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Abstract

A meta-search engine propagates user queries to its
participant search engines following a server selec-
tion strategy. To facilitate server selection, the meta-
search engine must keep concise descriptors about
the document collections indexed by the participant
search engines. Most existing approaches record in
the descriptors about what terms appear in a docu-
ment collection, but they skip the information about
which documents a keyword appears in. This results
in ineffective server ranking for multi-term queries,
because a document collection may contain all of the
query terms but not all of the terms appear in the
same document.

In this paper, we propose a server ranking approach
in which each search engine’s document collection is
divided into clusters by indexed terms. Furthermore,
we keep the term correlation information in a cluster
descriptor as a concise method to estimate the degree
of term co-occurrence in a document set. We empri-
cally show that combining clustering and term corre-
lation analysis significantly improves search precision
and that our approach effectively identifies the most
relevant servers even with a naive clustering method
and a small number of clusters used.

1 Introduction

Search engines, such as Google, are efficient tools for
users to find useful information on the Web by sim-
ple keyword-based queries. With the vast amount of
data on the Web and the rapid pace at which the Web

grows, it is a daunting (if at all feasible) task for a sin-
gle search server to index the entire Web and to keep
its index repository up-to-date. As an alternative, a
meta-search engine, or meta-server, accepts queries
from users, propagates the queries to one or more of
its participant search servers, and returns to users
a uniform representation of query results retrieved
by those servers. This meta-search method achieves
a better coverage of the Web with less update cost
than a centralized search method, even though each
participant search engine covers only a specific topic
or a small domain of the Web.

Server selection or server ranking is a crucial proce-
dure in a meta-search system. Upon a user query, the
server selection procedure identifies a subset of the
participant search engines that are potentially most
relevant to the query, in order to obtain query results
of good quality promptly. As a result, server selec-
tion is the first step in determining the efficiency and
effectiveness of a meta-search method. In this paper,
we explore how to improve server selection in order to
enhance the effectiveness of a meta-search, especially
for multi-term queries.

Most of the previous server selection methods [11]
keep statistical information about the participant
search servers’ indices. They invariably maintain a
list of terms found in the indexed documents, while
the weight of a term may vary across different meth-
ods. When a multiple-term query arrives, the meta-
search engine computes a relevance score of each
server for each single query term. The scores of each
server are then summed up to produce a final rank
of the server. Apparently, terms in a query are con-
sidered in isolation from one another during this pro-



cess. Therefore, whether two query terms appear in
one document or each in a different document is not
taken into consideration. Consequently, such meth-
ods in general are ineffective for multi-term queries.

Considering term correlation for multi-term queries
is necessary in effective server selection. However, the
computation of term correlation information may be
time-consuming and the accuracy of the results may
be interfered by noisy data. This motivats us to con-
sider clustering in combination with term correlation
analysis in server ranking. Specifically, we propose
to divide each search engine’s document collection
into clusters based on their term occurences and then
to compute the term correlation information within
each cluster. This can be done efficiently and effec-
tively, because a cluster is smaller than the entire
collection and contains similar documents. The re-
sulting server rank strategy considers not only the
matching level of individual query terms at a server,
but also that of term correlation at the server.

In addition to designing and implementing our
server ranking strategy with a combination of cluster-
ing and term correlation, we have performed initial
simulation experiments on a subset of the TREC doc-
uments collection. Our empirical results show that
this method works well in estimating search server
relevance. Most notablly, even though clustering is
often a computationally expensive task, our method
of combining clustering and term correlation analy-
sis yields good result with a naive but fast clustering
algorithm and a small number of clusters used.

The remainder of the paper is organized as follows.
Section 2 briefly discusses some related work. Section
3 presents the clustering and term correlation meth-
ods we used. Section 4 describes our server rank-
ing method with clustering and term correlation. We
give the experimental results in Section 5, and draw
some conclusions in Section 6.

2 Related Work

A great number of meta-search systems have been de-
veloped in recent years, together with various server
selection methods. In addition, there have been rel-
evant proposals on distributed search [10][13]. In

the following we discuss a few previous meta-search
methods, some of which consider document cluster-
ing or term correlation in server ranking and therefore
are most relevant to our work.

SavvySearch[8] adjusts the number of concurrent
participant search engines according to the network
load and the local CPU load at query time, and
ranks the participant search servers by relevance
score (TFIDF), user clickthrough as well as their re-
cent performance.

Clustering has been applied in a meta-search
method [12], in which descriptors of clusters instead
of the entire indexed data collections are adopted.
The descriptors are computed at individual search
servers, and are kept by the meta search server. It
results in improved scalability with respect to com-
putational consumption and storage space.

