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Abstract. Functional Magnetic Resonance Imaging (fMRI) studies are derived
from a time series of Echo-Planar images (EPIs). Compared to conventional
Magnetic Resonance Images (MRIs), EPIs are of relatively poor quality for dis-
cerning anatomic features and are often registered with corresponding MRIs to
map brain activity to neuroanatomy. In this paper we demonstrate the utility of
a technique to register an EPI-MRI pair by minimizing the discrepancy between
its joint intensity probability mass function (PMF) and a previously learned one
for a properly registered EPI-MRI pair, using the Kullback-Leibler Distance
(KLD). In probing experiments Joint Entropy (JE) and Mutual Information
showed significant bias relative to KLD along the axial direction and JE along a
rotation axis. A comparison of searches using random starting poses showed
KLD to have lower final pose errors than JE. Results of variation on parameters
of the KLD based EPI-MRI registration technique are also presented.

1 Introduction

Researchers often use functional Magnetic Resonance Imaging (fMRI) to study brain
activity. These studies produce spatial activation maps through analysis of a time
series of Echo-Planar Images (EPIs) taken of the patient’s head as the subject re-
sponds to specific tasks or stimuli. While EPIs provide brain activity information on a
time scale adequate for making inferences about regional brain function, they are of
relatively poor quality for discerning anatomical features. Because there are a variety
of tasks that are facilitated by the ability to correlate features like motor function to
specific neuroanatomy (e.g. planning neurosurgical tasks or performing neuroscience
experiments), researchers often desire to register EPIs to their corresponding Mag-
netic Resonance Images (MRI). This registration allows brain activity noted in re-
gions of EPIs over successive volumes of the time series to be attributed to anatomic
regions of the brain. Registration techniques which employ Mutual Information (MI)
provide a partial solution to this problem, but they show limitations in capture range
for rigid transformations. In this paper we demonstrate the utility of a method that
leverages a priori domain knowledge to register an EPI -MRI pair by utilizing infor-
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mation about a properly registered EPI-MRI pair. The technique searches the space of
transformations of the EPI of a test image pair for a pose that results in a joint inten-
sity probability mass function (PMF) that most resembles a learned one for a properly
registered training pair. The difference between the PMFs is determined using the
Kullback-Leibler Distance (KLD), an information theoretic similarity measure com-
monly used in machine learning and information theory [1]. The KLD registration
approach has previously been used to solve challenging angiographic registration
problems [2, 3].

In fMRI studies a time series of EPIs of a patient’s head are taken and regions of
the EPIs are analyzed for changes over time [4]. Regions of successive EPIs where
intensity changes correlate with the experimental protocol are indicative of brain
activity. Brain activation indirectly causes intensity variations in the EPI images by
way of the Blood Oxygenation Level Dependent (BOLD) effect [5]. Time series of
EPIs must capture successive images at intervals of approximately once every two
seconds to be able to reflect these rapid occurring changes in blood flow. Conven-
tional MRIs are acquired over a period of some minutes per image capture, and pro-
vide more detailed images of brain anatomy [6]. Registering a set of EPIs to a set of
corresponding MR images allows researchers to correlate areas of apparent activity in
the EPI images with specific brain anatomy.

It is widely recognized that EPI images can contain significant distortions in addi-
tion to the intensity voids caused by magnetic susceptibility effects [6]. A definitive
solution to the EPI/MRI registration problem will likely address this issue directly, by
simulating the effect, or by field mapping at the time of acquisition. Nevertheless, we
feel that in the interim, a robust method of rigid registration would be well received
by the research community that uses fMRI.

One pragmatic approach to the MRI / EPI registration problem is to acquire a con-
ventional MRI scan just before the EPI images for use as a registration reference (RR)
that may be registered to other conventional MRI using, for example, MI. This
method depends on the EPI and RR being in correspondence by the design of the
scanning protocols. While the method is viable, it does require an additional scan,
and it is not usable retrospectively for data that was acquired without the RR. In addi-
tion, there is frequently residual misregistration between the EPIs and the RR that
needs to be corrected manually.

