Lecture 5: The Linear Time Selection in the worst case

In the last lecture, we discussed a randomized selection algorithm that runs in $O(n)$ in average. In this class, we discuss a deterministic algorithm that runs in $O(n)$ in the worst case.

Observation and Intuition

If we follow the Partition idea to solve the selection problem, which step(s) make the worst case running time becomes $O\left(n^{2}\right)$?

We make a 'bad' split in each iteration. So the trick here is in each iteration, we 'pick' a good element such that it 'guarantees' a good split.

How to get such a 'good' element in each iteration?

```
DSelection(A, p, r, i)
```

1. Divide the $n=p-r+1$ items into $\lceil n / 5\rceil$ sets in which each, except possibly the last, contains 5 items. $O(n)$
2. Find median of each of the $\lceil n / 5\rceil$ sets. $O(n)$
3. Take these $\lceil n / 5\rceil$ medians and put them in another array. Use DSelection() to recursively calculate the median of these medians. Call this $x . T(n / 5)$
4. Partition the original array using x as the pivot. Let q be index of x, i.e., x is the $k=q-p+1$ 'st smallest element in original array. $O(n)$
5. If $i=k$ return x

If $i<k$ return DSelection (A, p, q-1,i)
If $i>k$ return $\mathrm{DSelection}(\mathrm{A}, \mathrm{q}+1, \mathrm{r}, \mathrm{i}-\mathrm{k})$
$T(\max (q-p, r-q))$

Termination condition:

If $n \leq 5$ sort the items and return the i th largest.

The algorithm returns the correct answer because lines 4 and 5 will always return correct solution, no matter which x is used as pivot.

The reason for lines 1,2 , and 3 is to guarantee that x is "near" the center of the array $\Rightarrow \mathrm{a}$ 'good' split.

How many elements in A are greater (less) than x ? Answer (proven next page): At least

$$
\frac{3 n}{10}-6
$$

Assuming that $T(n)$ is non-decreasing this implies that time used by step 5 is at most

$$
T\left(\frac{7 n}{10}\right)+6 .
$$

Lemma: At least

$$
\frac{3 n}{10}-6
$$

elements are greater (less) than x.
Proof: We assume that all elements are distinct (not needed but makes the analysis a bit cleaner).

At least $1 / 2$ of the $\left\lceil\frac{n}{5}\right\rceil$ medians in step 2 are greater than x.

Ignoring the group to which x belongs and the (possibly small) final group this leaves $\frac{1}{2} \frac{n}{5}-2$ groups whose medians are greater than x.

Each such group has at least 3 items greater than x . Then, number of items greater than x is at least

$$
3\left(\frac{1}{2}\left[\frac{n}{5}\right]-2\right) \geq \frac{3 n}{10}-6
$$

Analysis of number less than x is exactly the same!

Running Time of Algorithm

Assume any input with $n \leq 140$ uses O (1) time.

Let a be such that Steps 1,3,4 need at most an time.

Assume that $T(n)$ is non-decreasing. Then

$$
T(n) \leq \begin{cases}\Theta(1) & \text { if } n \leq 140 \\ T([n / 5\rceil)+T(7 n / 10+6)+a n & \text { if } n>140\end{cases}
$$

We will show, by induction that $T(n) \leq c n, \forall n>0$. Choose c large enough that $\forall n \leq 140, T(n) \leq c n$.

By induction hypothesis

$$
\begin{aligned}
T(n) & \leq T(\lceil n / 5\rceil)+T(7 n / 10+6)+a n \\
& \leq c\lceil n / 5\rceil+c(7 n / 10+6)+a n \\
& \leq c n / 5+c+7 c n / 10+6 c+a n \\
& =9 c n / 10+7 c+a n \\
& =c n+(-c n / 10+7 c+a n)
\end{aligned}
$$

Have already seen that

$$
T(n) \leq c n+(-c n / 10+7 c+a n)
$$

We want to show that $T(n) \leq c n$ so we would be finished if, $\forall n \geq 140$

$$
\begin{aligned}
0 & \geq-c n+70 c+10 a n \\
& =-c(n-70)+10 a n
\end{aligned}
$$

or

$$
c \geq 10 a(n /(n-70))
$$

Since $n \geq 140$ we have $n /(n-70)<2$ so this will be true for any $c \geq 20 a$ and we have shown that $T(n) \leq c n$ for all $n \geq 140$ and

$$
T(n)=O(n)
$$

