Lecture 12: Chain Matrix Multiplication CLRS Section 15.2

Outline of this Lecture

- Recalling matrix multiplication.
- The chain matrix multiplication problem.
- A dynamic programming algorithm for chain matrix multiplication.

Recalling Matrix Multiplication

Matrix: An $n \times m$ matrix $A=[a[i, j]]$ is a twodimensional array
$A=\left[\begin{array}{ccccc}a[1,1] & a[1,2] & \cdots & a[1, m-1] & a[1, m] \\ a[2,1] & a[2,2] & \cdots & a[2, m-1] & a[2, m] \\ \vdots & \vdots & & \vdots & \vdots \\ a[n, 1] & a[n, 2] & \cdots & a[n, m-1] & a[n, m]\end{array}\right]$,
which has n rows and m columns.

Example: The following is a 4×5 matrix:

$$
\left[\begin{array}{rrrrr}
12 & 8 & 9 & 7 & 6 \\
7 & 6 & 89 & 56 & 2 \\
5 & 5 & 6 & 9 & 10 \\
8 & 6 & 0 & -8 & -1
\end{array}\right] .
$$

Recalling Matrix Multiplication

The product $C=A B$ of a $p \times q$ matrix A and a $q \times r$ matrix B is a $p \times r$ matrix given by

$$
c[i, j]=\sum_{k=1}^{q} a[i, k] b[k, j]
$$

for $1 \leq i \leq p$ and $1 \leq j \leq r$.

Example: If

$$
A=\left[\begin{array}{rrr}
1 & 8 & 9 \\
7 & 6 & -1 \\
5 & 5 & 6
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 8 \\
7 & 6 \\
5 & 5
\end{array}\right],
$$

then

$$
C=A B=\left[\begin{array}{rr}
102 & 101 \\
44 & 87 \\
70 & 100
\end{array}\right] .
$$

Remarks on Matrix Multiplication

- If $A B$ is defined, $B A$ may not be defined.
- Quite possible that $A B \neq B A$.
- Multiplication is recursively defined by

$$
\begin{aligned}
& A_{1} A_{2} A_{3} \cdots A_{s-1} A_{s} \\
& \quad=A_{1}\left(A_{2}\left(A_{3} \cdots\left(A_{s-1} A_{s}\right)\right)\right) .
\end{aligned}
$$

- Matrix multiplication is associative , e.g.,

$$
A_{1} A_{2} A_{3}=\left(A_{1} A_{2}\right) A_{3}=A_{1}\left(A_{2} A_{3}\right),
$$

so parenthenization does not change result.

Direct Matrix multiplication $A B$

Given a $p \times q$ matrix A and a $q \times r$ matrix B, the direct way of multiplying $C=A B$ is to compute each

$$
\begin{aligned}
& \qquad c[i, j]=\sum_{k=1}^{q} a[i, k] b[k, j] \\
& \text { for } 1 \leq i \leq p \text { and } 1 \leq j \leq r
\end{aligned}
$$

Complexity of Direct Matrix multiplication:

Note that C has $p r$ entries and each entry takes $\Theta(q)$ time to compute so the total procedure takes $\Theta(p q r)$ time.

Direct Matrix multiplication of $A B C$

Given a $p \times q$ matrix A, a $q \times r$ matrix B and a $r \times s$ matrix C, then $A B C$ can be computed in two ways $(A B) C$ and $A(B C)$:

The number of multiplications needed are:

$$
\begin{aligned}
\operatorname{mult}[(A B) C] & =p q r+p r s \\
\operatorname{mult}[A(B C)] & =q r s+p q s
\end{aligned}
$$

When $p=5, q=4, r=6$ and $s=2$, then

$$
\begin{aligned}
\operatorname{mult}[(A B) C] & =180 \\
\operatorname{mult}[A(B C)] & =88
\end{aligned}
$$

A big difference!

Implication: The multiplication "sequence" (parenthesization) is important!!

The Chain Matrix Multiplication Problem

Given

dimensions $p_{0}, p_{1}, \ldots, p_{n}$
corresponding to matrix sequence $A_{1}, A_{2}, \ldots, A_{n}$ where A_{i} has dimension $p_{i-1} \times p_{i}$,
determine the "multiplication sequence" that minimizes the number of scalar multiplications in computing $A_{1} A_{2} \cdots A_{n}$. That is, determine how to parenthisize the multiplications.

$$
\begin{aligned}
A_{1} A_{2} A_{3} A_{4} & =\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right) \\
& =A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)=A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right) \\
& =\left(\left(A_{1} A_{2}\right) A_{3}\right)\left(A_{4}\right)=\left(A_{1}\left(A_{2} A_{3}\right)\right)\left(A_{4}\right)
\end{aligned}
$$

Exhaustive search: $\Omega\left(4^{n} / n^{3 / 2}\right)$.

