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Abstract

Call traces, i.e., sequences of function calls and returns, are fun-
damental to a wide range of program analyses such as bug repro-
duction, fault diagnosis, performance analysis, and many others.
The conventional approach to collect call traces that instruments
each function call and return site incurs large space and time over-
head. Our approach aims at reducing the recording overheads by
instrumenting only a small amount of call sites while keeping the
capability of recovering the full trace. We propose a call trace model
and a logged call trace model based on an LL(1) grammar, which
enables us to define the criteria of a feasible solution to call trace
collection. Based on the two models, we prove that to collect call
traces with minimal instrumentation is an NP-hard problem. We
then propose an efficient approach to obtaining a suboptimal solu-
tion. We implemented our approach as a tool Casper and evaluated
it using the DaCapo benchmark suite. The experiment results show
that our approach causes significantly lower runtime (and space)
overhead than two state-of-the-arts approaches.

Categories and Subject Descriptors F.3.2 [Semantics of Program-
ming Languages]: Program Analysis; D.2.5 [Testing and Debug-
ging]: Tracing

General Terms Theory, Algorithms, Performance

Keywords Call Trace, Instrumentation, Overhead

1. Introduction

A call trace [19], recording a sequence of function calls and returns,
captures the calling behaviour of a program including the temporal
execution order of function calls and their calling contexts. Call
traces are widely used, for instance, in bug reproduction [21], fault
diagnosis [22, 36, 45], performance analysis [17, 31, 44], program
comprehension [15, 37, 38], anomaly detection [9, 18, 26, 39], and
many other analyses.

The current practice of call trace collection by instrumenting
each call and return site usually incurs large runtime and space
overhead. This overhead is further exacerbated by the prevalent
use of “small” functions (or methods) so as to follow the good
object-oriented programming style [7, 14]. For example, we ob-

served 213.9% runtime overhead for the Java programs in the Da-
capo benchmark suite (See Section 6). At the same time, the volume
of such traces logged by real production systems can grow by 50
gigabytes (around 120-200 million lines) each hour [31]. Obvi-
ously, greatly improving the time and space efficiency of call trace
collection can tremendously benefit the related program analysis
techniques in practice.

Existing program tracing and profiling techniques can be clas-
sified into two categories. The first focuses on collecting the in-
traprocedural control flow path with minimal overhead, by either
selectively instrumenting a small subset of program points [4] or ap-
plying certain encoding scheme for acyclic paths free of any call sites
[5, 25]. Since call traces are inherently interprocedural, one needs to
extend these methods by logging the function ID before each call site
[25] to connect the intraprocedural pieces, essentially just as costly
as the conventional approach. The second category [7, 8, 33, 41]
mainly addresses online program analysis and, thus, focuses on
encoding the latest calling contexts and maintaining a summary of
historic calling contexts for profiling purpose (e.g., calling context
tree). Call trace collection is more general than profiling as it often
needs to faithfully encode the full history of calling contexts.

Our key insight for efficiently and compactly collecting call
trace is that the execution of certain call sites can be implied by
the execution of some others. Therefore, the basic idea of our
technique is to collect a partial call trace at runtime by selectively
instrumenting a small subset of the call and return sites. This
partial trace is then used offline to infer and to recover the full
call trace. The key to such lossless recovery is a criteria that guides
the selection of the instrumentation sites. This criteria is derived
from our trace models based on an LL(1) grammar and a theoretical
framework for finding the optimal instrumentation. We show that
minimizing the instrumentation sites to satisfy the LL(1) grammar
is NP-hard. We propose a Hn-approximation (harmonic function)
[42] instrumentation approach that works very well in practice. The
framework is also general enough to handle callbacks, virtual calls,
JVM implicit calls, and exceptions. This generality allows us to
efficiently collect call traces for modern software that heavily uses
dynamic features.

In summary, the main contributions of this paper are:

• An LL(1) grammar based framework to theoretically study
the inference based call trace collection problem. The theory
framework defines the criteria of deducible partial call trace and
opens a door to further study of inference based algorithms.

• The NP-hardness proof of minimizing the instrumentation sites
and an Hn-approximation approach for call trace collection.

• Design and implement a tool Casper that can collect complete
call trace even in presence of callbacks, virtual calls, JVM
implicit calls, and exceptions.
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• A thorough experimental study of Casper with the DaCapo
benchmark suite. Our experiments show that Casper only incurs
68.0% runtime overhead on average, which is 31.8% of the
time of instrumenting all the call sites to collect full call trace.
Meanwhile, the size of the partial call trace is 36.1% of the size
of the full call trace.

The remainder of this paper is organized as follows. We first
briefly introduce call traces and define the terms used by the
discussion in Section 2. In Section 3, we propose a theoretical
framework to study the call trace inference problem. Section 4
describes our suboptimal instrumentation algorithm and Section
5 discusses the implementation details including how to handle
dynamic features of Java. We discuss the experiment results in
Section 6. Finally, Section 7 surveys related work and Section 8
concludes this paper.

2. Background

Call traces [19], composed of sequences of function calls and
returns, are essential for many program analysis techniques. The
temporal order of calls captured in call traces are essential for
anomaly detection [9, 18, 26, 39], performance analysis [17,
31, 44] and fault diagnosis [22, 36, 45]. It also helps program
comprehension and testing such as mining program specifications
from call traces [15, 37, 38]. Besides, call traces subsume the calling
context information [40]. Therefore, all the applications of calling
context [2, 7, 8, 33, 34, 48] naturally can work with call traces.

Similar to the tracing problem [4], the call trace collection
problem is concerned with recording the sufficient information about
a program’s execution in order to reproduce a full call trace. Call
traces are conventionally collected via program instrumentation to
record the execution of every call and return site, which is very
costly in both time and space. An alternative collection approach
is to use control flow profiling techniques [4, 5, 24, 25] to the call
site control flow graph (CSCFG), a reduced version of control flow
graph (CFG) that only preserves the control flow dependency for
call sites and return sites. Formally, CSCFG is defined as follows.

Definition 1. Call Site Control Flow Graph (CSCFG): A CSCFG
is a directed graph defined by a 4-tuple <P , E, H , T>. P is a
set of nodes representing the call and the return sites. To ease the
presentation, they are all referred to as call sites unless specially
distinguished. E is a set of directed edges, where an edge <n,
m> represents a path on the control flow graph from n to m without
going through another call site. H represents the set of entry call
sites. A call site is an entry call site if there is a path from the
program start point to that call site without passing other call sites.
Correspondingly, T represents the set of exit call sites, which reach
the program exit point without passing other call sites.

Definition 2. Predecessor Call Site and Successor Call Site:
Given an edge from n to m in a CSCFG, n denotes a predecessor
of m and m a successor of n.

Figure 1 exemplifies the CSCFG construction where S0, · · · , S3

represent non-call statements and c1 and c2 represent call sites. The
CSCFG contains an edge <c1, c2>since a path goes from c1 to c2
without going through other call sites. Moreover, c1 is the entry call
site and return is the exit call site of this CSCFG. c1 is a predecessor
of c2 and c2 is a successor of c1.

To profile interprocedurally, Melski et al. [30] conceptually
proposed an approach to encoding the interprocedural acyclic
path, which extends the Ball & Larus encoding algorithm [5]. The
approach labels the edges in an interprocedural super graph by
functions in order to capture the calling context of procedures
during execution. However, as Larus [25] pointed out, there are two
major limitations that may make it impractical: (1) the large number
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c1
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Figure 1: Call Site Control Flow Graph.

of potential paths may make path ID unbounded; (2) difficulties
in deriving static call graphs that can precisely model reflective
calls. Larus [25] proposed a technique to profile the interprocedural
control flow path. It encodes the acyclic intraprocedural control flow
path that do not include any call site, and logs the corresponding
function ID before each call site so that interprocedural path can
be recorded. Therefore, adapting the technique [25] to collect call
traces is the same as instrumenting at each call site and return site.
Larus [24] proposed to instrument at the targets of each conditional
branch and regenerate a full trace from the log data. We adapt this
technique [24] by instrumenting the call sites that are the targets of
the branch nodes for call trace collection. However, our experiments
show that using this technique still incurs a significant performance
overhead. And this motivates us to study how to solve the call trace
collection problem with minimal instrumentation.

3. Call Trace Inference

In a nutshell, our approach first performs static analysis, instruments
the selected call sites, and collects a partial call trace at runtime. In
the offline stage, from the partial trace, our technique recovers the
full call trace that could have been captured by instrumenting every
call sites. The call trace inference is based on a grammar-based
theoretical framework that models both the call traces in general and
their reduced representation. The two models enable us to define
the criteria of the deductibility of partial call trace and prove the
correctness of our selection algorithm for instrumenting call sites.