Document relevance has also been considered in a
previous meta-search engine [15]. This meta-search
engine computes the relevance score of an individ-
ual search server S to a term T as the similarity
between T and the most relevant document in 5,
and records only the top N relevant servers. It of-
fers excellent scalability and guarantees that the K
most relevant documents are retrieved for single-term
queries. However, it doesn’t perform well with multi-
term queries and tends to return answers pointing to
identical sources.

Finally, the Ingrid[10] search infrastructure pro-
vides a good model for clustering based on term com-
binations rather than separate terms, but it may be
difficult to scale up.

3 Clustering and Term Corre-
lation

3.1 Clustering Algorithm

Clustering has been studied extensively in machine
learning [6], pattern recognition [5] and optimization
[3]. The most general approach to clustering is to
view it as a density estimation problem [14]. Various
models [9] have been developed for clustering pur-
poses, among which the K-means algorithm is well-
known for its effeciency.



K-means is a widely-used iterative algorithm that
starts from K rough centroids and converges gradu-
ally. Much effort has been made in improving its ef-
fectiveness [2]. Since an effective clustering algorithm
is often expensive and thus is unsuitable in server
ranking, we purposely adopt a naive but fast two-
iteration K-means algorithm in our server ranking
method. We show by experiments that our method
works well notwithstanding the relatively high error
rate of the clustering algorithm.

3.2 Term Correlation
3.2.1 Descriptors of Clusters

After the document collections of the participant
search servers are partitioned into clusters, we can
obtain crucial information that best describes each
cluster. We define the descriptor of a cluster ¢ as
follows.

e The cardinality of cluster ¢, Card(c);

e The centroid of ¢, Cent(c) = (aws, aws, ..., aws,),
where each coordinate value aw; is the average
of all weights of term ¢; across the documents in
cluster ¢, with the weight of ¢; in a document
being zero if there is no occurrence of this term
in the document.

e A term correlation matrix, CM(c), which
records the pairwise similarity of frequent terms
of cluster c¢. Simiarity and frequent terms are
defined in Sections 3.2.2 and 3.2.3.

Since clustering is done based on the density distri-
bution of the indexed documents in the vector space,
the resulting clusters are composed of documents that
are similar to each other to some extent. We can re-
gard a cluster as a special topic area in the sense that
documents of the same topic tend to have relatively
high similarity. While term correlation analysis may
make mistakes due to noise in the data and may be
too expensive to be applied to the entire document
collection of a search server, it can be done more ef-
ficiently and effectively within specific topic areas,
where the term space is narrowed and the noisy data
are eliminated.

3.2.2 Frequent Term Selection

Assuming that clusters are topic areas, the frequent
terms of a cluster can then be regarded as popu-
lar words of a special topic. We aim to choose the
frequent term set, FT(c), for a cluster ¢, such that
FT(c) covers the majority of popular words of ¢, but
does not have much intersection with the frequent
term sets of the other clusters.

For each document vector dv = (tws, twa, ..., tw,)
in a cluster ¢, tw; is the weight of term ¢; in the docu-
ment, which is defined as the raw term frequency tf;
divided by the maximum raw term frequency tf,qz
in dv. In this paper, we define the total weight of a
term ¢; in cluster ¢ as follows.

W(t;,c) = Z tw;, dv = (twy, twa, ..., twy,);

dvéEc

We compare a threshold with the total weight of
each term in the cluster to determine the frequent
term set of the cluster. This method identifies fre-
quent terms based on their absolute total weight val-
ues within a cluster regardless of the cluster size, and
therefore tends to produce a larger frequent term set
for a larger cluster, which is natural in the real world.

3.2.3 Term Correlation Representation

After the frequent term set is decided, we analyze the
correlation among frequent terms within a cluster by
computing a term correlation matrix, through which
information about the distribution of terms over doc-
uments can be obtained.

To compute the term correlation matrix, CM(c),
of a cluster ¢, we first construct a term-document ma-
trix, DM (c), from ¢’s document collection. An entry
dm; ; in DM (c) is the weight of term ¢; in document
vector dv; € c. Thus, we obtain a term-document
vector for each frequent term.

We define the correlation of two terms ¢; and
t; as the similarity between their term-document
vectors, tv; and tv;. Let Card(c) = m,tv; =
(Wi, Wi 2y ey Wi ) and tv; = (Wj1, W52, Wim)-
cmy; j, the (i,7) entry of the term correlation matrix
CM (c), can be represented as follows.

cm; ; = sim(tv;, tv;)
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Equation 1 implies that terms with similar distribu-
tion of occurrences among the documents within a
cluster get high correlation value. Specifically, when
two terms have the exact same distribution (i.e., they
co-occur in all documents with the same weight),
their term correlation is one; if they do not co-exist in
any single document, their term correlation is zero.