Question: Any better approach?

Developing a Dynamic Programming Algorithm

Step 1: Determine the structure of an optimal solution (in this case, a parenthesization).

Decompose the problem into subproblems: For each pair $1 \leq i \leq j \leq n$, determine the multiplication sequence for $A_{i . . j}=A_{i} A_{i+1} \cdots A_{j}$ that minimizes the number of multiplications.

Clearly, $A_{i . . j}$ is a $p_{i-1} \times p_{j}$ matrix.
Original Problem: determine sequence of multiplication for $A_{1 . . n}$.

Developing a Dynamic Programming Algorithm

Step 1: Determine the structure of an optimal solution (in this case, a parenthesization).

High-Level Parenthesization for $A_{i . . j}$

For any optimal multiplication sequence, at the last step you are multiplying two matrices $A_{i . . k}$ and $A_{k+1 . . j}$ for some k. That is,

$$
A_{i . . j}=\left(A_{i} \cdots A_{k}\right)\left(A_{k+1} \cdots A_{j}\right)=A_{i . . k} A_{k+1 . . j} .
$$

Example

$$
A_{3 . .6}=\left(A_{3}\left(A_{4} A_{5}\right)\right)\left(A_{6}\right)=A_{3.5} A_{6 . .6} .
$$

Here $k=5$.

Developing a Dynamic Programming Algorithm

Step 1 - Continued: Thus the problem of determining the optimal sequence of multiplications is broken down into 2 questions:

- How do we decide where to split the chain (what is k)?
(Search all possible values of k)
- How do we parenthesize the subchains

$$
A_{i . . k} \text { and } A_{k+1 . . j} ?
$$

(Problem has optimal substructure property that $A_{i . . k}$ and $A_{k+1 . . j}$ must be optimal so we can apply the same procedure recursively)

Developing a Dynamic Programming Algorithm

Step 1 - Continued:

Optimal Substructure Property: If final "optimal" solution of $A_{i . . j}$ involves splitting into $A_{i . . k}$ and $A_{k+1 . . j}$ at final step then parenthesization of $A_{i . . k}$ and $A_{k+1 . . j}$ in final optimal solution must also be optimal for the subproblems "standing alone":

If parenthisization of $A_{i . . k}$ was not optimal we could replace it by a better parenthesization and get a cheaper final solution, leading to a contradiction.

Similarly, if parenthisization of $A_{k+1 . . j}$ was not optimal we could replace it by a better parenthesization and get a cheaper final solution, also leading to a contradiction.

Developing a Dynamic Programming Algorithm

Step 2: Recursively define the value of an optimal solution.

As with the 0-1 knapsack problem, we will store the solutions to the subproblems in an array.

For $1 \leq i \leq j \leq n$, let $m[i, j]$ denote the minimum number of multiplications needed to compute $A_{i . . j}$. The optimum cost can be described by the following recursive definition.

Developing a Dynamic Programming Algorithm

Step 2: Recursively define the value of an optimal solution.

$$
m[i, j]= \begin{cases}0 & i=j, \\ \min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right) & i<j\end{cases}
$$

Proof: Any optimal sequence of multiplication for $A_{i . . j}$ is equivalent to some choice of splitting

$$
A_{i . . j}=A_{i . . k} A_{k+1 . . j}
$$

for some k, where the sequences of multiplications for $A_{i . . k}$ and $A_{k+1 . . j}$ also are optimal. Hence

$$
m[i, j]=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j} .
$$

Developing a Dynamic Programming Algorithm

Step 2 - Continued: We know that, for some k

$$
m[i, j]=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}
$$

We don't know what k is, though
But, there are only $j-i$ possible values of k so we can check them all and find the one which returns a smallest cost.

Therefore

$$
m[i, j]= \begin{cases}0 & i=j, \\ \min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right) & i<j\end{cases}
$$

Developing a Dynamic Programming Algorithm

Step 3: Compute the value of an optimal solution in a bottom-up fashion.

Our Table: m [1..n, 1..n].
$m[i, j]$ only defi ned for $i \leq j$.
The important point is that when we use the equation

$$
m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right)
$$

to calculate $m[i, j]$ we must have already evaluated $m[i, k]$ and $m[k+1, j]$. For both cases, the corresponding length of the matrix-chain are both less than $j-i+1$. Hence, the algorithm should fill the table in increasing order of the length of the matrixchain.

That is, we calculate in the order

$$
\begin{aligned}
& m[1,2], m[2,3], m[3,4], \ldots, m[n-3, n-2], m[n-2, n-1], m[n-1, n] \\
& m[1,3], m[2,4], m[3,5], \ldots, m[n-3, n-1], m[n-2, n] \\
& m[1,4], m[2,5], m[3,6], \ldots, m[n-3, n] \\
& \vdots \\
& m[1, n-1], m[2, n] \\
& m[1, n]
\end{aligned}
$$

Dynamic Programming Design Warning!!