3.1 Intuition of Call Trace Inference

We illustrate the intuition of the call trace inference using the exam-
ple in Figure 2. Suppose we only instrument call sites {c4, c5, c6,
c7, c8} and the program execution follows the interprocedural edges
denoted by the dotted arrows in Figure 3. When an instrumented
call site is executed, its “witness”, a unique ID of the call site, is
logged. For our example, the witness log, (c5, c5, c7), is a partial
trace describing an instance of program execution.

We now explain how the full call trace (c1, r2, c2, c5, r4, r3,
c2, c5, r4, r3, c3, c7, r4, r6, c4, r7, r1) of the program execution
can be inferred from the partial call trace (c5, c5, c7). To infer the
full trace, we first construct the CSCFGs as shown in Figure 3. The
full call trace must start with the call site c1 which is part of the
entry function main. The call site following c1 in the call trace is r2
since r2 is the unique successor of c1 in the interprocedural control
flow graph. After the return r2 of function A, one of the successor
call sites of c1, i.e., c2 or c3, is to be generated in the call trace. To
decide the successor of c1, we read the witness c5 from the partial
call trace. As shown in Figure 3, c2 invokes function B, while c3
invokes function E. Therefore, the witnessed call site c5 implies
the execution of c2 because executing function B generates witness
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1 void main(String [] args){
2 A(); // c1
3 do{
4 if (p1)
5 B(); // c2
6 else
7 E(); // c3
8 }while(p2);
9 H(); // c4

10 return; // r1
11 }
12

13 void A(){
14 ...//no call sites
15 return; // r2
16 }
17

18 void B(){
19 if (p3)
20 C(); // c5
21 else
22 D(); // c6
23 return; // r3
24 }

25 void C(){
26 ...//no call sites
27 return; // r4
28 }
29

30 void D(){
31 ...//no call sites
32 return; // r5
33 }
34

35 void E(){
36 if (p3)
37 C(); // c7
38 else
39 D(); // c8
40 return; // r6
41 }
42

43 void H(){
44 ...//no call sites
45 return; // r7
46 }

Figure 2: A running example. c for call site, r for return site.
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Figure 3: An intuitive example of call trace inference.

c5 or c6 and function E c7 or c8. As a result, we can infer that
the prefix of the full call trace is (c1, r2, c2, c5), the only possible
execution to generate the partial trace starting with c5. Following
the same deduction method, the full call trace can be reconstructed
by extending the prefix of the call trace from the witnesses call sites.

We make two inspiring observations from the example above.
First, if a call site c has a unique successor ci in terms of control
flow dependency, the execution of ci is implied by the execution of
c. Second, if c has multiple successors, we can leverage the witness
of instrumented call sites to determine the executed successor. The
call site inference relation is constructed to ensure we can uniquely
generate the full call trace. Note that the call site inference relation in
our work is different from the well-known domination relation on the
Control Flow Graph [1]. The domination relation only guarantees
that the execution of u can be inferred by the execution of v, if call
site u dominates call site v. However, since there may be multiple
call traces from u to v, using domination relation alone does not
guarantee the uniqueness in generating the original call trace.

3.2 The Construction of Call Trace Model

Call traces are dynamic in nature and determined by the execution
path that a program takes. And, yet, we need to reason about them in

a general way in order to develop inference methods. Our approach
uses an abstract trace model to encode all possible traces incurred
by programs.

Our call trace model is analogous to dynamic programming [11]
as the representation of full traces is decomposed into a sequence
of abstract representations of partial traces. That is, a (partial) call
trace that starts with a call site ci in a function f is comprised of
three sequential parts: (1) ci; (2) a call trace that is generated by
executing the callee function fci called at ci, denoted as Funcfci
(if ci is a return site, Funcfci is empty); (3) a call trace that is

generated by executing the call sites from the successor call sites
of ci to the exit of f , denoted as Succi (if ci is an exit call site,
Succi is empty). Except the first part, the other two parts are abstract
representations of sub-traces. Funcfci can be represented as a call

trace that starts with one of the entry call sites in fci . Similarly,
Succi can be represented as a call trace that starts with one of the
successor call sites of ci. Thus, the above representation of partial
call traces can be recursively defined. Let entry denote the entry
function of the given program. A full call trace can be formally
represented by Funcentry , which can be recursively derived from
the representation of partial call traces. Based on the above intuition,
we propose to model a program’s call traces with a context-free
grammar G as follows.

Definition 3. Call Trace Model G= {V , Σ, S, R} where:

1. V is a finite set of non-terminals, each represents any call
trace generated by executing from a call site (including the entry
call site) of a function in the given program to the function’s exit
call site. Funcf ∈ V and Succi ∈ V for any function f and any
call site ci (excluding return sites) in the program. Funcf denotes
any possible call trace that can be generated by executing function
f . Succi denotes any possible call trace that can be generated by
executing from a successor call site of ci to the exit call site of
the function in which ci resides. Funcf and Succi are partial call
traces of the whole program. The call trace of the whole program is
composed of these two kinds of partial call traces.

2. Σ is a finite set of terminals representing the possible call sites
and return sites of which a call trace can be composed.

3. S is a start symbol that denotes the abstraction of any call
trace generated by executing the entry function.

4. R is a set of production rules. The production rules in R are
defined in two forms.

Production Rule Form 1 (Function Trace Rule):
∀ Funcf ∈ V , ∀ ci ∈ Hf and ci is a call site, the production
rule is defined as:
Funcf→ ciFuncfci

Succi .

∀ Funcf ∈ V , ∀ ci ∈ Hf and ci is a return site, the production
rule is defined as:
Funcf→ ci.
Funcf denotes any possible call trace that can be generated
by executing function f , Hf denotes the entry call sites in the
CSCFG of f , fci denotes the function called at call site ci, and
Succi denotes any call trace that can be generated by executing
from a successor call site of ci to the exit call site of the function
in which ci resides. Funcf and Succi are partial call traces of the
whole program. Note that, if ci which is a return site, we do not
define a non-terminal Succi (Succi /∈ V ) as well the production
rules for Succi .
To facilitate the explanation, sometimes we use γci (γci∈ V ∗) as
the grammar symbol immediately following ci in the production
rules. If ci is a return site, γci is empty. If ci is a call site, γci is
Funcfci Succi . Then, no matter ci is a return site or a call site,

the production rule is represented as Funcf→ ci γci .
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Production Rule Form 2 (Call Site Successor Trace Rule):
∀ci ∈ Σ and ci is a call site, ∀ <ci, cj>∈ Ef and cj is a call
site, the production rule is defined as:
Succi→ cjFuncfcj

Succj .

∀ci ∈ Σ and ci is a call site, ∀ <ci, cj>∈ Ef and cj is a return
site, the production rule is defined as:
Succi→ cj .
Succi represents any possible call trace that can be generated by
executing the call sites from cj(i.e. cj is a successor call site of
ci in function f ), and Ef denotes the edges in the CSCFG of f .
Other notations follow those in the Function Trace Rule above.
fcj is the callee function in the call site cj , Succj represents any
possible call trace that can be generated by executing the call
sites from the successor call site of cj to the exit call site of the
function where cj is.
Similar to Production Rule Form 1, γci (γci∈ V ∗) is also used to
simplify the production rules. Then, no matter ci is a return site
or a call site, the production rule is represented as Succi→ cj

γcj .

Based on the production rule form 1, we can generate production
rules for each function shown in Figure 2. For example, for the main
function, there is a production rule Funcmain→ c1FuncASucc1 .
More production rules are given in Figure 4 (a). Similarly, we apply
the production rule form 2 to generate the production rules for each
call site. Take the call site c1 in Figure 2 as an example. There
are two production rules for Succ1 : Succ1→ c2FuncBSucc2 |c3
FuncESucc3 . More production rules are given in Figure 4 (a). Based
on the production rule form 1 and 2, we can construct the call trace
model G for a given program. For example, Figure 4 (a) shows the
production rules for the program in Figure 2.

3.3 LL(1) Grammar and Call Trace Model

An LL(1) grammar [11] is a formal language that can be parsed by
the LL(1) parser. If the proposed call trace model G is an LL(1)
grammar, we can leverage the LL(1) parser to verify whether an
arbitrary call trace is valid or invalid. In this paper, we treat a call
trace as a valid call trace if it can be generated from a program
execution.

To verify an LL(1) grammar, it relies on the two functions,
FIRST [11] and FOLLOW [11]. FIRST(α), where α is any string of
grammar symbols, denotes the set of terminals that appear as the first
symbol of any string derived from α. Note that, if α can derive an
empty string, ǫ ∈ FIRST(α). Given a non-terminal A, FOLLOW(A)
denotes the set of terminals that can appear immediately to the right
of A in some sentential form; that is, the set of terminals T such that

for each τ ∈ T there exists a derivation of the form S
∗

−→ αAτβ,
for some α and β.

Using the above two functions, an LL(1) grammar can be defined
as follows.