Many medical image registration problems have been solved using the Mutual In-
formation approach [7, 8, 9]. The MI approach to registration seeks a transformation
which maximizes the statistical dependence among the two images, without regard to
particulars of the relationship. There are strong similarities between the MI approach
and that of minimizing the joint entropy (JE). The objective functions share a joint
entropy term, which is responsible for a pronounced extremum at the correct pose.
The MI approach uses additional individual entropy terms that can enhance long
range capture in some applications. In the experience of the authors, and as we will
demonstrate below, the widely-used MI registration approach can, however, perform
poorly on the EPI/MRI registration.
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2 Methods

In this section we describe the objective function search and probing experiments
reported in the results section.

2.1 Overview of Registration Experiments

In a training operation an EPI and its corresponding MRI are registered by an expert,
blurred to 4 levels, and joint intensity PMFs are computed for all 5 of the EPI-MRI
pairs. These PMFs will be referred to as Aligned Joint Intensity PMFs (AJPs).

In the registration phase, a test EPI-MRI pair is blurred to the same four levels that
were used on the training pair. Then, starting with the most blurred image (blur level
4 in the figures), the algorithm searches for a rigid transformation of the test pair’s
EPI that results in a test pair joint intensity PMF that has a minimal KLD from the
AJP for that blur level. Once this pose is found, the algorithm repeats this search on
the test pair’s EPI blurred to the highest blur level that has not yet been searched,
using the final pose from the previous search as the start pose. The search continues
until a pose is found to minimize the KLD between the test pair’s PMF and the AJP of
the non-blurred training pair. This final pose is returned as result.

2.1.1 Image Preparation and Selection

All image data in our experiments were acquired on a GE 1.5 Tesla Signa system
equipped with the HORIZON hardware/software package. The MRI data in our ex-
periments is a standard gradient echo (SPGR) scan that consists of 124 1.5 mm thick
slices, FOV 24cm, image resolution 256 X 256 pixels. The EPI data sets contain 21
contiguous 7mm-slice images. The functional images are acquired in an auditory
experiment using the EPIBOLD pulse sequence with the following set of parameters:
TE=50msec, TR=3sec, FOV 24cm, image resolution=64 x 64 pixels.

EPI and MRI volumes were rigidly aligned for good visual agreement throughout,
the EPI volume was re-sampled, using tri-linear interpolation, into the lattice of the
MRI data, and corresponding 256 X 256 slice pairs were generated to be used as 2D
test and training pairs.

Fig. 1. MR and Echo-planar Image Pairs from A Single Acquisition Session

2.1.2 Blurring the Images

Four rotationally symmetric Gaussian low-pass filters of the following sizes and stan-
dard deviations (o) were created to blur the original images: Level 1- 20x20 pixels,
o: 3, Level 2 — 40x40 pixels, o: 5, Level 3 — 80x80 pixels, o :8, Level 4 — 100x100
pixels, o: 10.
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Fig. 2. (Left to Right) — Increasing strength blur applied to an Echo-planar image

2.1.3 Image Transformations
All transformations of the EPI images were performed using a rigid transformation
model, with rotations occurring around the center of the image [10].

2.1.4 Histogramming to Estimate Joint Intensities

For the KLD objective function, a histogram was computed on an image pair by
rastering over the EPI and MRI simultaneously and counting the co-occurrence of
intensities in regions where the images overlapped. The co-occurring pixel intensity i
from the EPI and j from the MRI led to incrementing bucket (i,j) in a 256 x 256 ma-
trix.

The matrix was then normalized to convert the histogram into a PMF. Because it
was possible for some buckets to have counts of zero after normalization, an & value
was added to all buckets in the matrix before normalization. Varying & between
1x10° and 1x10™ had no significant difference in the results of X probing experi-
ments (see Objective Function Probing Experiments section). The experiments pre-
sented in this paper used an & of 1x107%.

The histogramming techniques use for KLD and the JE or MI probes differed
slightly. The JE and MI objective functions were computed in the space of the fixed
image, with the moving image zero padded as necessary. Histograms for the MI and
JE method were calculated with and without interpolation, respectively.

