Comp151

Inheritance: Abstract Base Class

ABC Example: personal_asset.hpp

Let's design a system for maintaining our assets: stocks, bank accounts, real
estate, horses, cars, yachts, etc.

Each asset has a net worth (value), we would like to be able to make listings
and compute total net worth.

class Personal_Asset {
public:
Personal_Asset(const Date& purchase_date);

virtual double compute_net_worth() const; / What /s asset's current net worth?
virtual bool is_insurable() const; // Can this asset be insured?
void set_purchase_date(const Date& d);

private:
Date purchase_date;

X

ABC Example: bank_asset.hpp

« There are different kinds of assets, and they are all
derived from Personal_Asset, e.g.

class Bank_Account_Asset : public Personal_Asset

{
public:

/...

virtual double compute_net_worth() const { return balance; }
private:

double balance;

double interest_rate;

%

ABC Example: asset_fcn.cpp

« There can be other classes of assets such as Car_Asset, Stock Asset,
House Asset, etc.

« To compute the total asset value for an array of assets:

double compute_total_worth(const Personal_Asset* assets][], int size)

{
double total_worth = 0.0;

for (inti=0;i < size; ++i) {
total_worth += assets[i]->compute_net_worth(); // virtual function call

}

return total_worth;

}

« Things must be arranged so that this will work for any combination of
assets of different kinds.

ABC Example: asset_base.cpp

« But now we have to implement the methods of the base class
Personal_Asset:

Personal_Asset::Personal_Asset(const Date& date)
. purchase_date(date) { }

void Personal_Asset::set_purchase_date(const Date& date) {
purchase_date = date;

}

double Personal_Asset::compute_net_worth() const {
/[* return what ??? */

}

* How should we implement compute_net_worth()? It depends
completely on the type of the asset. There is no “standard way” of
doing it — no meaningful “default method” to compute net worth!

ABC Example: compute net_worth()??

The truth is: It makes no sense to have objects of type
Personal Asset.

Such an object has only a purchase date, but otherwise no
meaning. It is not a bank account, not a car, not a house — it is
too general (too abstract) to be used.

We cannot implement the compute_net_worth() method in the
base class Personal_Asset as the information needed to
implement it is missing.

However, we do not want to remove the method, because that
would make it impossible to write a function that depends on
polymorphism, such as compute_total_worth().

Solution: Abstract Base Class (ABC)

« The solution is to make Personal_Asset an abstract base class (or ABC for short):

class Personal_Asset {
public:
Personal_Asset(const Date& purchase_date);

virtual double compute_net_worth() const = 0; / What is asset's current net worth?
virtual bool is_insurable() const; // Can this asset be insured?
void set_purchase_date(const Date& d);

private:
Date purchase_date;

X

« compute_net_worth() has become a pure virtual function or pure virtual method.
« Any class that has one or more pure virtual methods is an ABC.

Abstract Base Class (ABC)

 An ABC has two properties:

1. There cannot be objects of that type.

Personal_Asset pa("2000.01.07"); // error
Bank_Account_Asset baa(“2002.01.01", 0.0); / ok

2. Derived classes are responsible for implementing the
pure virtual methods.

« If a derived class (for instance, Securities_Asset) does not
implement the pure virtual methods, then the derived class is
also abstract, and there cannot be objects of that type (but it
can be used as a base class itself, for instance for
Stocks_Asset, Bonds_Asset, etc.)

Interface reuse

» "An abstract base class provides a uniform interface to deal with a
number of different derived classes.”

A base class contains what is common about several classes.

If the only thing that is common is the interface, then the base
class is a “pure interface”, called an ABC in C++.

We discussed before that code reuse is a major advantage of
inheritance. With pure virtual functions we do not directly reuse
code, but create an interface that can be reused by derived
classes.

Interfaces are the soul of object-oriented programming. They are
the most effective way of separating use and implementation of
objects. The user [i.e., compute_total_worth()] only knows
about the abstract interface, while we can have many objects that
implement this interface in different ways.

In C++, an ABC serves a similar purpose as a Java “interface”.

Final Remark

Pure virtual functions are inherited as pure virtual
functions unless the derived class implements the
function.
An abstract base class cannot be used

— as an argument type (called by value)

— as a function return type (returned by value)

— as the type of an explicit conversion

However, pointers and references to an ABC can be
declared.

Calling a pure virtual function from the constructor of
an ABC is undefined — DON'T do that.

Example: “Do”s and "Don’t’s

Personal_Asset x(" 2002.01.01 "); / Error: can’t create objects of ABC
Personal_Asset f1() { ... } / Error: Can't refurn ABC objects

void f2(Personal_Asset x) {... } /# Error: Can’t CBV with ABC objects
Bank Account_Asset y(“2002.01.01", 0.0); / Ok’

Personal_Asset* passet = &y; / Ok/

Personal_Asset& rasset = y; / Ok/

Personal_Asset* f3(const Personal_Asset& x) {...} / Ok/

	Comp151 �
	ABC Example: personal_asset.hpp
	ABC Example: bank_asset.hpp
	ABC Example: asset_fcn.cpp
	ABC Example: asset_base.cpp
	ABC Example: compute net_worth()??
	Solution: Abstract Base Class (ABC)
	Abstract Base Class (ABC)
	Interface reuse
	Final Remark
	Example: “Do”s and “Don’t”s