Definition 4. A grammar G is LL(1) if and only if (1) G does
not contain left-recursion rules(A → Aα). Whenever A → α|β
are two distinct production rules of G, the following constraints
hold: (2) FIRST(α)∩FIRST(β)=∅. (3) At most one of α and β can

derive the empty string ǫ. (4) If β
∗

−→ ǫ, then α does not derive
any string beginning with a terminal in FOLLOW(A). Likewise, if

α
∗

−→ ǫ, then β does not derive any string beginning with a terminal
in FOLLOW(A).

With the definition above, we now verify if the proposed call
trace model G is an LL(1) grammar. Since every production rule
in G begins with a terminal symbol in the derivation, G does not
contain any left-recursion. In the call trace model G, whenever
N → ciγci |cjγcj are two distinct production rules (N is a non-
terminal symbol defined in either Production Rule Form 1 or

Production Rule Form 2; ci and cj are two different call sites.),
then we can get that, FIRST(ciγci) = {ci} and FIRST(cjγcj ) =

{cj}. Since both FIRST(ciγci) and FIRST(cjγcj ) are not empty

and FIRST(ciγci) ∩ FIRST(cjγcj ) = ∅, all the constraints of LL(1)
grammar in Definition 4 are satisfied. Thus, the call trace model G
is an LL(1) grammar.

Being LL(1), the call trace model can be used by an LL(1)
parser to parse any call trace of a program. The LL(1) parser
leverages a top down and leftmost derivation strategy to parse a
possible call trace generated by program execution. The selection
of production rules plays a key role in each step of parsing call
traces. The LL(1) parser uses a lookahead symbol from the leftmost
and unparsed input to unambiguously determine which production
rule is selected for derivation. For example, in Figure 4 (b), when
the call trace is derived by Funcmain→ c1r2Succ1 , there are two
possible production rules to derive Succ1 (Rules 10 and 11). Then,
a lookahead symbol in terms of a call site c2 (the leftmost and
unparsed input symbol) is used to select one of the two rules. Once
a production rule is chosen, we match the input symbols with the
terminal symbols on the right of the production rule. Since the LL(1)
parser is a predictive parser which is a recursive-descent parser
with no backtracking, call traces can be parsed by the LL(1) parser
deterministically.

A valid trace is a trace that can be generated by a program
execution. There are two types of valid call traces: ones generated
by the normal termination of the program execution (e.g., Figure
4 (b)) and the ones by abnormal terminations (e.g., Figure 4 (c)).
The trace (c1, r2) in Figure 4 (d) is an example of invalid call traces
since it cannot be generated by any execution of the program in
Figure 2. Figure 4(b)(c)(d) shows how valid and invalid call traces
are parsed using the production rules in Figure 4 (a) and the LL(1)
parser. Valid call traces in case (1) can be accepted by an LL(1)
grammar in conventional ways when the string derived from the
start symbol based on the LL(1) parser is the same as the input
string. However, for any valid call trace in case (2), the LL(1) parser
can only derive a sentential form which contains both terminals and
non-terminals, and the input call trace matches the prefix of the
derivation. To handle this, we slightly relax the validity criterion
of a call trace in G as follows: the input call trace is considered as
valid if it matches the prefix of the derivation of Funcmain. Under
the relaxed criterion, the trace (c1, r2, c2, c5) in Figure 4 (c) is valid.
The trace (c1, r1) in Figure 4 (d) is invalid because it cannot match
any prefix of a derivation of Funcmain based on the LL(1) parser.

As a valid call trace can be accepted by the call trace model, we
can leverage the model to directly deduce a set of call sites solving
the call trace collection problem instead of enumerating all valid
traces and verifying if a given set of call sites is able to collect them
all.
3.4 The Construction of Logged Call Trace Model

An instrumentation I is a set of instrumented call sites of a given
program. Each logged call trace is a sequence of witnesses of the
elements in I. In this section, we show how a logged (partial) call
trace is represented using the call trace model G.

For any non-terminal N in G which represents a valid partial
call trace, its corresponding logged call trace is denoted by N ′.
Given any call trace N derived by a production rule N → ciγci ,
two situations arise with ci. If ci ∈ I, we can leverage a similar
production rule to derive the corresponding logged call trace of N :
N ′ → ciγ

′

ci
, where γ′

ci
represents the corresponding logged call

trace of γci . If ci /∈ I, its execution is not logged. We can leverage
a production rule to derive the corresponding logged call trace of
N : N ′ → γ′

ci
, where γ′

ci
represents the corresponding logged call

trace of γci . As such, we define a new grammar G′ to represent any
valid logged call trace (a valid logged call trace is a logged call trace
that can be generated from a program execution).
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11    )1( cAmain SucFunccFunc ®

2    )2( rFuncA ®

55    )3( cCB SucFunccFunc ®

66    )4( cDB SucFunccFunc ®

4    )5( rFuncC ®

5    )6( rFuncD ®

77    )7( cCE SucFunccFunc ®

88    )8( cDE SucFunccFunc ®

7    )9( rFuncH ®

21 2  )10( cBc SucFunccSuc ®

31 3  )11( cEc SucFunccSuc ®

42 4  )12( cHc SucFunccSuc ®

22 2  )13( cBc SucFunccSuc ®

32 3  )14( cEc SucFunccSuc ®

23 2  )16( cBc SucFunccSuc ®

33 3  )17( cEc SucFunccSuc ®

14
  )18( rSucc ®

35
  )19( rSucc ®

36
  )20( rSucc ®

67
  )21( rSucc ®

68
  )22( rSucc ®

43 4  )15( cHc SucFunccSuc ®

(a)

11 cAmain SucFunccFunc ®

121 cSucrc®

2221 cBSucFunccrc®

...®

17464733452345221 rrcrrccrrccrrccrc®

Select Rule (1)

Select Rule (2)

Select Rule (10)

…

Select Rule (18)

17464733452345221 rrcrrccrrccrrccrcA Valid Call Trace (Input):

(b)

A Valid Call Trace (Input): 5221 ccrc

11 cAmain SucFunccFunc ®

121 cSucrc®

Select Rule (1)

Select Rule (2)

The input call trace is a prefix of the derived terminals

Crash!

2221 cBSucFunccrc® Select Rule (10)

255221 ccC SucSucFuncccrc® Select Rule (3)

(c)

11 cAmain SucFunccFunc ® Select Rule (1)

11rcAn Invalid Call Trace (Input):

Parsing Error: 
121 cSucrc® Select Rule (2)

21 match not  does  rr

(d)

Figure 4: Examples of representing and parsing call traces based
on production rules. (a) Production rules in the call trace model;
(b) An example of parsing a valid call trace generated by a normal
execution; (c) An example of parsing a valid call trace generated by
an abnormal (crash) execution; (d) An example of parsing an invalid
call trace.

Definition 5. Assume an instrumentation I and a call trace model
G= {V , Σ, S, R}, the grammar G′= {V ′, Σ′, S′, R′} for logged
call traces is given as follows:

1. V ′ is a finite set of non-terminals, each derives from V and
represents a logged call trace generated by executing from a call
site (including the entry call site) of a function in the given program
to the function’s exit call site. Func′f ∈ V ′ and Suc′ci ∈ V ′ for
any function f and any call site ci (excluding return sites) in the
program. Func′f derives from Funcf and represents the logged call

trace of Funcf . Suc′ci derives from Succi and represents the logged

call trace of Succi . The above derivation relation from V to V ′ is a
bijection from V to V ′, since every element in V is exactly paired
with one element in V ′, and vice versa.

2. Σ′ = I ∪ {ǫ}, where ǫ is an empty string.
3. S′ derives from S and is a start symbol that denotes the

abstraction of a logged call trace generated by executing the entry
function.

4. R′ is a set of production rules deriving from R. For any
production rule N → ciγci (N ∈ V ) in R, if ci ∈ I, N ′ →
ciγ

′

ci
(N ′ ∈ V ′) is derived as a production rule in R′, where N ′

is the corresponding logged call trace of N , γ′

ci
represents the

corresponding logged call trace of γci ; if ci /∈ I, N ′ → γ′

ci

(N ′ ∈ V ′) is derived as a production rule in R′, where γ′

ci

represents the corresponding logged call trace of γci . Similar to
γci , we use γ′

ci
to simplify the explanation. If ci is a return site, γ′

ci

is empty; if ci is a call site, γ′

ci
is Func′fci

Suc′ci which is derived

from Funcfci Succi . Note that, if ci /∈ I and γ′

ci
is empty, N ′ does

not derive anything, the production rule is defined as N ′ → ǫ.
To ease the subsequent explanation of logged call trace model, let
N ′ → αci denote the derived production rule of N → ciγci , no
matter ci is in I or not. The derivation above relation from R to R′

is a surjective function from R to R′, since every production rule in
R is mapped to only one production rule in R′ and every production
rule in R′ is derived from a production rule in R. Note that, two
different production rules in R may derive the same production rule
in R′ (as discussed in Section 3.5), so the relation is not necessarily
an injective function.