2.1.5 Kaullback-Leibler Distance (KLD)
Given the learned P and the pose dependent observed P” joint intensity PMFs, the
Kullback-Leibler distance between the two PMFs is given by [11, 12]

. PTG (1)
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2.1.6 Interpolation vs. Rounding

Histograms were generated by applying a standard rounding function to image inten-
sities. For comparison, we also implemented an interpolation function that spread
counts of intensity co-occurrences over the buckets corresponding to the combina-
tions of floors and ceilings of each intensity value.
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2.1.7 Optimization of the Transformation T - Downhill Simplex Searches

The goal of the KD based registration is to find the optimal transformation 7 by
minimizing 7 = arngmD(R,T |P) - the difference between the observed P, and the ex-
pected P joint intensity PMFs.

For the registration experiments presented, the value of KLD or JE was minimized
using the Nelder-Mead Downhill Simplex (direct search) method with a multi-
resolution strategy [13, 14]. This approach does not use derivatives.

One hundred start poses were randomly chosen, where the X, Y, and @ parameters
were varied within boundaries implied by Figure 3 to cause the majority, but not all
downhill searches using KLD and JE to succeed. The parameters ranged from: -45 to
55 for X, -25 to 35 for Y, and -50° to 130° for @. The KLD searches were then carried
out as described in the overview part of the Methods section. The JE searches were
performed in the same manner, except that the training phase was not carried out, and
for each evaluation of the objective function, only the training image pair (trans-
formed and / or blurred appropriately) was evaluated.

2.2 Objective Function Probing

Two EPI-MRI slice pairs were selected from a single acquisition set to be used as
training and test pairs to perform rigid transformation probes (see Figure 1). Both
image pairs were blurred to the four levels described earlier, and the AJPs for the
blurred and non-blurred training pairs were computed. The probes then consisted of
performing the following for the image pairs at all levels of blurring: transforming the
test pair’s EPI in fixed steps along a single axis (X, Y, or @), computing the joint
intensity PMF for the transformed EPI and its corresponding MRI blurred to the same
level, and then computing the KLD between this PMF and the AJP for that blur level.

The X probe shifted the test pair EPI along the X axis from -65 to 65 pixels in 1
pixel increments, the Y probe performed the same shift along the Y axis, and the @
probe rotated the test EPI from -180 to180 degrees in two degree increments.

2.2.1 Intensity Scaling Image Pairs from Different Acquisitions

To account for inter-acquisition intensity variations for training and test pairs, ex-
periments were performed in which an image dependent scaling factor was applied to
all intensities during histogramming. The factor consisted of the number of buckets
used divided by the intensity of the brightest pixel occurring in that image.

2.2.2 Pseudo 3D Experiment — Histogramming over Multiple Slices

For these experiments, X probes were performed as previously described, with the
exception that every step requiring a single image pair used a set of images. Regis-
tered EPI-MRI pairs from a single time point were divided into two consecutive sets —
anterior and posterior halves. Two probes were then performed, each in which one set
was used for training and the other as a test pair. Generating the training AJPs en-
tailed blurring all of the images in the training set, and then histogramming over all
intensity pairs occurring in areas of image pair overlap. Computing the test pair PMF
required transforming all EPIs of the test set and then histogramming cumulatively as
described for generating the AJPs (See Figure 6).
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3 Results

3.1 X Probe Comparisons: KLD, JE, MI

Joint Entropy [9], Mutual Information [15, 8] and KLD probes of X, Y or 8 axes
were performed on a test pair of images (Pair 12). MI & JE’s definitions are given by
P! (iy,i,) @

MI =Y P'(i,i,)log—*—2"— and JE=-) P/ (ii,)log P (i,.i,)
ii2 B, (l])[)n (12) ii2

where p’(j)and P/ (i,) are the marginal distributions.

In Figure 3 the plots show the variations in the objective functions for each trans-
formation of the EPI of the test pair for each of the blur levels. Negated MI is pre-
sented to facilitate comparison with JE and KLD, which both show minima near
proper registration. The transformation resulting in the pose chosen by the expert is
indicated by the vertical bar plus symbols. The square on each line indicates the pose
resulting in the lowest value for the objective function. Joint Entropy showed signifi-

cant bias on the Y and @ probes, while MI showed significant bias on the Y probe.

