
Comp151

Access Control:
public, protected, private

Example: print
• Let's add a print() method to our U. Admin. classes.

class Person { public: void print() const; ... };
class Student : public Person { public: void print() const; ... };

void Person::print() const {
cout << "--- Person details ---" << endl;
cout << "Name: " << name << endl << "Addr: " << address << endl

<< "Dept: " << dept << endl;
}

void Student::print() const {
cout << "--- Student details ---" << endl

<< "Name: " << name << endl << "Addr: " << address << endl
<< "Dept: " << dept << endl << "Enrolled in:" << endl;

for (int i = 0; i < num_courses; ++i) {
enrolled[i].print(); // Assume a print function in the Course class

}
}

Example: Doesn't Compile!

• The implementation of Student::print() given
before doesn't work. It will cause a compilation error.

• Student::print cannot access Student::name,
Student::address, or Student::dept.

– Since name is a private data member of the base class, the
derived class cannot access it.

– Public inheritance does not change the access control of the
data members of the base class: private members are still only
available to its own methods, and not to any other classes
including derived classes (except friends).

One Solution: Protected Data Members

class Person
{

protected:
string name;
string address;
Department dept;

public:
void print() const;
...

};

• By making name, address, dept protected, they are accessible to
methods in the base class as well as methods in the derived classes.

• They should not be public though!

Member Access Control: public, protected, private

• There are 3 levels of member (data or methods) access
control:
– public: members can be used by itself and the whole world; any

function can access them.
– protected: methods (and friends) of itself and any derived class

can use it.
– private: members can only be used by its own methods (and its

friends).

• Without inheritance, private and protected have exactly
same meaning.

• The only difference is that methods of a derived class
can access protected members of a base class, but
cannot access private members of a base class.

protected vs. private

• So why not always use protected instead of private?

– Because protected means that we have less encapsulation:
Remember that all derived classes can access protected data
members of the base class.

– Assume that later you decided to change the implementation of
the base class having the protected data members.

– For example, we might want to represent address by a new
class called Address instead of string. If the address data
member is private, we can easily make this change. The class
documentation does not need to be changed.

– If it is protected, we have to go through all derived classes and
change them. We also need to update the class documentation.

protected vs. private

• In general, it is preferable to have private members
instead of protected members.

• Use protected only where it is really necessary. private is
the only category ensuring full encapsulation.

• In our example, there is no reason at all to make name,
address, dept protected, as we can access the name
and address through the public member functions:

Example: print Using Public Functions Only

void Student::print() const
{

cout << "--- Student details ---" << endl
<< "Name: " << get_name() << endl
<< "Addr: " << get_address() << endl
<< "Department: " << get_dept() << endl
<< "Enrolled in:" << endl;

for (int i = 0; i < num_courses; ++i) {
enrolled[i].print();

}
}

Example Again

• Let's use the print method now:

Person mouse("Mickey", "Disney World", arts);
Teacher einstein("Albert Einstein", "USA", physics, professor);
Student plato("Plato", "Greece", philosophy);
plato.enroll_course("COMP151");

mouse.print();
einstein.print();
plato.print();

Example Again: Output

(assume: enum Department { arts, physics, philosophy, ... })

--- Person details ---

Name: Mickey
Addr: Disney World

Dept: 0
--- Teacher details ---

Name: Albert Einstein
Addr: USA
Dept: 1

Rank: Full Professor
--- Student details ---

Name: Plato
Addr: Greece
Dept: 2

Enrolled in:

COMP151

	Comp151
	Example: print
	Example: Doesn't Compile!
	One Solution: Protected Data Members
	Member Access Control: public, protected, private
	protected vs. private
	protected vs. private
	Example: print Using Public Functions Only
	Example Again
	Example Again: Output