In Figure 5 (a), we give an example of the production rules in
R′, which are derived from the production rules in Figure 4 (a) with
a given instrumentation I.

By Definition 5, each non-terminal N in V is mapped to only
one derived non-terminal N ′ in V ′, and each production rule Rn for
N in R to only one derived production rule R′

n for N ′ in R′. These
mapping relations of non-terminals and production rules enable us
to precisely synchronize the steps of parsing a call trace to that of
generating the corresponding logged call trace. Figure 5 (b) gives an
example of how a logged call trace can be generated when parsing
a full call trace using the LL(1) parser. The parsing of a call trace
starts with Funcentry , while the generation of its logged call trace
starts with Func′entry . In each parsing step, we pick a non-terminal
N to continuously derive Funcentry and a production rule Ri to
rewrite N . At the same time, we derive Func′entry by picking the

N ′ to which N is mapped and applying the corresponding derived
production rule of Ri to rewrite N ′.

Intuitively, by reversing this process of generating the logged
call trace (i.e., to parse a logged call trace and generate its call
trace simultaneously), we can recover the call trace and solve the
collection problem. Motivated by this intuition, we study in the
following the criteria of a feasible solution (i.e., instrumentation) to
the call trace collection problem.

3.5 Criteria of Feasible Solution to Call Trace Collection
Problem

An arbitrary instrumentation I may not guarantee that any call trace
can be inferred from its logged call trace. For example, suppose I is
{c8} for the program in Figure 2, (c1, r2, c2, c5, r4, r3, c4, r7, r1)
and (c1, r2, c2, c6, r5, r3, c4, r7, r1) are two possible call traces that
can be generated by executing this program. These two call traces
fail to generate any useful witness information based on the call sites
in I. It is infeasible to infer the genuine call trace when we obtain
insufficient witness information after executing the program. Thus,
I={c8} is not a feasible solution to the call trace collection problem.
This motivates us to define the criteria of a feasible solution to the
call trace collection problem.

In Section 3.4, we have discussed how a logged call trace can
be generated along with parsing its call trace. Inspired by that, we
study whether it is feasible to apply the similar intuition to infer
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Figure 5: (a) The derived production rules in R′; (b) An example of
generating a logged call trace when parsing its full call trace; (c) An
example of generating a full call trace when parsing its logged call
trace.

any full call trace from its logged call trace. Thus, we need to check
whether any non-terminal N ′ in V ′ is mapped to only one original
non-terminal N in V , any production rule R′

i in R′ is mapped to
only one original production rule Ri in R, and any step of parsing a
logged call trace is mapped to only one step of generating original
call trace.

By Definition 5, the derivation relation from V to V ′ is a
bijection from V to V ′. Thus, any non-terminal N ′ in V ′ can be
mapped to one and only one non-terminal N in V where N ′ is
derived from N .

Although any production rule Ri in R is mapped to only one
derived production rule R′

i in R′, R′

i can be mapped from multiple
production rules in R. In the following, we discuss all possible
cases on how Ri and Rj derive the production rules in R′. (1) If
Ri and Rj are used to derive different non-terminals, whatever I
is, the deriving production rules R′

i and R′

j are different. This is

because the non-terminals in the left side of R′

i and R′

j are different.
(2) If Ri and Rj are used to derive the same non-terminal (i.e.
N → ciγci (Ri) |cjγcj (Rj) ) and γci and γcj are not empty at the

same time, whatever I is, R′

i and R′

j are different. This is because, no

matter ci and cj are in I or not, γ′

ci
in R′

i and γ′

cj
in R′

j are different.

(3) With the same condition as (2) except both γci and γcj are empty,

if at least one of ci and cj are in I, R′

i and R′

j are different. This

is because, ci and cj are different, ci and γ′

cj
are different, and γ′

ci

and cj are different. (4) With the same condition as (3) except both
ci and cj are not in I, Ri and Rj will derive the same production
rule in R′, i.e. N ′ → ǫ. Therefore, if a production rule R′

i in R′

is generated as case (4) based on an instrumentation I, we cannot
determine the original production rule of Ri and generating the
original call trace simultaneous with parsing the logged call trace is
infeasible.

If a given I can satisfy the condition that each production rule
in R′

i in R′ is mapped to exactly one production rule Ri in R, it
enables us to map each step of parsing a logged call trace to one step
of generating its original full call trace. Moreover, if any logged call
trace can be parsed by a predictive parser (e.g., the LL(1) parser),
the call trace that is simultaneously generated with the mapped steps
is guaranteed to be the unique and genuine one. Therefore, how a
logged call trace can be parsed plays an important role in solving the
call trace collection problem. Note that, different instrumentations
result in different grammar G′ which may be any class of context-
free grammars, and not all the context-free grammars can be parsed
deterministically. In other words, an instrumentation I affects how a
logged call trace can be parsed.

There are two sufficient conditions for an instrumentation I to
be a feasible solution with respect to a call trace model G. (1)
Whenever there exist two production rules N → ci|cj in G, at least
one of ci and cj must be in I. (2) The derived grammar G′ based
on I is a grammar that can be recognized by a predictive parser.
Although there are many classes of predictive parsers, such as LL(k)
(k = 1, 2, ...), in this paper we restrict our study to use the LL(1)
parser to parse logged call traces, since it is of practical interest and
easy to construct. The methodology to study feasible solutions to the
call trace collection problem using the LL(1) parser can be extended
to other predictive parsers, such as LL(k) (k ≥ 2). Solving the call
trace collection problem with minimal instrumentation is found to be
non-trivial even under the restriction of using the LL(1) parser. It is
an NP-hard problem as proved in Section 4. As any LL(1) grammar
is also an LL(k) grammar (k ≥ 2), solving call trace collection
problem minimally using the LL(k) parsers (k ≥ 2) subsumes the
problem we studied and is at least an NP-hard problem.

Theorem 1 characterizes a class of feasible solutions to the call
trace collection problem. Note that, if G′ is an LL(1) grammar, G′

must satisfy Definition 4, which covers the two sufficient conditions
of a feasible instrumentation solution.

One important issue is the difficulty in verifying whether G′

satisfies the last constraint in Definition 4 when the program uses
third-party libraries. A library function f may implicitly invoke
application functions (See Section 5.1). The library function is
unavailable for static analysis. This may lead to incomplete result
of finding FOLLOW. For example, a library API may invoke

683



two functions f1 and f2, respectively in some executions and an
instrumented call site ci in f2 may immediately follow the logged
call trace Func′f1 , which implies ci ∈ FOLLOW(Func′f1 ). Since
such information is difficult to obtain from static analysis, we would
miss ci in FOLLOW(Func′f1 ). The incomplete result of FOLLOW
function makes it difficult to verify the last constraint in Definition
4. To avoid that, we apply more restricted constraints as shown
in Definition 6 to verify G′. Once the constraint (3) in Definition
6 is satisfied, the constraints (3) and (4) in Definition 4 are also
satisfied. With the restricted constraints, we can directly leverage
FIRST function to verify this constraint.

Theorem 1. An instrumentation I is a feasible solution to the call
trace collection problem of a call trace model G, if the associated
grammar G′ based on Definition 5 is an LL(1) grammar.

Definition 6. The grammar G′ based on Definition 5 is an LL(1)
grammar if: (1) G′ does not contain left-recursion rules; and (2)
for any two distinct production rules N ′ → αci |αcj of G′, (a)

FIRST(αci)∩FIRST(αcj )=∅, and (b) none of αci and αcj derive

an empty string (i.e., ǫ /∈ FIRST(αci ) and ǫ /∈ FIRST(αci )).

With Theorem 1, let us examine the two types of call site
inference relations identified in Section 3.1. First, if a call site cj is
the only successor of a given call site ci (in either interprocedural
or intraprocedural control flow), we can infer the execution of cj
from ci. Corresponding to cj , there exists a production rule Rk:
N → cjγcj in G. Here, N is Succi if cj is the successor call site
of ci; N is Fucfci if cj is the successor of ci interprocedurally.

Whenever we select R′

k to parse a logged call trace, since R′

k is
only mapped to Rk, simultaneously we can use Rk to derive the full
call trace, which implies the execution of cj . Second, if there are
multiple successors of a given call site ci (in either interprocedural
or intraprocedural control flow), it is feasible to determine which
successor has been invoked by logged call sites. With respect to
these k successors, there exist k (k ≥ 2) production rules in G as
well as their k derived production rules in G′. If I satisfies Theorem
1, when we parse a logged call trace and select a production rule
R′

k among the k derived production rules, a logged call site is used
to make the decision. Simultaneous with the decision of selecting
R′

k, we use the original production rule of R′

k to generate the full
call trace, which implies how a logged call site can determine the
successor by the logged call site. Therefore, the two types of call
site inference are expressed by Theorem 1.

