Programs as Agents in First-Order Logic

Fangzhen Lin

The Voice: If you build it, he (they) will come.

— Field of Dreams (1989)
Current Research Interests

Broadly speaking, logic-based AI. Specifically:

- **Answer Set Programming**: a constraint-based problem solving paradigm using nonmonotonic logic programs, with real world applications in product design, bioinformatics, and robotics.

- **High level robot design**: based on a formal theory of actions.

- **Game theory and social choice theory**:
 - A formulation of HK Legislative Council GC election.
 - Computer-aided theorem discovery in game theory.
 - Iterative game theory (iterative Prisoner’s Dilemma).

- **Computer programs as agents in first-order logic.**
Programs are some of the most complex man-made systems.

To understand these systems, we propose to treat them as agents with knowledge in first-order logic.

As a first step, we will construct a translator from programming languages like C and Java to first-order logic.
The following program changes the value of X given the values of X and Y:

\[
X = X + Y; \\
X = X + Y
\]

If we use \(X\) and \(Y\) to denote the input values of \(X\) and \(Y\), respectively, and \(X'\) and \(Y'\) the output values, then we have (\(X_1\) and \(Y_1\) are intermediate variables):

\[
X_1 = X + Y, \\
Y_1 = Y, \\
X' = X_1 + Y_1, \\
Y' = Y_1.
\]

How about real programs, especially those with loops?
Consider the following while loop

\[
\text{while } X < M \text{ do } \{ X = f(X) \}
\]

What does it output? No effect on \(M \), but for \(X \), it depends on \(f \):

\[
M' = M, \quad X \geq M \rightarrow X' = X, \\
X < M \rightarrow X' = X(N), \\
X(0) = X, \\
\forall n. X(n+1) = f(X(n)), \\
X(N) \geq M, \\
\forall n. n < N \rightarrow X(n) < M.
\]

\(N \) denotes the number of iterations that the loop runs until termination. \(X(n) \) is the value of \(X \) after the \(n \)th iteration.
Properties during execution - use V^L to denote the value of V at label L:

1: while $I < N$ do
2: if $X < A(I)$ then
3: $X = A(I)$;
4: $I = I + 1$

The axioms for the body of the loop are (we ignore $A(x)$ and N as they do not change):

\[
X^4 = X^2 \land I^4 = I^2 + 1, \\
X^2 = \text{if } X < A(I) \text{ then } X^3 \text{ else } X, \\
I^2 = \text{if } X < A(I) \text{ then } I^3 \text{ else } I, \\
X^3 = A(I) \land I^3 = I.
\]
Thus the axioms for the program are:

\[X^1(0) = X \land I^1(0) = I, \]
\[X^1(n + 1) = X^4(n), \]
\[I^1(n + 1) = I^4(n), \]
\[X^4(n) = X^2(n), \]
\[I^4(n) = I^2(n) + 1, \]
\[X^2(n) = \text{if } X^1(n) < A(I^1(n)) \text{ then } X^3(n) \text{ else } X^1(n), \]
\[I^2(n) = \text{if } X^1(n) < A(I^1(n)) \text{ then } I^3(n) \text{ else } I^1(n), \]
\[X^3(n) = A(I^1(n)), \]
\[I^3(n) = I^1(n), \]
\[X^1 = X^4(M) \land I^1 = I^4(M), \]
\[n < M \rightarrow I^1(n) < N, \]
\[\neg I^1(M) < N. \]
Remarks

Where do we stand now:

- a core procedural programming language with loops and functions.
- a prototype system for translating these programs to first-order theories;
- A simplifier for program verification.
- Some simple heuristics for proving correctness of a program in integer domain using mathematica - integer division, least common multiple, largest common factor, ...
- pointers and struct data structure for linked lists: manually prove the correctness of an algorithm for in-place reversing of a list, and that of Schorr-Waite graph marking algorithm.
- Working on threads and concurrency.