] ∗ [1, 3, 0, 2] [1, 3, 2, 0]

[2, 0, 1, 3] ∗ [2, 0, 3, 1] [2, 1, 0, 3] [2, 1, 3, 0] ∗ [2, 3, 0, 1] [2, 3, 1, 0]

[3, 0, 1, 2] [3, 0, 2, 1] [3, 1, 0, 2] [3, 1, 2, 0] [3, 2, 0, 1] [3, 2, 1, 0]

Figure 4: All permutation vectors of length four. Those a PLITG cannot generate are marked with an asterisk.

capacity of PLITGs to the other grammar classes we
already know, we have:

aFn < aLn < aIn < aTn

That the weak reordering capacity of one grammar
class is strictly contained within another is not sur-
prising, since these grammar classes have already
been studied from what we in this paper term weak
transductive capacity, and found to have the same
relationship to each other (Aho and Ullman, 1972;
Saers, 2011). One difference to earlier work is
that we not only have the relationship between the
classes, but also a quantification of their differences.

It is also clear that finite-state transductions are
the odd one out, as the number of alignments is sig-
nificantly smaller than for any of the other grammar
classes. We attribute this to the fact that a FSTG re-
stricts the possible bispans that can make up a parse,
whereas the others do not. Enumerating the bispans
that can make up a constituent for SDTGs, ITGs and
PLITGs (parsing the sentence pair 〈e, f〉) we have:

{〈s, t, u, v〉|0 ≤ s ≤ t ≤ |e|, 0 ≤ u ≤ v ≤ |f |}

Whereas the same set for a right-linear FSTG is:

{〈s, t, u, v〉|0 ≤ s ≤ t = |e|, 0 ≤ u ≤ v = |f |}

Changing the inequalities to equalities makes the set
two orders of magnitude smaller for FSTGS than for
the other three classes.

Merely counting the number of token alignments
that can be generated offers, however, little in terms
of actual understanding of, for example, the limita-
tions of linear transductions over inversion transduc-
tions. To delve a little deeper, we will also look at the
permutation vectors2 of length four. Both ITGs and

2A permutation vector is a vector where each number cor-
responds to the row where the one in the corresponding token
alignment was found.

PLIGs are capable of generating all permutation vec-
tors up to length three, so length four is where they
start to diverge. Consulting Table 2 (or the above re-
currence formulas), we see that ITGs are capable of
generating 22 of the 24 possible permutation vectors
of length four, whereas PLITGs only generate 20 of
them. From previous work we know that ITGs fail
to generate the so called inside-out alignments, rep-
resented by the permutation vectors [2, 4, 1, 3] and
[3, 1, 4, 2] (Wu, 1997). Let us now turn to PLITGs.

We know that all the token alignments that a
PLITG can generate will have one of the corner con-
figurations A1, A2, B1, . . . , B4. Converting them
into underspecified permutation vector form we
have the following set of permutation vectors:

A0 = [0, ?, ?, 3] , A1 = [3, ?, ?, 0] ,

B0 = [0, ?, ?, ?] , B1 = [3, ?, ?, ?] ,

B3 = [?, ?, ?, 3] , B2 = [?, ?, ?, 0]

Since we wish to use these permutation vector tem-
plates as conditions to test all possible permutations
against, we will start by noting that the A permu-
tations have the property that they satisfy the con-
straints of two B vectors, such that A1 = B1 ∧ B4

and A2 = B2 ∧ B3. Any permutation vector that
matches a B vector can thus be generated by a
PLITG.3 Having made this initial analysis we can in-
spect the full set of 24 possible permutation vectors,
and be sure to find four vectors that neither ends nor
begins with a 1 or 4. These are the four that cannot
be generated by a PLITG. Figure 4 shows the results
of this.