With Theorem 1 and Definition 6, we can verify whether the two
instrumentations in Section 2 are feasible solutions to the call trace
collection problem. By instrumenting all call sites and return sites,
G′ is the same as G, which is an LL(1) grammar. By instrumenting
the targets of the branch nodes in CSCFG, it guarantees that for any
two production rules N → ciγci |cjγcj in G, the derived rules are

N ′ → ciγ
′

ci
|cjγ

′

cj
. Both derived rules satisfy all constraints except

the first one in Definition 6. The first constraint in Definition 6 can
be violated in two situations: (1) there is only one production rule to
derive Funcf , i.e., Funcf → ci Funcf Succi , where f is invoked at
ci and ci /∈ I; and (2) there is only one production rule to expand
Succi , i.e., Succi → ci Funcfci Succi , where Funcfci can derive

empty string and ci /∈ I. These situations should never occur in a
real program, since their occurrences imply a function f recursively
invokes itself at the entry call site without return or a call site resides
within an infinite loop. Although these situations should never occur,
we enhance the instrumentation in each situation by adding ci into
I to break the left-recursions. As a result, the first constraint in
Definition 6 is also satisfied. The enhanced instrumentations are
feasible solutions to the call trace collection problem.

Once I is found to be a feasible solution based on Theorem 1
and Definition 6, we can generate the full call trace based on the

logged call trace. Figure 5 (c) gives an example of how a full call
trace is simultaneously generated with parsing a logged call trace.
Same as the parsing of a full call trace, we adopt the same criteria of
accepting a valid logged call trace. If a logged call trace is generated
from a program execution with crash and it matches the terminals
in the derivation of Func′entry , we treat the logged call trace as
valid. To determine when to stop parsing the logged call trace, we
leverage the crash point information available from the crash stack.
The parsing is stopped if there exists an interprocedural control
flow path that traverses no call sites between the last call site in the
derivation of Funcentry and the crash point. Once we stop parsing
the logged call trace, we also stop generating the full call trace. For
example, in the last step of Figure 5 (c), from c5 to the crash point,
there is an interprocedural control flow path without going through
any call site (or return site), so we stop parsing the logged call trace.

4. Minimizing Logged Call Trace

Theorem 1 tells us that a program can have multiple feasible
instrumentation to collect call trace. In this section, we study how
to find an optimal instrumentation that instruments minimal number
of call sites, which leads to minimal logged call trace and incurs
minimal runtime overhead. Though we prove that finding the optimal
instrumentation is an NP-hard question, fortunately we can derive
an Hn-approximate algorithm that works very well in practice.

4.1 Optimal Instrumentation

We define an optimal instrumentation for a program as an instru-
mentation with minimal number of instrumentation sites. Without
knowing the execution frequency of every call site statically, this def-
inition represents our best efforts to minimize the runtime overhead
and logged trace size incurred by the instrumentation.

We prove that, even for a restricted subset of C-like programs,
finding the optimal instrumentation is NP-hard. We call the subset
programs Y-programs and formally define it as follows:

Definition 7. A program is a Y-program iff: (1) Its static call graph
is acyclic, i.e. it does not have recursive calls or mutually recursive
calls. (2) Every terminal function (i.e., the function that does not
have callees) has more than one entry call sites.

The acyclic call graph guarantees that an optimal instrumentation
for a Y-program can be obtained by optimally instrumenting every
function in the bottom-up manner on the call graph. We call
this property optimality condition. The reason is the call trace
produced by executing a function only involves the call sites of the
transitively reachable callees (production rule form 1). Since a caller
is unreachable from its callees on an acyclic call graph, the way
to instrument a function does not depend on the way to instrument
its callers. The optimality condition derives that the complexity of
obtaining the optimal instrumentation is O(nU), where n is the
number of functions in the program and U is the complexity of
optimally instrumenting a single function.

The rest of the proof requires a concept called Call Site Conflict
Graph and it is defined as follows:

Definition 8. Given a call trace model G and an instrumentation
I, a Call Site Conflict Graph (CSCG) of f is an undirected graph
<V , E>, where V is a set of nodes representing call sites in f .
There is an edge e = <ci, cj> ∈ E iff: (1) N → ciγci |cjγcj
are two distinct production rules in G, with the derived production
rules N ′ → αci |αcj in G′; (2) FIRST(αci) ∩ FIRST(αcj ) 6= ∅,

or ǫ ∈ FIRST(αci ), or ǫ ∈ FIRST(αcj ). Particularly, CSCG0

f is the
CSCG for function f , where all transitively reachable callees of f
are instrumented except f .

From the definition of CSCG, we give a simpler way to decide a
feasible solution for call trace collection in Theorem 2. The proof of
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Theorem 2 is straightforward and hence we omit the proof to save
space.

Theorem 2. Instrumentation I is a feasible solution defined in
Theorem 1 iff the CSCG of every function is empty.

CSCG is a bridge for modeling our instrumentation problem as a
graph problem and hence we derive our main results as follows.

Theorem 3. Optimally instrumenting a single function in a Y-
program is equivalent to vertex cover problem.

Proof. (If part: Reduce vertex cover problem to the problem of
finding an optimal instrumentation for a function). Given a non-
trivial undirected graph Gvc=(V , E), where |V | > 0 and |E| > 0,
we synthesize a Y-program in three steps:

1. Construct a main function with |V | entry call sites where the

call site ci corresponds to the ith node in the graph Gvc. This can be
easily constructed with a if-else statement that has |V | branches. The

ith branch contains call site ci that calls a distinct broker function

f i
b (see step 3 for details).

2. Construct |E| terminal functions where every terminal func-

tion f ij
t corresponds to an edge <i,j > in graph Gvc that connects

two nodes i and j. The terminal function contains a single if-else
statement and two return sites under the if and else branches respec-
tively.

3. The last step, we synthesize the broker functions. The function-
ality of broker function is dispatching the calls to terminal functions.

For broker function f i
b , we construct a if-else statement with Ni

branches, where Ni is the number of edges incident to node i in the

graph Gvc. In the jth (0 ≤ j < Ni) branch, we insert a call site to

call the terminal function f ij
t .
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Figure 6: An example of reducing an undirected graph to a program.

We can easily verify the synthesized program is a Y-program
and the synthesis algorithm works in O(|V |+ |E|) time and space.
An important characteristic of the synthesized program is that the
CSCG0

main is exactly the graph Gvc. The reasons are:

1. Both the return sites in a terminal function f ij
t are instru-

mented. Otherwise we do not know how a terminal function exits.
2. None of the broker functions are instrumented. Suppose

the derived production rule for every call site ci in the broker
function is αci , we know that for any two call sites ci and cj ,
FIRST(αci) ∩ FIRST(αcj ) = ∅. This is because ci and cj call
different terminal functions.

3. Two call sites ci and cj in the main function induce an edge

in CSCG0

main iff there is an edge <i,j > in Gvc. The key point is,

from our synthesis algorithm step 3, the edge <i,j > introduces a

terminal function f ij
t , which is called by both the broker functions

f i
b and f j

b . Since neither f i
b nor f j

b are instrumented, we conclude
Iij ∈ FIRST(αci) and Iij ∈ FIRST(αcj ), where αci and αcj

are the derived production rules for call sites ci and cj in main.
Therefore, FIRST(αci) ∩ FIRST(αcj ) 6= ∅ and it introduces an

ci ↔ cj edge in CSCG0

main. The proof for “non-Gvc edge cannot

induce an edge in CSCG0

main” is similar.
Since ǫ /∈ FIRST(αci), ∀ci in main function, instrumenting ci

eliminates all edges incident to ci in CSCG0

main without introducing
new edges. This is the same to selecting node i in Gvc and covering
the edges incident to i. Therefore, the optimal instrumentation for
CSCG0

main is the answer to the vertex cover problem: node i is
selected iff the call site ci is instrumented.

(Only if part: Reduce the problem of finding an optimal instru-
mentation to vertex-cover problem). Given a function f , if f is a
terminal function, apparently we have to instrument all the return
sites, otherwise we cannot know how the terminal function exits.
Meanwhile, CSCG0

f is a complete graph, and the solution for vertex
cover problem in this graph is selecting all vertices.

For a non-terminal function f , suppose all the callees of f are
optimally instrumented. We can draw two important conclusions.
First, from the acyclic structure of Y-program, any call site ci in f
can transitively call (at least) a terminal function. Since all terminal
functions are instrumented, we know ǫ /∈ FIRST(αci). Second, ∀ci,
instrumenting ci only updates FIRST(αci) = {ci} and preserves
FIRST(αcj ), ∀cj . In other words, instrumenting ci eliminates all
edges incident to ci without introducing new edges in the CSCG,
which has the same effect of selecting a node and covering the
incident edges in the vertex cover problem.

