COMP 151: Object-Oriented Programming
Spring Semester 2005
Midterm Examination
Thursday, March 17, 2005
7:30pm — 10:00pm

This is aCLOSED-BOOK-CLOSED-NOTES exam consisting of six (6) problems. Follow the instructions carefully.
Please write legibly in thboxesprovided. Any space outside the boxes is for sketching and will not be gradtesp the
exam booklet stapled. Write legibly. You may use pencil to answer the questions.

Name: KEY

E-mail:

ID:

LAB:
Problem Points Score
1 OBJECT INITIALIZATION 5
2 MEMORY MANAGEMENT 7
3 INHERITANCE: | 4
4 INHERITANCE: Il 7
5 OBJECTORIENTED MINI-PHOTOSHOP 18
6 INHERITANCE: Il 29
Total 70




1 Object initialization (5 POINTS)

Consider the following class interface and implementation filpgue.h and queue.cpp , respectively, for a user-
defined clasQueue.

/I queue.h

#ifndef QUEUE_H
#define QUEUE_H

struct Node;

class Queue

{

public:
Queue(int size); /I constructor

private:
int gsize; /[l maximum number of items in Queue
int nitems; /I current number of items in Queue
Node* head; /I pointer to head of Queue
Nodex* tail; /I pointer to tail of Queue

h

#endif

/I queue.cpp
#include "queue.h"

struct Node

double item;
Node* next;
3
Queue::Queue(int size)
{
gsize = size;
nitems = 0O;
head = tail = O;
}

Suppose we want to change the private member varggite of Queue to a constant name@SIZE.



(a) (3 PoINTS) Show all change(s) that you should make to the file(s) for the class to work properly.

Answer:
The following changes should be made:

i. Change int gsize ”in queue.h to“const int QSIZE
ii. Change the constructor definition @uieue::Queue() to
Queue::Queue(int size) : QSIZE(size)

{ nitems = O;
head = tail = 0;
}
(b) (2 PoINTS) Explain why initialization of the constarSIZE cannot be done inside the class interface in
queue.h .
Answer:

It does not make sense to initialize the constant value in the class interface because we have to initialize the
constant value for each object which can only be done during its creation via a constructor.



2 Memory management(7 POINTS)
Consider the following program:

#include <cstring>
using namespace std;

class Employee

* lasthame)

{
public:
Employee(const char =+ firstname, const char * lastname);
private:
char » _firsthame;
char * _lastname;
2
Employee::Employee(const char * firstname, const char
{
_firsthname = new char[strlen(firstname)+1];
strepy(_firstname, firsthame);
_lastname = new char[strlen(lastname)+1];
strepy(_lastname, lastname);
}

void process()

Employee * e; I (A)

Employee f("Arthur”, "Li"); Il (B)

e = new Employee("Donald", "Tsang"); Il (C)

delete e€; /I (D)
}

int main()

{
/I code omitted
process(); Il (E)
/I code omitted

return O;



(a) (2.5 PoINTS) The program shows a bad practice in memory management. Add some code to the class definition
to correct the problem.

Answer:
Add a destructor to the public section of Employee and then give the destructor definition as follows:

Employee::"Employee() {
delete [] _firsthame;
delete [] _lastname;

}

(b) (4.5 PoINTS) Assuming that the change(s) in (a) has/have already been made.rraitf@¢ a void function
process() is called. During the function call, some variables are created and then possibly destroyed later.
For each variable created, indicate the program statement (statgerE) ) where it iscreated and pos-
sibly destroyed and thememory area (system stack or system heap) from which memory is allocated and
deallocated.

For example, a typical answer is “variable X is created at state(i¥@nby allocating memory from Z and then
destroyed at statemefT) ". Assume that each checkpoif®) -(E) is right after the corresponding statement.
Answer:

e e is created afA) by allocating memory from the system stack and destroyéd)at

e f is created a(B) by allocating memory forfirsthame  and_lasthame of f from the system heap
and the rest of from the system stack, and it is destroyedEt .

e Employee -type object pointed to bg is created afC) by allocating memory from the system heap, and
it is destroyed afD) .



3 Inheritance: | (4 POINTS)

Explain the problem of line 3 and 8 in the main function.

