Approximate Nearest Neighbor Searching

Sunil Arya
Department of Computer Science and Engineering HKUST

Nearest Neighbor Searching

Nearest Neighbor Searching

Given a set S of n data points, preprocess S into a data structure so that given a query point q, the data point p^{*} closest to q can be found quickly.

Assumptions and Goals

- Dimension d is constant.
- Euclidean metric.
- Desire $O(n)$ space and $O(\log n)$ query time.

Approximate Nearest Neighbor Searching

Approximate Nearest Neighbor (ANN) Searching
Given query point q and $\varepsilon>0$, return a data point p whose distance from q is no more than $(1+\varepsilon)$ times the distance from q to its nearest neighbor p^{*}. We call p an ε-approximate nearest neighbor of q.

Balanced Box-Decomposition (BBD) Tree

Data Structure

The tree combines the balance of k - d trees with the fatness properties of quadtrees.

Theoretical Result (Arya et al. '98)

- Space: $O(n)$
- Query Time: $O\left(\log n+(1 / \varepsilon)^{d}\right)$

- Can the ε-dependencies be reduced, albeit at the expense of using more space?
- Can we achieve tradeoffs between space and query time?

Approximate Voronoi Diagrams

Data Structure

- Quadtree-like subdivision of space.
- Each cell stores a representative $r \in S$ such that r is an ε-ANN of any point q in the cell.

Theoretical Result (Har-Peled '01)

- Space: $O\left(n \cdot(1 / \varepsilon)^{d}\right)$
- Query Time: $O(\log n+\log (1 / \varepsilon))$

Space-Time Tradeoffs

Results

Method	Space	Time	Space \times Time
BBD-Trees (Arya et al. '98)	n	$\left(\frac{1}{\varepsilon}\right)^{d}$	$n \cdot\left(\frac{1}{\varepsilon}\right)^{d}$
BBD-Trees + Cones (Clarkson '94, Chan '98)	$n \cdot\left(\frac{1}{\varepsilon}\right)^{d / 2}$	$\left(\frac{1}{\varepsilon}\right)^{d / 2}$	$n \cdot\left(\frac{1}{\varepsilon}\right)^{d}$
AVDs (Har-Peled '01)	$n \cdot\left(\frac{1}{\varepsilon}\right)^{d}$	1	$n \cdot\left(\frac{1}{\varepsilon}\right)^{d}$

(lgnoring small factors)

Approximate Voronoi Diagrams: Multiple Representatives

Data Structure

- Each cell is allowed up to $t \geq 1$ representatives.
- Given any point q in the cell, at least one of the representatives is an ε-ANN of q.
- We can achieve space-time tradeoffs by adjusting t.

Theoretical Result (Arya et al. '09)

- Space: $O(n)$

- Query Time: $O\left((1 / \varepsilon)^{d / 2}\right)$

Conclusions

- We achieve continuous space-time tradeoffs.
- We break the $n \cdot(1 / \varepsilon)^{d}$ space-time product barrier.
- Finding the best space-time tradeoffs is still an open problem.