Therefore, adopting a vertex cover solution to instrument f
produces an empty CSCG of f , which is a feasible instrumentation
according to Theorem 2.

As a corollary, we conclude from Theorem 3 that the problem of
finding an optimal instrumentation for a C-like program is NP-hard.

4.2 Suboptimal Instrumentation

Theorem 3 gives us opportunity to leverage the approximate algo-
rithm for vertex cover problem to give a suboptimal instrumentation.
But for an arbitrary program, we should transform it to a Y-program
to use the vertex cover results. The transformation can be conducted
in two steps.

First, we eliminate the cycles in the call graph by instrumenting
all the call sites that induce back edges identified by Tarjan’s cycle
finding algorithm [11]. After the cycle break, we can instrument
the functions in a reverse topological order. For example, we can
instrument our running example (Figure 2) in the order C, D, A, H ,
B, E, main.

Second, suppose we are instrumenting the function f and all
the callees of f are instrumented. There are two cases that f is not
modeled as a Y-program: (1) f is a terminal function that has only
one return site ci; (2) f is a non-terminal function that has a call site
ci which invokes a terminal function as the case (1). In the case (1),
according to Definition 8, CSCG0

f is empty, so no instrumentation
in f is required (See Theorem 2). In the case (2), any call site ci that
makes f not a Y-program, has the property that ǫ ∈ FIRST(αci).
Thus, to transform f into a Y-program, we only need to guarantee
that ∀ci, ǫ /∈ FIRST(αci), where αci is the derived production
rule for the call site ci. We call it VC-transform condition and
specially instrument all the call sites ci where ǫ ∈ FIRST(αci) to
satisfy the condition. We record the specially instrumented sites in
I1 for further optimization. Then, we apply the Hn-approximation
algorithm (Ch.2 in [42]) to obtain the vertex cover for the CSCG
of f and use the selected call sites in vertex cover solution for
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instrumentation. The approximation factor for our instrumentation

problem is Hd =
∑d

i=1

1

i
, where d is the maximum degree of the

vertices in CSCG. In practice, Hd is usually very small.
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Figure 7: An example of instrumentation optimization. (a) A partial
CFG before instrumentation; (b) Specially instrument the call sites
to satisfy the VC-transform condition; (c) Add instrumentation from
the vertex cover solution; (d) Remove some specially instrumented
call sites and preserve the validity of remaining instrumentation.

We can further optimize I1 as some call sites in I1 can be
removed without violating the constraints in Definition 6. Let
us illustrate our idea by the example in Figure 7. Initially in
Figure 7(a), none of the call sites are instrumented. At this step,
FIRST(Func′fcj

) = {ǫ} and FIRST(Func′fck
) = {ǫ}, which violates

the VC-transform condition. Therefore, we instrument cj and ck as
described before (Figure 7 (b)) and run the approximate algorithm to
instrument the rest of call sites. After this step, cm is instrumented
(Figure 7 (c)). The last step, as shown in Figure 7 (d), we try to
remove the instrumentation for ck. According to Definition 6, we
must guarantee, after removing the instrumentation for ck, there
is no violation of the constraints in Definition 6. For example,
FIRST(αck ) = {cm} and FIRST(αcj ) = {cj} after removing ck
from the instrumentation. Therefore, FIRST(αck ) ∩ FIRST(αcj ) =
∅. Therefore, the instrumentation of ck can be removed. In general,
we can check all the specially instrumented call sites one by one and
removing all instrumentation sites that do not violate the constraints
proposed in Definition 6.

The pseudo-code of our complete instrumentation algorithm is
shown in Algorithm 1. The algorithm traverses and instruments the
functions in a reverse topological order of call graph. It first specially
instruments I1 the set of call sites that violate the VC-transform
condition (Line 3 to 9 in Algorithm 1) and generate a Y-program.
Then, it builds the call site conflict graph of f (i.e., CSCGf ) and
applies the greedy algorithm to solve the vertex cover set of CSCGf

(Line 9 to 12). Finally, the algorithm iteratively removes any call
site ci in I1 such that removing ci will not violate the constraints
in Definition 6 (Line 13 to 17). The final step is performed with a
reverse topological order of CSCFG in I1, since the instrumentation
of predecessor call sites relies on the instrumentation of successor
call sites. Whether the instrumentation generated by Algorithm 1
is a feasible solution can be guaranteed by the Theorem 3 and the
Theorem 1 with the constraints in Definition 6.

Section 2 discusses two related instrumentation approaches for
call trace collection. We refer to the first approach [25] that instru-
ments every call site baseline approach, and the second approach
[24] that instruments the target call sites of branch nodes in the
call site control flow graph branch-based approach. Apparently, the
baseline approach is incapable to reduce the number of instrumented

Algorithm 1: Generate Instrumentation Solution

Input: CallGraph: acyclic call graph (back edges have been handled)

Output: I: the instrumentation solution

1 Function GenerateInstrumentationSol (CallGraph)

2 foreach function f in reverse topological order of CallGraph do

3 I1 ← ∅

4 foreach ci in f do

5 if ci violates the VC-transform condition then

6 I1 = I1∪ {ci}

7 end

8 end

9 I = I ∪ I1

10 use I to build the call site conflict graph of f as CSCGf

11 If ← Vertex-Cover Set of CSCGf using Greedy Algorithm

12 I = I ∪ If

13 foreach call site ci ∈ I1 in reverse topological order of CSCFG do

14 if IsRemovable(ci) then

15 I = I - {ci}

16 end

17 end

18 end

19 end

20 Function IsRemovable (ci)

21 I
′ = I - {ci}

22 if I′ satisfies the constraints in Definition 6 then

23 return true

24 else

25 return false

26 end

27 end

call sites. The branch-based approach instruments both ci and cj
whenever there is an edge <ci, cj>in the CSCG. In contrast, our ap-
proach considers the optimal solution on the vertex cover of CSCG
and tries best efforts to optimize the specially instrumented sites.
Therefore, we can guarantee the proposed suboptimal solution is
better than the two reference approaches. For instance, by applying
our approach to the example program in Figure 2, we only need
to instrument <c4, c5, c6, c7, c8>, which contains fewer call sites
than the two reference approaches.

As discussed in Section 3.5, we enhance instrumentations to also
guarantee the constraint left recursion free in Definition 6 under two
situations: (1) a function f recursively invokes itself at the entry call
site without a return and (2) a call site is inside an infinite loop.

5. Implementation

We implemented our proposed approach in Casper (Call traces
peregrination) framework for Java programs. Casper is imple-
mented on top of Soot [23] and run static analysis such as con-
trol flow analysis and static call graph analysis on Soot Jimple IR.
However, the instrumentation placement is performed on bytecode
directly. At this moment, Casper is designed to collect call traces
of a single thread and does not give promises to recover the thread
interleaving. In below, we give the implementation details of Casper
and show how Casper can work with real programs.

5.1 Handling Callback

Casper distinguishes application code (the code statically known to
be reachable from entry functions) from library code (including the
code in JDK, third-party libraries, non-Java code, and etc.). Casper
only instruments the call sites in application code and gives up the
instrumentation for library code. The reasons are twofold. First,
due to the limitation of static analysis, certain code such as the
dynamically loaded code or that invoked by reflection is unable to
be processed in prior. Second, instrumenting the call sites in library
classes is less cost-effective: they incur high runtime overhead but
are of less interest to subsequent clients [7, 46].
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However, in the presence of callback mechanism that allows
library code to call application code, simply ignoring the call sites in
library code poses the challenges to correctly reproduce the full call
trace. Let’s see an example in Figure 8. The internal control flow
of both main and AppMethod are a straight line, none of the call
sites are instrumented by Algorithm 1 and the instrumentation gives
us an empty trace log for any execution. However, when we try to
recover the full call trace, we have to answer two questions. The
first question is whether AppMethod was executed. If the answer
is positive, the second question is which call site (c1, c2, c3, or c4)
transitively called AppMethod. Without the exact answers to the two
questions, we are unable to recover the genuine call trace.

1 public class AppClass{
2 public void AppMethod (){
3 ....... // do something (no call sites)
4 return; //c5
5 }
6

7 public static void main(String [] args){
8 Class c = Class.forName(args [1]); //c1
9 Object object = c.newInstance (); //c2

10 Method m = c.getDeclaredMethod(args [2]); //c3
11 m.invoke(object); //c4, call AppMethod
12 }
13 }

Figure 8: Challenges in trace recovery caused by function callback.

Our overall idea to handle callback is dynamically recording
the call sites that can transitively call back to application code and
the unique ID of the callback functions. For any call site ci in
application code that may call a library function, we place a special
instrumentation that manipulates a callback handling stack CHS
for application code to witness the occurrence of function callback.
The callback handling stack CHS is exemplified in Figure 9 (b),
where each frame maintains a unique call site ID ci (or ∅) and the
corresponding ExpAppDepth for ci (will explain later).