3.2 Objective Function Downhill Simplex Searches

Figure 4 summarizes the results of 100 Downhill simplex searches using KLD and JE,
with the final pose error shown as a function of the start pose error. The start and final

pose errors were defined as \/ Error} + Error, + Error; - These searches began with the

test image pair blurred at the highest blur level and the EPI of the test pair trans-
formed to the start pose. For a majority of the starting points, the KLD objective
function returned a pose with a lower Final Pose Error than the JE based method. A
final pose error threshold was selected to classify searches into successful and unsuc-
cessful. This threshold selected the best-scoring significant groups of results. The
average final pose for successful searches was then calculated. On average, successful
KLD trials converged to pose parameters closer to those chosen by the expert (x=0,
y=0, 8 =0) than the JE trials, and showed smaller variation. JE was significantly bi-
ased in the Y axis, and showed its largest variation in the Y axis pose parameter. Fig-
ure 5 shows the overlay of the test EPI transformed to the pose chosen by the expert
with its corresponding MRI (left image), the overlay for the test EPI transformed to
the average pose parameters suggested by KLD (middle image) and by JE (right im-
age). Visibly, the JE image is most discrepant from the expert’s pose, with its registra-
tion aligning some brain activation to the scalp. The KLD based method showed a
pose similar to the one chosen by the expert.

3.3 Effect of Different Training Pairs on KLD

We examined the effect of choice of training pair on KLD X probes. One EPI-MRI
pair was designated as a test pair, and then two KLD X probes were performed, each
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using a different EPI-MRI training pair (sampled from the same EPI-MRI volume
pair). Both probes showed a minimum near the pose selected by the expert.

3.4 KLD Using Training and Test Pairs from Different Acquisitions

KLD X probes using a test pair from a similar but different EPI-MRI volume pair
than the training pair, were performed directly and with the use of an image depend-
ent scaling factor. Both probes yielded minima near the expert’s pose for the non-
blurred images, and showed minimal variations of minima for KLD at the four blur
levels. The non-scaled probe showed more minima at the expert’s pose, but the probe
that scaled the image intensities showed less variation in the position of its minima.
The final pose of either method would likely agree with the expert’s.

Kullback-Leibler Distance over Blurs for Train09 & Test12 Joint Entropy over Blurs for 12
%0, 215, -Mutual Information over Blurs for 12

8 2 os|
8
g“ g goer
P g ]
5 £ 07
2 & 5
] =3
3. z Lo
x S s ]
S0 - Sos
8 5
s 15 N S 4 ighes) =
= \ s — Blur & (Highest)
st : . owest) a1 — w3
e No Blur by - B2
4 Correct Pose. b4 Blur 1 (Lowest)
: : B Nogu
e s PUof Lowest St 2 : Nomwr
© £3 w w W w w0 » w £} W w Frof Lowest st
Probe in X from -65 to 65 in steps of 1 pixel Probe in X from -65 to 65 in steps of 1 pixel % £ w© w % T a0
Probe in X from -65 t0 65 in steps of 1 pixel
Kullback-Leibler Distance over Blurs for Train09 & Test12 Joint Entropy over Blurs for 12 os -Mutual Information over Blurs for 12
0

e F
8u
g e, s
B >, . 2.
o g £
5 £ 5
-1 s E
3 E E]
£ S 13- 24
3
g . H
S —— Biur 4 (Highest 188 i . / Biur 4 (Highest) i B & (Highest)
2 el S &
7 B gowesy . N 7 e owesy 12 B o |
4 No Biur or “ NoBlur 1 go EhllP
e P : Corscios e pose
g b L s N Fog e cowes St . Fariecssat |
2 b ' 0 20 0 0 80 100 120 140
W e @ w H o w w  w e  w 0 )
Probe in Y from -85 to 65 in steps of 1 pixel Probe in Y from -65 to 65 in steps of 1 pixel Probein Y from -65 to 65 in steps of 1 pixel
Kullback-Leibler Distance over Blurs for Train09 & Test12 o Joint Entropy over Blurs for 12 - Mutual Information over Blurs for 12
o
e : Pt -
2 N \.\.__‘w.._\ i, e R
3 Mt k3
H b
s c
v i s
o 2 5
5 £ — £
£ N g
g Bl S g f
3 £ R =23 3
3 K] 2
5.
] 1 N
3 B4 (Fighes) e 4 Gigpos
= Emv:&Y e 11 g:_;wamh
o Fr -
Bt vy S domey
Rosis 12 Roo

+ ComectPose.