(1
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4 Server Ranking

Having presented the cluster descriptors with term
correlation information, we are now ready to dis-
cuss our server ranking method in a multi-term query
meta-search.

Consider a query with two terms A and B. If the
cluster descriptors fail to distinguish between one
document with terms A and B, and two documents
each with only one of the terms, the referral may be
false. Our goal in server ranking is to eliminate such
false referrals and subsequent fruitless query results
by ranking servers based on term correlation within
clusters.

We adopt a cluster ranking metric based on the
cardinality, the centroid, as well as the term corre-
lation matrix of each cluster. We then rank each
search server by summing up weights of all of its
clusters. This way, we guarantee that a cluster with
query terms co-occuring more frequently is assigned
to a higher rank and that a server with higher quality
clusters is ranked higher.

Let us define it formally as follows. Suppose a
search server S(cq,co, ..., cx) has K Clusters, and we
define the rank of the server to be a sum of the cluster
ranks (weights).

K

W(S) = Wi(e);

=1

Consider a query Q@ with k query terms. We rep-
resent query ) as a vector qu where all terms that
occur in the query get a weight 1, and 0 otherwise.
Then the weight of a cluster ¢ with respect to query

Q is represented as follows, where sim is a function
of cosine similarity between two vectors as defined in
Equation 1.

W (e) = {a x sim[Cent(c), qu]
+03 x (Z em; i)} x Card|c]
i<y
fOT all (Za]) € {(Za])‘ { <jati S Qatj € Q}a

(2)

In this cluster weight formula, o and 3 are two
weighting coefficients decided at the meta-search
server side, where

a+ =1

This equation takes into account the proximity be-
tween the cluster centroid and the query vector, the
correlation of the query terms within the cluster, and
the size of the cluster. It shows that the closer the
cluster is located to the query vector, the more of-
ten the query terms co-exist in the documents of the
cluster, and the larger the cluster, the higher ranking
the cluster is assigned.

Let us illustrate this by a simple example. Con-
sider a query with four terms A, B, C and D, and
two clusters ¢; and cy. Cluster ¢; has two documents,
document docy; containing query terms A, B, C si-
multaneously, and document docis containing query
term D only. Cluster ¢y also has two documents, doc-
ument docy; containing all of the four query terms,
and document docos containing none of the query
terms. Intuitively, cluster co should be ranked higher
than ¢;.

Let us see how our method works in this example.
To have all other conditions equal, we assume

e Cent(cy) = Cent(ca), and the similarity between
the query vector and the cluster centroid is S.

e Card(c;) = Card(cz) = 2 (i.e., no other docu-
ments are contained in the two clusters besides
docy1, docya, docar, docas).

e The weights of all query terms, A, B, C, D, is 1
in whichever documents they occur.



Since doci; and docyo in cluster ¢; together con-
tribute to sim(A, B), sim(B,C) and sim(A,C),
while in ¢o only docs; contributes to the similarity
of all the C? = 6 possible term pairs, we compute
the cluster weights to be

Wi(c1) = (axS+8*3)x2,W(ca) = (a*x S+ 5x6)*2,

This shows that cluster ¢, is indeed ranked higher
than ¢; in our method.

We believe that our server selection method is a
scalable approach, because the growth of the number
of frequent terms in a cluster is slow with respect to
that of the number of documents in the cluster. It
follows that the computation cost of the term corre-
lation matrix is linear to the number of documents
when the vocabulary is stabilized, and the size of the
matrix is invariable.

Finally, we believe that document updates (which
often occur on the Web) can be easily handled in our
approach if we periodically perform clustering and
update cluster descriptors. Since all the computation
of clustering and term correlation analysis is done
offline and is distributed over all participant search
servers, the update overhead will not be too heavy a
burden at each local server.

5 Experimental Results

To evaluate our server selection method, we set up a
simulation environment with 50 pseudo-servers. The
document set comes from Volumes 4' and 52%of the
TREC (Text Retrieval Conference) collection, con-
sisting of over 500,000 documents. We distribute the
data among all 50 pseudo-servers such that all servers
maintain document collections of a similar cardinal-
ity. We choose uniform distribution in this paper,
rather than a skewed one (i.e., having a bias towards
some of the servers over others with respect to the

ITREC Volume 4, May 1996 Collection includes material
from the Financial Times Limited (1991, 1992, 1993, 1994),
the Congressional Record of the 103rd Congress (1993), and
the Federal Register (1994).