AppClass.main Line 11

…

…

AppClass.AppMethod Line 4

4c

Call Sites in Library Code

5c

AppDepth=1

AppDepth=2

ExpAppDepth=1

ExpAppDepth=24c

f

(a) (b)

Figure 9: The snapshot of (a) the JVM system call stack and (b)
the corresponding callback handling stack when AppMethod is on
execution.

We define AppDepth for every application function on the
JVM call stack as the number of other application functions that
appear before it. Such as in Figure 9(a), the AppDepth for c4 is
2, because we only count the main function and all other library
functions are omitted. AppDepth can be easily tracked by using a
thread local variable: whenever entering or leaving an application
function, we increase or decrease AppDepth by 1 respectively. The
functionality of AppDepth is to compute ExpAppDepth for every
call site ci that can call a library function, where ExpAppDepth is
the expected AppDepth for the first occurrence callback function
transitively called by ci. When ci is pushed to CHS, we set its
ExpAppDepth = AppDepth + 1. For any other call sites ck that do
not call a library function, we do nothing change to CHS. Therefore,
the stack CHS is updated infrequently since only a small fraction of
call sites can modify it. Subsequently, at the entry of each application
function fapp, we check whether the current AppDepth equals to
the ExpAppDepth in the top frame of CHS. If the answer is yes, we
know fapp is invoked through callback mechanism and then Casper
logs ci and the unique ID of fapp.

We show how this dynamic mechanism works for the example
in Figure 9 (b). First, the AppDepth for call site c4 at Line 11 is 1.
When AppMethod is executed through c4, AppDepth is increased
to 2, which is equal to the ExpAppDepth of c4. By this means, we
know AppMethod is a callback invocation and it is invoked by c4
but not other call sites such as c1, which answers the two questions
asked previously.

Besides, this dynamic mechanism can also be used to automat-
ically discover the entry function for each thread, which serves
as the start point in our models G and G′ to recover the full call
trace. Whenever a thread is started, Casper creates a callback han-
dling stack CHS for this thread and pushes an initial frame with
ExpAppDepth = 1 to CHS (e.g., the bottom frame in Figure 9 (b)).
Once a function is executed and it discovers the last ExpAppDepth
is 1, this function is marked thread entry function and its unique ID
is logged.

5.2 Handling Virtual Call

Virtual call sites occupy a very large portion in Java programs and
hence, the performance gained by eliminating unnecessary virtual
call sites instrumentation is dramatic. However, due to the dynamic
nature of Java, it is unable to rely on a complete static call graph
to decide which virtual call sites are safe to be removed from
instrumentation. Our key insight is combining points-to analysis
with the mechanism proposed to handle callback functions in
Section 5.1 to safely handle all virtual call sites. We first use points-
to analysis to find the virtual call sites that are possibly called on an
object generated by newInstance function. This is achievable with a
sound whole program analysis such as Soot SPARK. These call sites
are instrumented and handled by the same mechanism described in
Section 5.1. For the rest of the call sites, we first decompose the
polymorphic call sites into a set of individual monomorphic call
sites. For example, for a call site cv that has multiple call targets
such as f1, f2, ... fk, we generate k artificial call sites c1, c2, ...
ck, where ci calls fi. Then, we apply Algorithm 1 to make the
instrumentation decision and instrument cv if any of its artificial
call sites ci is decided to be instrumented. This approach handles
polymorphic and monomorphic call sites uniformly and leverages
Algorithm 1 to instrument minimal set of virtual call sites.

5.3 Handling Implicit Function Call by JVM

The method finalize and the static initializer <clinit> are implicitly
invoked by JVM. The invocation of these methods is not modeled
by the call trace model. To handle these methods, we instrument at
their entry so that their executions are logged. In the recovering step,
the call traces of these methods can also be recovered, but they are
not used for the inference of the whole call trace.

5.4 Exception Handling

Both the call trace model and logged call trace model of a program
rely on its call site control flow graph. In Casper’s implementation,
we utilize Soot to perform the control flow analysis by considering
the exception handling paths, so the caught exceptions are modeled
in G and G′. For uncaught exceptions, we implement the Uncaugh-
tExceptionHandler and register it in JVM. When a thread crashes,
our handler logs its crash stack and call trace. Therefore, we can
model the stack unwinding via exception escape as a return site.

5.5 Call Site Encoding

To distinguish different call sites, we encode each call site using a
unique integer identifier. It is sufficient to encode all call sites using
an 32-bit integer in practice. For example, the number of call sites
in our largest subject Eclipse is 143,114, which is far from hitting
the upperbound of (232 − 1).
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5.6 Asynchronous and Compressed Logging

Time overhead is a practical issue. The data of logged traces
are saved in files so that full call traces can be regenerated later.
Therefore, I/O operations are a main threat to time overhead. To
tackle this, we shift heavy I/O operations from application threads
to a separate I/O thread. The trace data logged by an application
thread are cached locally in a memory buffer. When the buffer is
full, the cached data are queued and saved to files by the separate
I/O thread.

Space overhead is another practical issue. Although the compact
call traces to be logged are much shorter than full call traces, the
logged data could still be large. To reduce the space overhead, we ap-
plied the Java built-in library that implements the data compression
algorithm “Deflate” [12] to compress the logged data.

6. Experiments

We have implemented three different instrumentation approaches to
collect call traces: (1) instrumenting every call site, denoted as FI
for short, (2) instrumenting only the target call sites of branch nodes
in CSCFG, denoted as BRI for short, and (3) instrumenting call sites
using Casper. The experiments were performed on a computer with
an 3.30GHz Intel i3 CPU and 12.0GB of RAM, under Windows
7 Enterprise. The JVM used is Oracle’s Java HotSpot(TM) 64-Bit
Server VM with version 1.7.

We selected Dacapo Benchmark 2006 [6] as the evaluation
subjects (Table 1). Table 1 shows the static information of each
subject, including the number of call sites and returns, the number
of library calls, and the number of virtual calls. We omitted the
subject bloat in the benchmark due to an outstanding implementation
problem in logging. The huge volume of generated log data by
bloat causes an OutOfMemoryError exception. We compared the
instrumentation overhead, time overhead and space overhead. To
compare the time and space overhead, we ran each subject separately
instrumented using FI, BRI and Casper for 100 times under the
same default settings, and took the average as the final results. We
conducted Mann-Whitney U-test [29] on each subject to test whether
the performances of FI, BRI and Casper significantly differ.

subject #call sites & returns #library calls #virtual calls

antlr 23,544 8,572 2,254

chart 26,003 9,275 2,483

eclipse 143,114 39,516 17,202

fop 26,944 8,316 3,227

hsqldb 17,870 4,549 1,028

jython 36,229 8,468 3,188

luindex 5,754 2,348 430

lusearch 6,892 2,743 434

pmd 27,737 6,723 2,684

xalan 28,629 8,093 2,941

Table 1: The experimental subjects.

6.1 Instrumentation Overhead Comparison

Table 2 reports two kinds of instrumented sites for both BRI and
Casper. To guarantee that call traces will not miss any call site
in the application functions, we propose a mechanism to handle
virtual calls and callbacks. Since the instrumentation for checking
virtual calls and callbacks does not directly log call sites, it is more
lightweight than the instrumentation for logging. Table 2 reports the
reduction of BRI and Casper with respect to FI, which instruments
all call sites and returns. As the number of instrumented call sites
correlates with the time and space overhead, we expect that Casper
incurs less overhead.

6.2 Time Overhead Comparison

Figure 10 shows the comparison of time overhead among the three
instrumentation approaches. FI resulted in the highest overhead,
with an average of 213.9% (7.1% to 1617.5%). BRI reduced the

Subject
BRI Casper

#log #check %reduction #log #check %reduction

antlr 15,741 10,524 33.1% 5,403 10,423 77.1%

chart 15,484 9,655 40.5% 8,451 9,609 67.5%

eclipse 96,108 50,983 32.8% 53,332 49,831 62.7%

fop 16,444 10,135 39.0% 8,085 9,805 70.0%

hsqldb 10,420 5,146 41.7% 6,050 5,059 66.1%

jython 20,618 11,262 43.1% 10,714 11,206 70.4%

luindex 3,947 2,542 31.4% 2,135 2,535 62.9%

lusearch 4,750 2,985 31.1% 2,560 2,966 62.9%

pmd 18,147 8,365 34.6% 10,489 8,023 62.2%

xalan 18,400 9,981 35.7% 10,843 9,538 62.1%

Average 22,006 12,158 36.3 % 11,806 11,900 66.4 %

#log: the number of instrumented sites for logging.

#check: the number of instrumented sites for checking virtual calls and callbacks.