When designing a dynamic programming algorithm there are two parts:

1. Finding an appropriate optimal substructure property and corresponding recurrence relation on table items. Example:

$$
m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right)
$$

2. Filling in the table properly.

This requires finding an ordering of the table elements so that when a table item is calculated using the recurrence relation, all the table values needed by the recurrence relation have already been calculated.

In our example this means that by the time $m[i, j]$ is calculated all of the values $m[i, k]$ and $m[k+$ $1, j$] were already calculated.

Example for the Bottom-Up Computation

Example: Given a chain of four matrices A_{1}, A_{2}, A_{3} and A_{4}, with $p_{0}=5, p_{1}=4, p_{2}=6, p_{3}=2$ and $p_{4}=7$. Find $m[1,4]$.

S0: Initialization

Example - Continued

Stp 1: Computing $m[1,2]$ By definition

$$
\begin{aligned}
m[1,2] & =\min _{1 \leq k<2}\left(m[1, k]+m[k+1,2]+p_{0} p_{k} p_{2}\right) \\
& =m[1,1]+m[2,2]+p_{0} p_{1} p_{2}=120 .
\end{aligned}
$$

Example - Continued

Stp 2: Computing $m[2,3]$ By definition

$$
\begin{aligned}
m[2,3] & =\min _{2 \leq k<3}\left(m[2, k]+m[k+1,3]+p_{1} p_{k} p_{3}\right) \\
& =m[2,2]+m[3,3]+p_{1} p_{2} p_{3}=48 .
\end{aligned}
$$

Example - Continued

Stp3: Computing $m[3,4]$ By definition

$$
\begin{aligned}
m[3,4] & =\min _{3 \leq k<4}\left(m[3, k]+m[k+1,4]+p_{2} p_{k} p_{4}\right) \\
& =m[3,3]+m[4,4]+p_{2} p_{3} p_{4}=84 .
\end{aligned}
$$

Example - Continued

Stp4: Computing $m[1,3]$ By definition

$$
\begin{aligned}
m[1,3] & =\min _{1 \leq k<3}\left(m[1, k]+m[k+1,3]+p_{0} p_{k} p_{3}\right) \\
& =\min \left\{\begin{array}{l}
m[1,1]+m[2,3]+p_{0} p_{1} p_{3} \\
m[1,2]+m[3,3]+p_{0} p_{2} p_{3}
\end{array}\right\} \\
& =88 .
\end{aligned}
$$

Example - Continued

Stp5: Computing $m[2,4]$ By definition

$$
\begin{aligned}
m[2,4] & =\min _{2 \leq k<4}\left(m[2, k]+m[k+1,4]+p_{1} p_{k} p_{4}\right) \\
& =\min \left\{\begin{array}{l}
m[2,2]+m[3,4]+p_{1} p_{2} p_{4} \\
m[2,3]+m[4,4]+p_{1} p_{3} p_{4}
\end{array}\right\} \\
& =104 .
\end{aligned}
$$

Example - Continued

St6: Computing $m[1,4]$ By definition

$$
\begin{aligned}
m[1,4] & =\min _{1 \leq k<4}\left(m[1, k]+m[k+1,4]+p_{0} p_{k} p_{4}\right) \\
& =\min \left\{\begin{array}{l}
m[1,1]+m[2,4]+p_{0} p_{1} p_{4} \\
m[1,2]+m[3,4]+p_{0} p_{2} p_{4} \\
m[1,3]+m[4,4]+p_{0} p_{3} p_{4}
\end{array}\right\} \\
& =158 .
\end{aligned}
$$

We are done!

Developing a Dynamic Programming Algorithm

Step 4: Construct an optimal solution from computed information - extract the actual sequence.

Idea: Maintain an array $s[1 . . n, 1 . . n]$, where $s[i, j]$ denotes k for the optimal splitting in computing $A_{i . . j}=$ $A_{i . . k} A_{k+1 . . j}$. The array $s[1 . . n, 1 . . n]$ can be used recursively to recover the multiplication sequence.

How to Recover the Multiplication Sequence?

$$
\begin{aligned}
& s[1, n] \\
& s[1, s[1, n]] \\
& s[s[1, n]+1, n]
\end{aligned}
$$

$$
\left(A_{1} \cdots A_{s[1, n]}\right)\left(A_{s[1, n]+1} \cdots A_{n}\right)
$$

$$
\left(A_{1} \cdots A_{s[1, s[1, n]]}\right)\left(A_{s[1, s[1, n]]+1} \cdots A_{s[1, n]}\right)
$$

$$
\left(A_{s[1, n]+1} \cdots A_{s[s[1, n]+1, n]}\right) \times
$$

$$
\left(A_{s[s[1, n]+1, n]+1} \cdots A_{n}\right)
$$

Do this recursively until the multiplication sequence is determined.