The first thing to notice is that a PLITG is unable
to generate the inside-out alignments, which is ex-

3This is only valid for permutation vectors of length four,
since we know that the underspecified part, being of length
three, constitutes a valid permutation vector.

pected since linear transductions are a proper sub-
set of inversion transductions. The other two that
cannot be generated are [1, 0, 3, 2] (which we call
serial inversion) and [2, 3, 0, 1] (which we call con-
stituent swapping). Whereas there are some evi-
dence that the inside-out alignments are irrelevant
to natural language translation (Huang et al., 2009;
Søgaard, 2010), no such results exist for serial inver-
sion and constituent swapping. On the contrary, we
intuitively expect these phenomena to be frequent
between natural languages. We consider this to be
a serious problem with linear transductions, but em-
pirical studies will have give the final say on how
much it hurts performance.

5 Conclusions

In this paper we have presented an analysis of
the weak reordering capacity of linear transduc-
tions, and compared it to that of finite-state trans-
duction grammars, inversion transduction grammars
and syntax-directed transduction grammars. We
have showed that it is possible to quantify the ex-
act number of permutations contained within a lin-
ear transduction as a function of the length of the
sentence pair, and compared it to similar measures
for the other transduction types. As linear trans-
ductions are a proper subset of inversion transduc-
tions, the number of permutations is lower but still
high. Whether the permutations lost by moving from
inversion transductions to linear transductions are
needed or not has to be further studied.

We believe that this kind of analysis is useful for
understanding the modeling restrictions of different
kinds of grammar-based approaches to translation.
A firm understanding of the models used is impera-
tive to interpreting the empirical results they yield.

Acknowledgments

This work was funded by the Defense Advanced
Research Projects Agency (DARPA) under GALE

Contract Nos. HR0011-06-C-0023 and HR0011-
06-C-0023, and the Hong Kong Research Grants
Council (RGC) under research grants GRF621008,
GRF612806, DAG03/04.EG09, RGC6256/00E, and
RGC6083/99E. Any opinions, findings and conclu-
sions or recommendations expressed in this material
are those of the authors and do not necessarily reflect

the views of DARPA.

References
Alfred V. Aho and Jeffrey D. Ullman. 1972. The The-

ory of Parsing, Translation, and Compiling. Prentice-
Halll, Englewood Cliffs, NJ.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The mathe-
matics of statistical machine translation: Parameter es-
timation. Computational Linguistics, 19(2):263–311.

Liang Huang, Hao Zhang, Daniel Gildea, and Kevin
Knight. 2009. Binarization of synchronous
context-free grammars. Computational Linguistics,
35(4):559–595, December.

Philipp Koehn, Franz Joseph Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of the Human Language Technology and North
American Association for Computational Linguistics
Conference, Edmonton, Canada, May/June.

Philip M. Lewis and Richard E. Stearns. 1968. Syntax-
directed transduction. Journal of the Association for
Computing Machinery, 15(3):465–488.

Daniel Marcu and Daniel Wong. 2002. A phrase-
based,joint probability model for statistical machine
translation. In Proceedings of the 2002 Conference
on Empirical Methods in Natural Language Process-
ing, pages 133–139, Philadelphia, Pennsylvania, July.
Association for Computational Linguistics.

Markus Saers and Dekai Wu. 2011. Principled induction
of phrasal bilexica. In Proceedings of the 15th Annual
Conference of the European Association for Machine
Translation, Leuven, Belgium, May.

Markus Saers, Joakim Nivre, and Dekai Wu. 2010. Word
alignment with stochastic bracketing linear inversion
transduction grammar. In HLT/NAACL2010, pages
341–344, Los Angeles, California, June. Association
for Computational Linguistics.

Markus Saers. 2011. Translation as Linear Transduc-
tion: Models and Algorithms for Efficient Learning in
Statistical Machine Translation. Ph.D. thesis, Uppsala
University, Department of Linguistics and Philology.

Ernst Schröder. 1870. Vier combinatorische probleme.
Zeitschrift für Mathematik und Physik, 15:361–376.

Anders Søgaard. 2010. Can inversion transduction
grammars generate hand alignments? In Proceedings
of the 14th Annual Conference of the European Asso-
ciation for Machine Translation, St. Raphael, France.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical
translation. In Proceedings of the 16th International
Conference on Computational Linguistics, volume 1,
pages 836–841, Copenhagen, Denmark, August.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