#include <string>
using namespace std;

enum Department { accounting, business, engineering, mathematics, unknown };
enum Rank { instructor, assistant_prof, associate_prof, professor, dean };

class Person{
public:
Person(string n = "™, string a = ") { name = n; address = a; }

void set_name(string n) { name = n; }
void set_address(string a) { address = a; }

protected:
string name;
string address;

k

class Student : public Person{
public:
Student(Department d) { department = d; }

void set_name(string n) { name = n; }

private:
Department department;
I

class Teacher : private Person{
public:
Teacher() {};

void set_name(string n) { name = n; }

private:
Rank rank;

h

int main(){
Person person;
Student student;
Teacher teacher;

student.set_address("Student Address");
teacher.set_address("Teacher Address");

0 return O;

1
2
3
4
5
6 person.set_address("Person Address");
7
8
9
1
11 K

Line 3: Since a constructor is defined in the class Student,
no default constructor is provided by the compiler.

Line 8: Since class Teacher uses private inheritance, the function
set_address inherited from class Person is changed to private.
Therefore, the main function cannot access it.



4 Inheritance: Il (7 POINTS)

Write the output of the following program in the space provided.

#include <iostream>
using namespace std;

class Person{
public:
Person() { cout << "Person default constructor called" << endl; }
Person(const Person& person) { cout << "Person copy constructor called" << endl; }

h
class Student : public Person{
public:
Student() { cout << "Student default constructor called" << endl; }
Student(const Student& person) { cout << "Student copy constructor called" << endl; }
h
class Teacher : public Person{
public:
Teacher() { cout << "Teacher default constructor called" << endl; }
Teacher(const Teacher& person) { cout << "Teacher copy constructor called" << endl; }
I

void func(Person person){ }

int main(){

cout << "Line 1" << endl;
Teacher teacher;

cout << "Line 2" << endl;
Student student;

cout << "Line 3" << endl;
Person person = student;
cout << "Line 4" << endl;
func(person);

cout << "Line 5" << endl;
func(teacher);

return 0O;

Line 1

Person default constructor called
Teacher default constructor called
Line 2

Person default constructor called
Student default constructor called
Line 3

Person copy constructor called
Line 4

Person copy constructor called
Line 5

Person copy constructor called



5 Object Oriented Mini-PhotoShop (18 POINTS)

In this question, you are required to extend the Mini-Photoshop you implemented in programming assignment 1. The
following gives part of the header files in the assignment.

/I --- ImageStruct.h ---

#ifndef _GLOBAL_H_

#define _GLOBAL_H_

typedef unsigned int BMP_DWORD;

typedef struct{
BMP_DWORD red;
BMP_DWORD green;
BMP_DWORD blue;
} COLORREF;

#endif

/I --- Clmage.h ---
#ifndef _CIMAGE_H_
#define _CIMAGE_H_
#include "ImageStruct.h”

using namespace std;

class Clmage{

public:
Clmage(); /I default constructor
Clmage(const Clmage& copy); /I copy constructor
Clmage(const char = strFilePath); /I constructor
virtual “Clmage(); /I virtual destructor

/I create a empty image that width = iWidth, height = iHeight and
/I number of channel = iNumChannel
bool Createlmage(int iWidth, int iHeight, int iNumChannel);

Il retrieve the Color value of point (x, y)
bool RetrievePixel(int x, int y, COLORREF& color) const;

/I set the color value of point (X, y)
bool SetPixel(int x, int y, COLORREF& color);

/I Flip the image upside down, to be implemented
Clmage* Createlnvertimage() const;

/I generate a subimage of the original image, to be implemented
Clmage* CreateSublmage(int x, int y, int iWidth, int iHeight) const;

I eemmemeee- [ get functions ] ----------
inline int GetWidth() const;

inline int GetHeight() const;

inline int GetNumChannel() const;

inline unsigned char * GetlmageData() const;
private:
unsigned char * m_uclmage; // image data in RGB
int m_iWidth; /I image width
int m_iHeight; /I image height
int m_iNumChannel; /I number of channel
h
#endif
/I --- Photo.h ---



#ifndef PHOTO H_
#define _PHOTO_H_

#include "Clmage.h"
using namespace std;

class Photo{
public:
Photo();
Photo(const Photo& copy);
Photo(const char  * filename, const char
virtual "Photo();

* description);

