
Comp151

Inheritance: Introduction

Example: University Admin Info

• Let’s implement a system for maintaining
university administration information.

– Teacher and Student are two completely separate
classes. Their implementation uses separate code.

– However, they share many methods and members
that are implemented in the same way: handling
name, address, and department.

– Why do we implement the same function twice?

– This is not good software reuse!

Example: U. Admin Info – Student.hpp
#define accounting 0
#define business 1
#define engineering 2
#define mathematics 3
#define unknown 4
typedef int Department;
class Student
{

private:
string name;
string address;
Department dept;
Course* enrolled;
int num_courses;

public:
Student(string n, string a, Department d) :

name(n), address(a), dept(d), enrolled(NULL), num_courses(0) { };
void set_name(const char* name);
void set_address(const char* adr);
void set_department(Department dept);
string get_name() const;
string get_address() const;
Department get_department() const;
bool enroll_course(const string&);
bool drop_course(const Course&);

};

Example: U. Admin Info – Student.hpp

enum Department { accounting, business, engineering, mathematics, unknown };
class Student
{

private:
string name;
string address;
Department dept;
Course* enrolled;
int num_courses;

public:
Student(string n, string a, Department d) :

name(n), address(a), dept(d), enrolled(NULL), num_courses(0) { };
void set_name(const char* name);
void set_address(const char* adr);
void set_department(Department dept);
string get_name() const;
string get_address() const;
Department get_department() const;
bool enroll_course(const string&);
bool drop_course(const Course&);

};

Example: U. Admin Info – Teacher.hpp

enum Rank { instructor, assistant_prof, associate_prof, professor, dean };
class Teacher
{

private:
string name;
string address;
Department dept;
Rank rank;

public:
Teacher(string n, string a, Department d, Rank r) :

name(n), address(a), dept(d), rank(r) { };
void set_name(const char* name);
void set_address(const char* adr);
void set_department(Department dept);
void set_rank(Rank rank);
string get_name() const;
string get_address() const;
Department get_department() const;
Rank get_rank() const;

};

Things to Consider

• We want a way to say that Student and
Teacher both have the same members:
name, address, dept, but yet require them to
keep a separate copy of these members.

• We want to share the code for set_name, etc.,
between Student and Teacher as well.

• We want this code to act like member functions
(to permit consistency of state of the objects), so
they cannot be written as global functions.

Solution 1: Re-use by Copying

• Copy the code from one class to the other class,
and change the class names.

– This is very error prone.
– It is also a maintenance nightmare.
– What if we find a bug in the code in one class?
– What if we want to improve the code? Perhaps by

introducing a new class Address.

• “REUSE by COPYING” is a bad idea!

Inheritance

• Inheritance enables code reuse.
• Inheritance is the ability to define a new class based on

an existing class with a hierarchy.
• The derived class inherits the data members and

member methods) of the base class.
• New members and methods can be added to the derived

class.
• Since the new class only has to implement the behavior

that is different from the base class, we can reuse the
code for the base class.

• “Inheritance” is the traditional term, but C++ calls it
“derivation”.

Solution 2: By Inheritance – Person.hpp

class Person
{

private:
string name;
string address;
Department dept;

public:
Person(string n, string a, Department d) :

name(n), address(a), dept(d) { };
void set_name(const char* name);
void set_address(const char* adr);
void set_department(Department dept);
string get_name() const;
string get_address() const;
Department get_department() const;

};

Solution 2: By Inheritance – Student.hpp

class Student : public Person
{

private:
Course* enrolled;
int num_courses;

public:
Student(string n, string a, Department d) :

Person(n, a, d), enrolled(NULL), num_courses(0) { }

bool enroll_course(const string&);
bool drop_course(const Course&);

};

Solution 2: By Inheritance – Teacher.hpp

class Teacher : public Person
{

private:
Rank rank;

public:
Teacher(string n, string a, Department d, Rank r) :

Person(n, a, d), rank(r) { }

void set_rank(Rank rank);
Rank get_rank() const;

};

Inheritance

• Person is the base class of Student.

• Student is a derived class of Person.

• The effect is that Student inherits all data members and
methods from Person.

• The data members of Student are the data members of
Person (name, address, dept), plus the extra data
members declared in the definition of Student
(enrolled, num_courses).

Example: Inherited Members

void some_func(Person& person, Student& student)
{

cout << person.get_name() << endl;
cout << student.get_name() << endl;

student.set_department(engineering);
Department dept = person.get_department();
student.enroll_course("COMP151");
person.enroll_course("COMP001"); // Error!

}

“Is-a” Relationship

• Inheritance implements the is-a relationship.
– Recall:

membership (composition) implements the has-a relationship.

• Since Student inherits from Person,
– every object of type Student can be used like an object of

type Person
– all methods of Person can be called on a Student object

• In other words, a Student object definitely is a Person
object under all circumstances.

• In general: a derived class object can be treated like a
base class object under all circumstances.

Example: Derived Objects as Base Class Object

bool print_mailing_label(const Person& person)
{

string name = person.get_name();
string adr = person.get_address();

// code to print the label
}

• Since a Student is a Person, we can print a mailing
label for a student like this:

Student student(“Tom”, “Sai Kung”, mathematics);
print_mailing_label(student);

Direct and Indirect Inheritance

• Let’s add a new class PG_Student:

class PG_Student : public Student
{

private:
Topic research_topic;

public:
PG_Student(string n, string a, Department d) :

Student(n, a, d), research_topic(NONE) { }
void set_topic(const Topic& x) { research_topic = x; }

};

• PG_Student is directly derived from Student.
• It is indirectly derived from Person.
• So a PG_Student object is a Person object.
• Person is called an indirect base class for PG_Student.

	Comp151
	Example: University Admin Info
	Example: U. Admin Info – Student.hpp
	Example: U. Admin Info – Student.hpp
	Example: U. Admin Info – Teacher.hpp
	Things to Consider
	Solution 1: Re-use by Copying
	Inheritance
	Solution 2: By Inheritance – Person.hpp
	Solution 2: By Inheritance – Student.hpp
	Solution 2: By Inheritance – Teacher.hpp
	Inheritance
	Example: Inherited Members
	“Is-a” Relationship
	Example: Derived Objects as Base Class Object
	Direct and Indirect Inheritance