Gonect Poss
5 Pof Lowest Sat

st

5 Piot LowsstStat

B w w0 e i w W k% s b B % % w0 w0
Probe in Theta from —Pi to Pi in steps of 2pi/180 Probe in Theta from -Pi to Pi in steps of 2pi/180 Probe in Theta from -Pi to Pi in steps of 2pi/180

Legend for All Figures
+ Correct Pose —— Blur 4(Highest) - BI

ur 2
—+—NoBlur o Ptof Lowest Stat --- Blur 3 + Blur 1(Lowest)

Fig. 3. Comparisons of X, Y, and 6 Probes for registering an image pair using (left column)
the Kullback-Leibler Distance (KLD), (middle column) Joint Entropy (JE), and (right column)
Negated Mutual Information (MI). JE displayed significant bias in Y and @, while MI shows
significant bias along the Y axis
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DownHill Simplex Results for KLD & JE for 100 Random Start Points
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Fig. 4. Results of KLD and Joint Entropy Driven Downbhill Simplex Searches for a test image
given 100 random start poses for the test EPI. Trials were classified as being successful if the
final pose error fell under a threshold. The KLD based successful searches showed average
pose parameters closer to the expert’s chosen pose than the Joint Entropy based method

Fig. 5. Significant EPI intensities overlaid on corresponding MRI. (Left) Hand registration of
the EPI-MRI pair by an expert, (middle) EPI transformed to the average final pose parameters
of successful KLD method trials for downhill simplex, and (right) EPI transformed according to
the average final pose parameters of successful Joint Entropy based method

3.5 Effects of Bucket Size and Interpolation on KLD

Non-integer intensity values were encountered during histogramming, and were
rounded to allow bucketing. To see if rounding was leading to loss of important in-
formation, KLD X probes using a bi-linear interpolation of the intensity value were
performed. The interpolation method did not show significant improvement of the
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objective function. Similarly, increases in bucket size from 32 to 256 showed rela-
tively small improvements in the smoothness or minima of the KLLD X probes.

3.6 Combining Histograms across Multiple Slices — Pseudo 3D X Probes

Figure 6 shows the two KLD X pseudo 3D- probes performed. The left plot used the
posterior half of the image set for training, and the anterior as the test set. The right
plot used the opposite configuration. In general, both plots show much less variation
in minima at all blur levels than the X probes performed using single training and test
pairs. The right plot showed more uniform minima at the correct pose than the probe
depicted on the left.
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Fig. 6. Pseudo 3D Experiment Results — modified KLD X probes in which all the EPI-MRI
pairs from one time point were divided into two sets (anterior and posterior halves), and infor-
mation from one set was used for training, while the other was used as the test set. Intensity pair
information from all the image pairs in a set was combined to make the histograms for these
probes. Probes where the anterior half (right) and the posterior half (left) of the image set was
used

4 Discussion

While MRI/EPI registration is a 3D-3D problem, in the present work, informative
results have been obtained from a series of 2D experiments on representative slices.
Clear shortcomings of the MI and JE objective functions were shown, especially in
the axial direction, which are unlikely to be ameliorated by 3D registration. Variations
on bucket size and the use of rounding or interpolation did not appear to significantly
degrade performance of the KLD objective function. Similarly good results were
achieved when using images from two different acquisition sets as training and test
pairs to perform registration. The pseudo-3D experiments provide good indication
that the KL approach will be useful for the full 3D-3D problem.

5 Future Work

This technique needs to be assessed within a three dimensional framework, where
probing experiments and searches are performed over all six degrees of freedom.
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