I -mmmmeeee [ get functions ]
inline Clmage * Getlmage() const;
inline char * GetFilename() const;
inline char  * GetDescription() const;

private:
Clmage* m_image;
char * m_filename;
char * m_description;

/I pointer to an image
/I image filename
/I photo description
I

#endif
Il --- PhotoAlbum.h ---

#ifndef _PHOTOALBUM_H_
#define _PHOTOALBUM_H_

#include "Photo.h"
using namespace std;

class PhotoAlbum{

public:
PhotoAlbum();
PhotoAlbum(const char
virtual "PhotoAlbum();

/I default constructor
+ filename); /I constructor
/I virtual destructor

/I add a photo to the list
bool AddPhoto(const char * filename, const char
/I delete the photo at current position

bool DeleteCurPhoto();

/I clear all photo album data
bool Clear();

/I Add all photos in another album to current album, to
void Merge(PhotoAlbumé& album);

/| ---------- [ get functions ] ----------
inline
inline
inline
inline
inline

[ get functions ]
int GetNumPhotos() const;
Photo  * GetCurPhoto() const;
bool PrevPhoto();

bool NextPhoto();

void ResetCurPtr();

private:
h

#endif

/I default constructor
/I copy constructor
/I constructor
/I virtual destructor

* description);

be implemented



(i) (5 PoINTS) Implement the member function Cimage::Createlnvertimage().

Clmage* Clmage::Createlnvertimage() const{
if (m_uclmage == NULL)
return NULL,;

Clmage* plmage = new Clmage();
plmage->Createlmage(m_iWidth, m_iHeight, m_iNumChannel);

/I flip the image
int i, j;
for = 0; j < m_iHeight; j++){
for (i = 0; i < m_iWidth; i++){
COLORREF color;
this->RetrievePixel(i, j, color);
plmage->SetPixel(i, m_iHeight-j-1, color);

}

return plmage;

}

(i) (6 PoINTS) Implement the function CreateSublmage() in the class Clmage. You should check that: (1) (X, y) must
be a valid position; (2) the subimage must be completely inside the original image. Return NULL if the condition is
not satisfied.

Cimage* Clmage::CreateSublmage(int x, int y, int iWidth, int iHeight) const{
/I check if (x, y) is valid
if (x >= m_iWidth || x < 0)
return NULL,;
if (y >= m_iHeight || y < 0)
return NULL;

/I check if the subimage is inside the original image
if (x + iWidth > m_iwidth)

return NULL,;
if (y + iHeight > m_iHeight)

return NULL,;

/I create the subimage
Clmage* plmage = new Cimage();
plmage->Createlmage(iWidth, iHeight, m_iNumChannel);

/I copy pixel color
int i, j;
for = 0; j < iHeight; j++){
for (i = 0; i < iWidth; i++){
COLORREF color;
this->RetrievePixel(x+i, y+j, color);
plmage->SetPixel(i, j, color);

}

return plmage;

10



(i) (7 PoINTS) Implement the function Merge() in the class PhotoAlbum.

void PhotoAlbum::Merge(PhotoAlbumé& album){
/I point to the first photo
album.ResetCurPtr();

/I add photo one by one

for (int i = 0; i < album.GetNumPhotos(); i++){
Photo * newPhoto = album.GetCurPhoto();
this->AddPhoto(hewPhoto->GetFilename(), newPhoto->GetDescription());

album.NextPhoto();

11



6 Inheritance: Il (29 POINTS)

Consider the following header fila¢count.h ) for a class name@Account for bank accounts.

#ifndef ACCOUNT_H
#define ACCOUNT_H

class Account

{

public:
Account(); /I constructor
double account_balance(); /I return the balance
double withdraw(double money); /I withdraw from account
void deposit(double money); /I deposit into account
void set_min_balance(double money); /I set minimum balance

private:
double balance; /I current balance
double min_balance; /I minimum balance

2

#endif

It consists of a constructor and four other member functions irpthic  section and two private data members in the
private  section.

(a) (7 PoINTS) Write a complete class implementation faccount in a file namedaccount.cpp . The con-
structor and member functions should do the following:
e constructor: initializébalance andmin _balance to 0;
e account _balance : return the current account balance;

o withdraw : if there is enough money in the account, then withdraw the requested amount and return this
amount as the function return value; otherwise, deny the withdrawal request by returning O;

e deposit : always accept the deposit;
e set _min _balance : set the value of the minimum balance.