%reduction: the reduction over FI considering #log

Table 2: Instrumentation reduction.

overhead of FI, and only resulted in 128.4 % overhead on average,
ranging from 6.7% to 808.3%. Casper outperforms the other two
approaches. The overhead of Casper is 6.3% in the best case and
278.1% in the worst case, with an average of 68.0%. The time
overhead of Casper is only 31.8 % of FI. The reduction of BRI
over FI is ranging from 5.9% to 57.7%, and on average 29.7%. The
reduction of Casper is more significant than BRI. The reduction
of Casper over FI is 55.0% on average. Besides, the reduction of
Casper over BRI is also significant, on average 35.1%. We conducted
the Whitney U-test with a null hypothesis that Casper does not
outperform the other approaches significantly. The results rejected
the null hypothesis with a confidence level over 0.95 (i.e. p-values
are less than 0.05), in all the subjects except Eclipse. In Eclipse,
Casper is not significant better than BRI (p-value is 0.11). The
main reason is that, the number of call sites that are logged in the
execution of Eclipse is small and it does not impose much overhead.
Table 3 also showed that the space size of logged data in Eclipse
is smallest, compared with other subjects. The evaluation results
showed that, the Casper can effectively reduce the time overhead.

1% 3% 5% 10% 20% 40% 80% 160% 320% 640% 1280% 2560%

antlr

chart

eclipse

fop

hsqldb

jython

luindex

lusearch

pmd

xalan

FI BRI Casper

Figure 10: Time overhead comparison.

6.3 Space Overhead Comparison

Table 3 shows the size of traces logged by FI, BRI and Casper, as
well as the reduction of BRI and Casper over FI. The space reported
in the table is the size of the associated compressed log files. Like the
results for time overhead, FI requires the largest space size. Casper
achieved the highest reduction of the space overhead. The reduction
ratio of Casper over FI is 63.9% on average, which is consistent
with the instrumentation reduction ratio (66.4%). We also observed
similar space reduction ratios of Casper over FI and BRI, in terms of
the size of log files after decompression (See Table 4). Besides, we
conducted the Whitney U-test with the null hypothesis that Casper
does not achieve significantly less space overhead than the other two
approaches. Our results rejected this hypothesis with a confidence
level over 0.95 (i.e., p-values are less than 0.05), in all subjects.
Overall, our experiments show that Casper can significantly reduce
the space overhead.
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Subject
FI BRI Casper

space size

(KB)

space size

(KB)
reduction

space size

(KB)
reduction

antlr 51,126 24,508 52.1% 13,600 73.4%

chart 65,782 30,154 54.2% 17,809 72.9%

eclipse 2,495 1,634 34.5% 1,021 59.1%

fop 22,488 13,581 39.6% 8,790 60.9%

hsqldb 78,973 35,999 54.4% 24,989 68.4%

jython 110,344 52,990 52.0% 44,542 59.6%

luindex 210,945 106,075 49.7% 98,342 53.4%

lusearch 298,387 119,853 59.8% 81,171 72.8%

pmd 136,002 62,057 54.4% 43,621 67.9%

xalan 339,505 198,421 41.6% 140,702 58.6%

Average 131,604 64,527 49.2% 47,458 63.9%

Table 3: Space overhead comparison (Compression).

Subject
FI BRI Casper

space size

(KB)

space size

(KB)
reduction

space size

(KB)
reduction

antlr 1,442,312 702,452 51.3% 415,707 71.2%

chart 3,384,046 1,703,534 49.7% 1,080,787 68.1%

eclipse 36,061 24,034 33.4% 15,547 56.9%

fop 310,398 189,445 39.0% 125,188 59.7%

hsqldb 3,231,980 1,630,190 49.6% 1,143,102 64.6%

jython 5,405,229 3,023,327 44.1% 2,554,416 52.7%

luindex 5,930,005 2,664,094 55.1% 2,272,101 61.7%

lusearch 5,741,900 3,158,803 45.0% 2,628,250 54.2%

pmd 6,158,416 3,127,378 49.2% 2,353,579 61.8%

xalan 4,771,881 2,928,493 38.6% 2,094,564 56.1%

Average 3,641,223 1,915,175 47.4% 1,468,324 59.7%

Table 4: Space overhead comparison (Decompression).

7. Related Work

Program tracing and profiling. Tracing and profiling program
executions have wide applications, such as to identify performance
bottlenecks [3, 10, 17, 31], to optimize code [13], to debug the
program [21, 32, 45] and so on. Due to the importance of these
applications, Ball and Larus [4] proposed instrumenting each call
site with a ”blocking” placement in order to trace and profile
program executions. Later, they [5] proposed a path profiling
algorithm, which encodes acyclic control flow paths of each function.
Both works by Ball and Larus [4, 5] focused on capturing program
behaviour within a function. In constrast, we address the call
trace collection problem, which governs program behaviour across
multiple functions. Larus later proposed WPP (whole program paths)
technique [25] to capture and represent interprocedural control flow
paths. Like Ball and Larus’s approach [4], WPP instruments the
entry and exit of each call site. As a result, the instrumented code
suffers from large overhead. Our work improves WPP by adopting a
more efficient way to instrument call sites. Other techniques [16, 47]
have been proposed to utilize the power of multi-core systems to
speed up the profiling and analysis process. These techniques shift
heavy analysis tasks from application threads to non-application
threads [16, 47] and parallelize these tasks [47]. This leads to faster
analysis. Our work is orthogonal to them. It reduces both the runtime
and space overheads. In future, we will consider integrating these
techniques with ours to further improve the performance.
Anomalous Program Behaviours Detection. Call traces is impor-
tant in detecting anomalous program behaviours. Some anomalous
techniques [18, 39] characterized normal program behaviours from
system call traces using different models, such as N-gram and
automaton-based model. M. Christodorescu et al. [9] proposed to
derive the specifications of malicious behaviours by comparing the
system call traces of known malware with benign programs.
Debugging. Debugging is difficult and time-consuming. To assist
developers, many debugging techniques were proposed. BugRedux
[21] was proposed to reproduce the field failures based on different
kinds of execution data, among which the call sequence is the most
efficient one. CrashLocator [43] uses crash stack to approximate
faulty crash traces and locates the crashing faults. Jiang and Su

[20] proposed the context-aware statistical debugging and showed
that relevant control flow paths that may contain bug locations are
more informative than stand-alone bug locations. Besides statistical
debugging, Ohmann and Liblit [35] proposed to leverage intrapro-
cedural control flow paths to assist post-mortem analysis. Our work
facilitates both bug reproduction and fault localization by providing
an efficient approach to collecting call traces.
Performance Diagnosis. Finding performance problem is challeng-
ing. Many techniques were proposed to assist the diagnosis of per-
formance problems. StackMine [17] mined patterns from a sequence
of call stacks in large. The adoption of StackMine helped devel-
opers discover highly impactful performance bugs. Yu et al. [44]
proposed a new approach to analyze the execution traces combining
impact analysis an causality analysis. Mi [31] proposed CloudDiag
to pinpoint the causes of the performance bugs by using a statistical
technique and a fast matrix recovery algorithm. CloudDiag collected
the sequence of method invocation and performed analysis on it.
Since the trace data used in the above work is variant of call traces,
our work can facilitate these techniques.
Program Comprehension. Program specifications are important
for the understanding of the program. Gabel and Su [15] proposed
to mine the temporal properties from call traces, which can be used
for software development, bug detection and software maintenance.
Pradel and Gross [37] proposed to learn the object usage specifica-
tions from a large volume of call traces. In another study, Pradel
and Gross [38] mined the specification using call traces, integrated
the specifications with test generation, and detected bugs at runtime.
All the above works use call traces. As such, they can benefit from
our efficient approach to collecting call traces.

8. Conclusion and Future Work

In this paper, we propose a novel LL(1) grammar based model to
represent every possible call trace, as well as a grammar model to
represent every possible logged call trace. Based on the models, we
define the criteria of a feasible solution to the call trace collection
problem, and theoretically prove that optimally solving this problem
is NP-hard. Then, we design an efficient approach to obtaining a
suboptimal solution, and implement the proposed approach as the
tool Casper. Our experimental results show that Casper significantly
outperforms existing approaches. It imposes on average 68.0%
runtime overhead on the studied Java programs, which is only 31.8%
of the overhead for collecting full call traces. Also, the size of the
log data generated by Casper is only 36.1% of that generated by
instrumenting all call sites.

This work presents the first theoretical results on the optimal
instrumentation for call trace collection. Our approach makes an
important step towards reducing the cost of collecting call traces. In
the future, we will apply our approach to more projects and evaluate
its effectiveness and possible applications in practice. We will also
explore the techniques that can further reduce the overhead, such as
the synergy between our approach and a sampling-based approach
[27, 28]. Moreover, the methodology to study feasible solutions
to the call trace collection problem using the LL(1) parser can be
extended to other predictive parsers (e.g., LL(k) (k ≥ 2)), which
may further reduce the cost and deserves to be further explored.
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