Developing a Dynamic Programming Algorithm

Step 4: Construct an optimal solution from computed information - extract the actual sequence.

Example of Finding the Multiplication Sequence:

 Consider $n=6$. Assume that the array $s[1 . .6,1 . .6]$ has been computed. The multiplication sequence is recovered as follows.$$
\begin{array}{ll}
s[1,6]=3 & \left(A_{1} A_{2} A_{3}\right)\left(A_{4} A_{5} A_{6}\right) \\
s[1,3]=1 & \left(A_{1}\left(A_{2} A_{3}\right)\right) \\
s[4,6]=5 & \left(\left(A_{4} A_{5}\right) A_{6}\right)
\end{array}
$$

Hence the final multiplication sequence is

$$
\left(A_{1}\left(A_{2} A_{3}\right)\right)\left(\left(A_{4} A_{5}\right) A_{6}\right)
$$

The Dynamic Programming Algorithm

```
Matrix-Chain \((p, n)\)
\(\{\) for \((i=1\) to \(n) m[i, i]=0\);
    for \((l=2\) to \(n)\)
    \{
        for \((i=1\) to \(n-l+1)\)
        \{
            \(j=i+l-1 ;\)
            \(m[i, j]=\infty\);
            for \((k=i\) to \(j-1)\)
            \{
                \(q=m[i, k]+m[k+1, j]+p[i-1] * p[k] * p[j] ;\)
                if \((q<m[i, j])\)
                \(m[i, j]=q ;\)
                \(s[i, j]=k ;\)
                \}
            \}
    \}
    \}
    return \(m\) and \(s\); (Optimum in \(m[1, n]\) )
\}
```

Complexity: The loops are nested three deep.
Each loop index takes on $\leq n$ values. Hence the time complexity is $O\left(n^{3}\right)$. Space complexity $\Theta\left(n^{2}\right)$.

Constructing an Optimal Solution: Compute $A_{1 . . n}$

The actual multiplication code uses the $s[i, j]$ value to determine how to split the current sequence. Assume that the matrices are stored in an array of matrices $A[1 . . n]$, and that $s[i, j]$ is global to this recursive procedure. The procedure returns a matrix.

```
Mult(A,s,i,j)
{
if (i<j)
{
X=Mult(A,s,i,s[i,j]);
        X is now }\mp@subsup{A}{i}{}\cdots\mp@subsup{A}{k}{}\mathrm{ , where }k\mathrm{ is }s[i,j
    Y=Mult(A,s,s[i,j]+1,j);
        Y is now }\mp@subsup{A}{k+1}{}\cdots\mp@subsup{A}{j}{
    return }X*Y; multiply matrices X and 
    }
    else return A[i];
}
```

To compute $A_{1} A_{2} \cdots A_{n}$, call $\operatorname{Mult}(A, s, 1, n)$.

Constructing an Optimal Solution: Compute $A_{1 . . n}$

Example of Constructing an Optimal Solution: Compute $A_{1 . .6}$.

Consider the example earlier, where $n=6$. Assume that the array $s[1 . .6,1 . .6]$ has been computed. The multiplication sequence is recovered as follows.

```
\(\operatorname{Mult}(A, s, 1,6), s[1,6]=3,\left(A_{1} A_{2} A_{3}\right)\left(A_{4} A_{5} A_{6}\right)\)
\(\operatorname{Mult}(A, s, 1,3), s[1,3]=1,\left(\left(A_{1}\right)\left(A_{2} A_{3}\right)\right)\left(A_{4} A_{5} A_{6}\right)\)
\(\operatorname{Mult}(A, s, 4,6), s[4,6]=5,\left(\left(A_{1}\right)\left(A_{2} A_{3}\right)\right)\left(\left(A_{4} A_{5}\right)\left(A_{6}\right)\right)\)
\(\operatorname{Mult}(A, s, 2,3), s[2,3]=2,\left(\left(A_{1}\right)\left(\left(A_{2}\right)\left(A_{3}\right)\right)\right)\left(\left(A_{4} A_{5}\right)\left(A_{6}\right)\right)\)
\(\operatorname{Mult}(A, s, 4,5), s[4,5]=4,\left(\left(A_{1}\right)\left(\left(A_{2}\right)\left(A_{3}\right)\right)\right)\left(\left(\left(A_{4}\right)\left(A_{5}\right)\right)\left(A_{6}\right)\right)\)
```

Hence the product is computed as follows

$$
\left(A_{1}\left(A_{2} A_{3}\right)\right)\left(\left(A_{4} A_{5}\right) A_{6}\right)
$$