You are required to use the member initialization list for initialization if at all possible.

12



Answer:

#include "account.h"

Account::Account() : balance(0.0), min_balance(0.0)

{
}
double Account::account_balance()
{
return balance;
}
double Account::withdraw(double money)
{
if (balance - money >= min_balance) // OK to replace min_balance by 0
{
balance -= money;
return money;
} else {
return 0.0;
}
}
void Account::deposit(double money)
{
balance += money;
}
void Account::set_min_balance(double money)
{
min_balance = money;
}

13



(b) (7.5 PoINTS + 10 PoINTS) UsingAccount  as the base class, define a derived cmangsAccount  with
private data members:
e account _name: name of bank account (string  type);
e RATE a constant (oflouble type) that represents the interest rate (for simplicity, assumed to be fixed
once initialized);
e accumulated _interest
account;

: accumulated interest (afouble type) that has not been credited to the

as well as constructor and public member functions:

e constructor: initializeaccount _name by astring -type parameter with the empty string as default
value, RATEby adouble -type parameter with a constaDEFAULTRATE (defined and initialized to
0.0002 insavingsaccount.h ) as default value, anglccumulated _interest  to O;

e name: return thestring -type account name;
e end_of _day: update the accumulated interest at the end of a day based on the current account balance and

interest rate;

e interest _credit : update the current account balance by adding the accumulated interest to it.

The class definition should be separated into two files, class intedagg§saccount.h
), as usual. You are required to use the member initialization list for

plementation gavingsaccount.cpp
initialization if at all possible.

Answer: savingsaccount.h

#ifndef SAVINGSACCOUNT_H
#define SAVINGSACCOUNT_H

#include <string>
using namespace std;

#include "account.h"
const double DEFAULT _RATE =
class SavingsAccount :

{
public:

SavingsAccount(const string name

string name();

void end_of_day();

void interest_credit();
private:

string account_name;

const double RATE;

double accumulated_interest;

3

#endif

0.0002;

public Account

) and class im-

/I default interest rate

= ", double rate = DEFAULT_RATE);
/I constructor
/I return account name
/I end-of-day interest accumulation
/I add interest to account

/I account name

/I interest rate
/I interest gained

14



Answer: savingsaccount.cpp

#include "savingsaccount.h"

SavingsAccount::SavingsAccount(const string name, double rate)
. account_name(name), RATE(rate), accumulated_interest(0.0)

{
}
string SavingsAccount::name()
{
return account_name;
}
void SavingsAccount::end_of day()
{
accumulated_interest += account_balance()
}

void SavingsAccount::interest_credit()

{

deposit(accumulated_interest);
accumulated_interest = 0.0;

15

RATE;



(c) (4.5 PoINTS) Assuming that théccount andSavingsAccount  classes have been defined properly in four
separate files. The following application program is then written:

#include <iostream>
using namespace std;

#include "savingsaccount.h"

int main()

{

}

SavingsAccount john("John™);
double obtained;

john.deposit(1000.0);
cout << "Account balance of " << john.name() <<
<< john.account_balance() << endl;

obtained = john.withdraw(1500.0);

cout << "Money tried to withdraw = " << 1500.0 << endl;

cout << "Money withdrawn = " << obtained << endl;

cout << "Account balance of " << john.name() << "
<< john.account_balance() << endl;

obtained = john.withdraw(200.0);
cout << "Money tried to withdraw = " << 200.0 << endl;
cout << "Money withdrawn = " << obtained << endl;
cout << "Account balance of " << john.name() << "

<< john.account_balance() << endl;

john.deposit(50.0);
cout << "Account balance of " << john.name() <<
<< john.account_balance() << endl;

john.end_of day();

john.interest_credit();

cout << "Account balance of " << john.name() <<
<< john.account_balance() << endl;

return O;

After proper compilation and linking, give the program output when the program is run.
Answer:

Account balance of John = 1000
Money tried to withdraw = 1500
Money withdrawn = 0

Account balance of John = 1000
Money tried to withdraw = 200
Money withdrawn = 200

Account balance of John = 800
Account balance of John = 850
Account balance of John = 850.17

16