2TREC Volume 5, April 1997 Collection includes material
from the Foreign Broadcast Information Service (1996) and the
Los Angeles Times (1989, 1990).

number of indexed documents), to isolate the effects
of our method from other factors.

Each pseudo-server is partitioned into K clusters,
using the two-iteration K-means clustering algorithm
with random initial points. All cluster descriptors are
computed at individual search servers and are stored
at the meta-search engine. For each query, the meta-
search engine performs the server selection and prop-
agates the query to the top 7" highest ranked search
servers. We choose retrieval accuracy (precision) as
our search performance measurement metric, as it
is the most important metric in Web search, where
users are mostly interested in only the top few query
results (precision or accuracy, not recall).

Given a query @, the cast number T (i.e., the num-
ber of the search servers to which a user query is for-
warded), and the number of top relevant documents
retrieved at each search engine, N, the retrieval ac-
curacy of the meta-search engine is defined as:

S
Ace(Q, T, N) = W

, for all s;; selected,

Where R; is the set of query results returned by
search server s;, and R the set of top IV relevant
documents across the entire TREC document collec-
tion. We believe this measurement describes the ef-
fectiveness of a server ranking approach well, since it
is decided mostly by which servers are selected rather
than the quality of the document collection.

5.1 Coefficient Settings

In the cluster weight formula (formula 2), the two co-
efficients o and 3 respectively suggest how much the
ranking score is affected by the statistical information
and the term correlation within clusters. We conduct
experiments on various a and [ settings in an envi-
ronment where the number of clusters K = 20, and
the top document number N = 20.

Figure 1 illustrates the retrieval accuracy of three
typical settings, from which we can observe that
a = 0.2, 8 = 0.8 works the best. The precision in-
creases with 3 in our experiments, which implies that
the term correlation information truly makes sense in
improving the effectiveness of server selection.
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Figure 1: Various a and 3 settings

5.2 Comparison

We then evaluate our approach in scenarios where
K =20,30, N =10,20, and T = 1, 10, 20, 30, 40, 50.
It is obvious that when T' = 50 is chosen, the re-
trieval accuracy of all approaches converges at 100%.
We merely compare our method with the method
proposed by Shen et al. [12], which makes use of
clustering but not term correlation analysis, because
its method has been shown to have a better perfor-
mance than the other existing ranking methods such
as gGloss[7], CORI[4] and CVV]16].

We refer to our method TC and that by Shen et
al. CL .3 in the figures. Obviously, the two methods
perform the same on single-term queries. Therefore,
we consider only multiple-term queries in our exper-
iments. The results (Figures 2-5) show that our ap-
proach (TC) consistently achieves a higher accuracy
than the cluster-based method (CL).

Our results also show that K = 30 is a good value
for clustering in our setting, and our approach im-
proves retrieval accuracy more significantly when a
small number of top scored documents are retrieved
(N = 10), which is especially encouraging since it
is most important to precisely retrieve the very top
document set.

Finally, we conduct experiments where the number

3TC: Clustering and term correlation based method
CL: Cluster-based method without term correlation analysis
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Figure 2: 20 Clusters, Top 10 Documents
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Figure 3: 20 Clusters, Top 20 Documents

of clusters is rather small (K = 5), and thus the
clustering procedure is quite fast. In this scenario,
the cluster-based method with no term correlation
analysis turns to be as ineffective as a random server
selection method. In comparison, we show in figure 6
that our cluster and term correlation based method
still achieves a high accuracy.

6 Conclusion

In this paper, we have proposed a server ranking
method combining document clustering and term
correlation for meta-search with multi-term queries.
In our method, each participant search server ap-
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Figure 4: 30 Clusters, Top 10 Documents
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Figure 5: 30 Clusters, Top 20 Documents

plies clustering to its local repository, and computes
the correlation matrix of frequent terms to be in-
cludeded in the cluster descriptor. This approach
takes into consideration the degree of co-occurrence
of query terms in documents. Therefore, it signifi-
cantly improves the effectiveness of server selection
for multiple-term queries. This is confirmed by our
initial experiements on the TREC document collec-
tion. Additionally, our empirical results show that a
simple but fast clustering algorithm and a small num-
ber of clusters is sufficient to achieve the accuracy en-
hancement, thus relieving concerns on the overhead
of the clustering procedure.

Retrieval Precision

10 20 30 ) 50
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Figure 6: 5 Clusters, Top 20 Documents
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